xref: /openbmc/linux/arch/x86/mm/init.c (revision 7a010c3c)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 #include <asm/memtype.h>
29 
30 /*
31  * We need to define the tracepoints somewhere, and tlb.c
32  * is only compiled when SMP=y.
33  */
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/tlb.h>
36 
37 #include "mm_internal.h"
38 
39 /*
40  * Tables translating between page_cache_type_t and pte encoding.
41  *
42  * The default values are defined statically as minimal supported mode;
43  * WC and WT fall back to UC-.  pat_init() updates these values to support
44  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
45  * for the details.  Note, __early_ioremap() used during early boot-time
46  * takes pgprot_t (pte encoding) and does not use these tables.
47  *
48  *   Index into __cachemode2pte_tbl[] is the cachemode.
49  *
50  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
51  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
52  */
53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
54 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
55 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
60 };
61 
62 unsigned long cachemode2protval(enum page_cache_mode pcm)
63 {
64 	if (likely(pcm == 0))
65 		return 0;
66 	return __cachemode2pte_tbl[pcm];
67 }
68 EXPORT_SYMBOL(cachemode2protval);
69 
70 static uint8_t __pte2cachemode_tbl[8] = {
71 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
72 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
73 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
75 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
76 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
79 };
80 
81 /* Check that the write-protect PAT entry is set for write-protect */
82 bool x86_has_pat_wp(void)
83 {
84 	return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
85 }
86 
87 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
88 {
89 	unsigned long masked;
90 
91 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
92 	if (likely(masked == 0))
93 		return 0;
94 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
95 }
96 
97 static unsigned long __initdata pgt_buf_start;
98 static unsigned long __initdata pgt_buf_end;
99 static unsigned long __initdata pgt_buf_top;
100 
101 static unsigned long min_pfn_mapped;
102 
103 static bool __initdata can_use_brk_pgt = true;
104 
105 /*
106  * Pages returned are already directly mapped.
107  *
108  * Changing that is likely to break Xen, see commit:
109  *
110  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
111  *
112  * for detailed information.
113  */
114 __ref void *alloc_low_pages(unsigned int num)
115 {
116 	unsigned long pfn;
117 	int i;
118 
119 	if (after_bootmem) {
120 		unsigned int order;
121 
122 		order = get_order((unsigned long)num << PAGE_SHIFT);
123 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
124 	}
125 
126 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
127 		unsigned long ret = 0;
128 
129 		if (min_pfn_mapped < max_pfn_mapped) {
130 			ret = memblock_phys_alloc_range(
131 					PAGE_SIZE * num, PAGE_SIZE,
132 					min_pfn_mapped << PAGE_SHIFT,
133 					max_pfn_mapped << PAGE_SHIFT);
134 		}
135 		if (!ret && can_use_brk_pgt)
136 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
137 
138 		if (!ret)
139 			panic("alloc_low_pages: can not alloc memory");
140 
141 		pfn = ret >> PAGE_SHIFT;
142 	} else {
143 		pfn = pgt_buf_end;
144 		pgt_buf_end += num;
145 	}
146 
147 	for (i = 0; i < num; i++) {
148 		void *adr;
149 
150 		adr = __va((pfn + i) << PAGE_SHIFT);
151 		clear_page(adr);
152 	}
153 
154 	return __va(pfn << PAGE_SHIFT);
155 }
156 
157 /*
158  * By default need to be able to allocate page tables below PGD firstly for
159  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
160  * With KASLR memory randomization, depending on the machine e820 memory and the
161  * PUD alignment, twice that many pages may be needed when KASLR memory
162  * randomization is enabled.
163  */
164 
165 #ifndef CONFIG_X86_5LEVEL
166 #define INIT_PGD_PAGE_TABLES    3
167 #else
168 #define INIT_PGD_PAGE_TABLES    4
169 #endif
170 
171 #ifndef CONFIG_RANDOMIZE_MEMORY
172 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
173 #else
174 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
175 #endif
176 
177 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
178 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
179 void  __init early_alloc_pgt_buf(void)
180 {
181 	unsigned long tables = INIT_PGT_BUF_SIZE;
182 	phys_addr_t base;
183 
184 	base = __pa(extend_brk(tables, PAGE_SIZE));
185 
186 	pgt_buf_start = base >> PAGE_SHIFT;
187 	pgt_buf_end = pgt_buf_start;
188 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
189 }
190 
191 int after_bootmem;
192 
193 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
194 
195 struct map_range {
196 	unsigned long start;
197 	unsigned long end;
198 	unsigned page_size_mask;
199 };
200 
201 static int page_size_mask;
202 
203 /*
204  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
205  * enable and PPro Global page enable), so that any CPU's that boot
206  * up after us can get the correct flags. Invoked on the boot CPU.
207  */
208 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
209 {
210 	mmu_cr4_features |= mask;
211 	if (trampoline_cr4_features)
212 		*trampoline_cr4_features = mmu_cr4_features;
213 	cr4_set_bits(mask);
214 }
215 
216 static void __init probe_page_size_mask(void)
217 {
218 	/*
219 	 * For pagealloc debugging, identity mapping will use small pages.
220 	 * This will simplify cpa(), which otherwise needs to support splitting
221 	 * large pages into small in interrupt context, etc.
222 	 */
223 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
224 		page_size_mask |= 1 << PG_LEVEL_2M;
225 	else
226 		direct_gbpages = 0;
227 
228 	/* Enable PSE if available */
229 	if (boot_cpu_has(X86_FEATURE_PSE))
230 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
231 
232 	/* Enable PGE if available */
233 	__supported_pte_mask &= ~_PAGE_GLOBAL;
234 	if (boot_cpu_has(X86_FEATURE_PGE)) {
235 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
236 		__supported_pte_mask |= _PAGE_GLOBAL;
237 	}
238 
239 	/* By the default is everything supported: */
240 	__default_kernel_pte_mask = __supported_pte_mask;
241 	/* Except when with PTI where the kernel is mostly non-Global: */
242 	if (cpu_feature_enabled(X86_FEATURE_PTI))
243 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
244 
245 	/* Enable 1 GB linear kernel mappings if available: */
246 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
247 		printk(KERN_INFO "Using GB pages for direct mapping\n");
248 		page_size_mask |= 1 << PG_LEVEL_1G;
249 	} else {
250 		direct_gbpages = 0;
251 	}
252 }
253 
254 static void setup_pcid(void)
255 {
256 	if (!IS_ENABLED(CONFIG_X86_64))
257 		return;
258 
259 	if (!boot_cpu_has(X86_FEATURE_PCID))
260 		return;
261 
262 	if (boot_cpu_has(X86_FEATURE_PGE)) {
263 		/*
264 		 * This can't be cr4_set_bits_and_update_boot() -- the
265 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
266 		 * do any good anyway.  Despite the name,
267 		 * cr4_set_bits_and_update_boot() doesn't actually cause
268 		 * the bits in question to remain set all the way through
269 		 * the secondary boot asm.
270 		 *
271 		 * Instead, we brute-force it and set CR4.PCIDE manually in
272 		 * start_secondary().
273 		 */
274 		cr4_set_bits(X86_CR4_PCIDE);
275 
276 		/*
277 		 * INVPCID's single-context modes (2/3) only work if we set
278 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
279 		 * on systems that have X86_CR4_PCIDE clear, or that have
280 		 * no INVPCID support at all.
281 		 */
282 		if (boot_cpu_has(X86_FEATURE_INVPCID))
283 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
284 	} else {
285 		/*
286 		 * flush_tlb_all(), as currently implemented, won't work if
287 		 * PCID is on but PGE is not.  Since that combination
288 		 * doesn't exist on real hardware, there's no reason to try
289 		 * to fully support it, but it's polite to avoid corrupting
290 		 * data if we're on an improperly configured VM.
291 		 */
292 		setup_clear_cpu_cap(X86_FEATURE_PCID);
293 	}
294 }
295 
296 #ifdef CONFIG_X86_32
297 #define NR_RANGE_MR 3
298 #else /* CONFIG_X86_64 */
299 #define NR_RANGE_MR 5
300 #endif
301 
302 static int __meminit save_mr(struct map_range *mr, int nr_range,
303 			     unsigned long start_pfn, unsigned long end_pfn,
304 			     unsigned long page_size_mask)
305 {
306 	if (start_pfn < end_pfn) {
307 		if (nr_range >= NR_RANGE_MR)
308 			panic("run out of range for init_memory_mapping\n");
309 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
310 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
311 		mr[nr_range].page_size_mask = page_size_mask;
312 		nr_range++;
313 	}
314 
315 	return nr_range;
316 }
317 
318 /*
319  * adjust the page_size_mask for small range to go with
320  *	big page size instead small one if nearby are ram too.
321  */
322 static void __ref adjust_range_page_size_mask(struct map_range *mr,
323 							 int nr_range)
324 {
325 	int i;
326 
327 	for (i = 0; i < nr_range; i++) {
328 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
329 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
330 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
331 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
332 
333 #ifdef CONFIG_X86_32
334 			if ((end >> PAGE_SHIFT) > max_low_pfn)
335 				continue;
336 #endif
337 
338 			if (memblock_is_region_memory(start, end - start))
339 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
340 		}
341 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
342 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
343 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
344 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
345 
346 			if (memblock_is_region_memory(start, end - start))
347 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
348 		}
349 	}
350 }
351 
352 static const char *page_size_string(struct map_range *mr)
353 {
354 	static const char str_1g[] = "1G";
355 	static const char str_2m[] = "2M";
356 	static const char str_4m[] = "4M";
357 	static const char str_4k[] = "4k";
358 
359 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
360 		return str_1g;
361 	/*
362 	 * 32-bit without PAE has a 4M large page size.
363 	 * PG_LEVEL_2M is misnamed, but we can at least
364 	 * print out the right size in the string.
365 	 */
366 	if (IS_ENABLED(CONFIG_X86_32) &&
367 	    !IS_ENABLED(CONFIG_X86_PAE) &&
368 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
369 		return str_4m;
370 
371 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
372 		return str_2m;
373 
374 	return str_4k;
375 }
376 
377 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
378 				     unsigned long start,
379 				     unsigned long end)
380 {
381 	unsigned long start_pfn, end_pfn, limit_pfn;
382 	unsigned long pfn;
383 	int i;
384 
385 	limit_pfn = PFN_DOWN(end);
386 
387 	/* head if not big page alignment ? */
388 	pfn = start_pfn = PFN_DOWN(start);
389 #ifdef CONFIG_X86_32
390 	/*
391 	 * Don't use a large page for the first 2/4MB of memory
392 	 * because there are often fixed size MTRRs in there
393 	 * and overlapping MTRRs into large pages can cause
394 	 * slowdowns.
395 	 */
396 	if (pfn == 0)
397 		end_pfn = PFN_DOWN(PMD_SIZE);
398 	else
399 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
400 #else /* CONFIG_X86_64 */
401 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
402 #endif
403 	if (end_pfn > limit_pfn)
404 		end_pfn = limit_pfn;
405 	if (start_pfn < end_pfn) {
406 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
407 		pfn = end_pfn;
408 	}
409 
410 	/* big page (2M) range */
411 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
412 #ifdef CONFIG_X86_32
413 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
414 #else /* CONFIG_X86_64 */
415 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
416 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
417 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
418 #endif
419 
420 	if (start_pfn < end_pfn) {
421 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
422 				page_size_mask & (1<<PG_LEVEL_2M));
423 		pfn = end_pfn;
424 	}
425 
426 #ifdef CONFIG_X86_64
427 	/* big page (1G) range */
428 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
429 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
430 	if (start_pfn < end_pfn) {
431 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
432 				page_size_mask &
433 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
434 		pfn = end_pfn;
435 	}
436 
437 	/* tail is not big page (1G) alignment */
438 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
439 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440 	if (start_pfn < end_pfn) {
441 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
442 				page_size_mask & (1<<PG_LEVEL_2M));
443 		pfn = end_pfn;
444 	}
445 #endif
446 
447 	/* tail is not big page (2M) alignment */
448 	start_pfn = pfn;
449 	end_pfn = limit_pfn;
450 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
451 
452 	if (!after_bootmem)
453 		adjust_range_page_size_mask(mr, nr_range);
454 
455 	/* try to merge same page size and continuous */
456 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
457 		unsigned long old_start;
458 		if (mr[i].end != mr[i+1].start ||
459 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
460 			continue;
461 		/* move it */
462 		old_start = mr[i].start;
463 		memmove(&mr[i], &mr[i+1],
464 			(nr_range - 1 - i) * sizeof(struct map_range));
465 		mr[i--].start = old_start;
466 		nr_range--;
467 	}
468 
469 	for (i = 0; i < nr_range; i++)
470 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
471 				mr[i].start, mr[i].end - 1,
472 				page_size_string(&mr[i]));
473 
474 	return nr_range;
475 }
476 
477 struct range pfn_mapped[E820_MAX_ENTRIES];
478 int nr_pfn_mapped;
479 
480 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
481 {
482 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
483 					     nr_pfn_mapped, start_pfn, end_pfn);
484 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
485 
486 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
487 
488 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
489 		max_low_pfn_mapped = max(max_low_pfn_mapped,
490 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
491 }
492 
493 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
494 {
495 	int i;
496 
497 	for (i = 0; i < nr_pfn_mapped; i++)
498 		if ((start_pfn >= pfn_mapped[i].start) &&
499 		    (end_pfn <= pfn_mapped[i].end))
500 			return true;
501 
502 	return false;
503 }
504 
505 /*
506  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
507  * This runs before bootmem is initialized and gets pages directly from
508  * the physical memory. To access them they are temporarily mapped.
509  */
510 unsigned long __ref init_memory_mapping(unsigned long start,
511 					unsigned long end, pgprot_t prot)
512 {
513 	struct map_range mr[NR_RANGE_MR];
514 	unsigned long ret = 0;
515 	int nr_range, i;
516 
517 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
518 	       start, end - 1);
519 
520 	memset(mr, 0, sizeof(mr));
521 	nr_range = split_mem_range(mr, 0, start, end);
522 
523 	for (i = 0; i < nr_range; i++)
524 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
525 						   mr[i].page_size_mask,
526 						   prot);
527 
528 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
529 
530 	return ret >> PAGE_SHIFT;
531 }
532 
533 /*
534  * We need to iterate through the E820 memory map and create direct mappings
535  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
536  * create direct mappings for all pfns from [0 to max_low_pfn) and
537  * [4GB to max_pfn) because of possible memory holes in high addresses
538  * that cannot be marked as UC by fixed/variable range MTRRs.
539  * Depending on the alignment of E820 ranges, this may possibly result
540  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
541  *
542  * init_mem_mapping() calls init_range_memory_mapping() with big range.
543  * That range would have hole in the middle or ends, and only ram parts
544  * will be mapped in init_range_memory_mapping().
545  */
546 static unsigned long __init init_range_memory_mapping(
547 					   unsigned long r_start,
548 					   unsigned long r_end)
549 {
550 	unsigned long start_pfn, end_pfn;
551 	unsigned long mapped_ram_size = 0;
552 	int i;
553 
554 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
555 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
556 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
557 		if (start >= end)
558 			continue;
559 
560 		/*
561 		 * if it is overlapping with brk pgt, we need to
562 		 * alloc pgt buf from memblock instead.
563 		 */
564 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
565 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
566 		init_memory_mapping(start, end, PAGE_KERNEL);
567 		mapped_ram_size += end - start;
568 		can_use_brk_pgt = true;
569 	}
570 
571 	return mapped_ram_size;
572 }
573 
574 static unsigned long __init get_new_step_size(unsigned long step_size)
575 {
576 	/*
577 	 * Initial mapped size is PMD_SIZE (2M).
578 	 * We can not set step_size to be PUD_SIZE (1G) yet.
579 	 * In worse case, when we cross the 1G boundary, and
580 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
581 	 * to map 1G range with PTE. Hence we use one less than the
582 	 * difference of page table level shifts.
583 	 *
584 	 * Don't need to worry about overflow in the top-down case, on 32bit,
585 	 * when step_size is 0, round_down() returns 0 for start, and that
586 	 * turns it into 0x100000000ULL.
587 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
588 	 * needs to be taken into consideration by the code below.
589 	 */
590 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
591 }
592 
593 /**
594  * memory_map_top_down - Map [map_start, map_end) top down
595  * @map_start: start address of the target memory range
596  * @map_end: end address of the target memory range
597  *
598  * This function will setup direct mapping for memory range
599  * [map_start, map_end) in top-down. That said, the page tables
600  * will be allocated at the end of the memory, and we map the
601  * memory in top-down.
602  */
603 static void __init memory_map_top_down(unsigned long map_start,
604 				       unsigned long map_end)
605 {
606 	unsigned long real_end, last_start;
607 	unsigned long step_size;
608 	unsigned long addr;
609 	unsigned long mapped_ram_size = 0;
610 
611 	/*
612 	 * Systems that have many reserved areas near top of the memory,
613 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
614 	 * require lots of 4K mappings which may exhaust pgt_buf.
615 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
616 	 * there is enough mapped memory that can be allocated from
617 	 * memblock.
618 	 */
619 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
620 					 map_end);
621 	memblock_free(addr, PMD_SIZE);
622 	real_end = addr + PMD_SIZE;
623 
624 	/* step_size need to be small so pgt_buf from BRK could cover it */
625 	step_size = PMD_SIZE;
626 	max_pfn_mapped = 0; /* will get exact value next */
627 	min_pfn_mapped = real_end >> PAGE_SHIFT;
628 	last_start = real_end;
629 
630 	/*
631 	 * We start from the top (end of memory) and go to the bottom.
632 	 * The memblock_find_in_range() gets us a block of RAM from the
633 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
634 	 * for page table.
635 	 */
636 	while (last_start > map_start) {
637 		unsigned long start;
638 
639 		if (last_start > step_size) {
640 			start = round_down(last_start - 1, step_size);
641 			if (start < map_start)
642 				start = map_start;
643 		} else
644 			start = map_start;
645 		mapped_ram_size += init_range_memory_mapping(start,
646 							last_start);
647 		last_start = start;
648 		min_pfn_mapped = last_start >> PAGE_SHIFT;
649 		if (mapped_ram_size >= step_size)
650 			step_size = get_new_step_size(step_size);
651 	}
652 
653 	if (real_end < map_end)
654 		init_range_memory_mapping(real_end, map_end);
655 }
656 
657 /**
658  * memory_map_bottom_up - Map [map_start, map_end) bottom up
659  * @map_start: start address of the target memory range
660  * @map_end: end address of the target memory range
661  *
662  * This function will setup direct mapping for memory range
663  * [map_start, map_end) in bottom-up. Since we have limited the
664  * bottom-up allocation above the kernel, the page tables will
665  * be allocated just above the kernel and we map the memory
666  * in [map_start, map_end) in bottom-up.
667  */
668 static void __init memory_map_bottom_up(unsigned long map_start,
669 					unsigned long map_end)
670 {
671 	unsigned long next, start;
672 	unsigned long mapped_ram_size = 0;
673 	/* step_size need to be small so pgt_buf from BRK could cover it */
674 	unsigned long step_size = PMD_SIZE;
675 
676 	start = map_start;
677 	min_pfn_mapped = start >> PAGE_SHIFT;
678 
679 	/*
680 	 * We start from the bottom (@map_start) and go to the top (@map_end).
681 	 * The memblock_find_in_range() gets us a block of RAM from the
682 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
683 	 * for page table.
684 	 */
685 	while (start < map_end) {
686 		if (step_size && map_end - start > step_size) {
687 			next = round_up(start + 1, step_size);
688 			if (next > map_end)
689 				next = map_end;
690 		} else {
691 			next = map_end;
692 		}
693 
694 		mapped_ram_size += init_range_memory_mapping(start, next);
695 		start = next;
696 
697 		if (mapped_ram_size >= step_size)
698 			step_size = get_new_step_size(step_size);
699 	}
700 }
701 
702 /*
703  * The real mode trampoline, which is required for bootstrapping CPUs
704  * occupies only a small area under the low 1MB.  See reserve_real_mode()
705  * for details.
706  *
707  * If KASLR is disabled the first PGD entry of the direct mapping is copied
708  * to map the real mode trampoline.
709  *
710  * If KASLR is enabled, copy only the PUD which covers the low 1MB
711  * area. This limits the randomization granularity to 1GB for both 4-level
712  * and 5-level paging.
713  */
714 static void __init init_trampoline(void)
715 {
716 #ifdef CONFIG_X86_64
717 	if (!kaslr_memory_enabled())
718 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
719 	else
720 		init_trampoline_kaslr();
721 #endif
722 }
723 
724 void __init init_mem_mapping(void)
725 {
726 	unsigned long end;
727 
728 	pti_check_boottime_disable();
729 	probe_page_size_mask();
730 	setup_pcid();
731 
732 #ifdef CONFIG_X86_64
733 	end = max_pfn << PAGE_SHIFT;
734 #else
735 	end = max_low_pfn << PAGE_SHIFT;
736 #endif
737 
738 	/* the ISA range is always mapped regardless of memory holes */
739 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
740 
741 	/* Init the trampoline, possibly with KASLR memory offset */
742 	init_trampoline();
743 
744 	/*
745 	 * If the allocation is in bottom-up direction, we setup direct mapping
746 	 * in bottom-up, otherwise we setup direct mapping in top-down.
747 	 */
748 	if (memblock_bottom_up()) {
749 		unsigned long kernel_end = __pa_symbol(_end);
750 
751 		/*
752 		 * we need two separate calls here. This is because we want to
753 		 * allocate page tables above the kernel. So we first map
754 		 * [kernel_end, end) to make memory above the kernel be mapped
755 		 * as soon as possible. And then use page tables allocated above
756 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
757 		 */
758 		memory_map_bottom_up(kernel_end, end);
759 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
760 	} else {
761 		memory_map_top_down(ISA_END_ADDRESS, end);
762 	}
763 
764 #ifdef CONFIG_X86_64
765 	if (max_pfn > max_low_pfn) {
766 		/* can we preserve max_low_pfn ?*/
767 		max_low_pfn = max_pfn;
768 	}
769 #else
770 	early_ioremap_page_table_range_init();
771 #endif
772 
773 	load_cr3(swapper_pg_dir);
774 	__flush_tlb_all();
775 
776 	x86_init.hyper.init_mem_mapping();
777 
778 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
779 }
780 
781 /*
782  * Initialize an mm_struct to be used during poking and a pointer to be used
783  * during patching.
784  */
785 void __init poking_init(void)
786 {
787 	spinlock_t *ptl;
788 	pte_t *ptep;
789 
790 	poking_mm = copy_init_mm();
791 	BUG_ON(!poking_mm);
792 
793 	/*
794 	 * Randomize the poking address, but make sure that the following page
795 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
796 	 * and adjust the address if the PMD ends after the first one.
797 	 */
798 	poking_addr = TASK_UNMAPPED_BASE;
799 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
800 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
801 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
802 
803 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
804 		poking_addr += PAGE_SIZE;
805 
806 	/*
807 	 * We need to trigger the allocation of the page-tables that will be
808 	 * needed for poking now. Later, poking may be performed in an atomic
809 	 * section, which might cause allocation to fail.
810 	 */
811 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
812 	BUG_ON(!ptep);
813 	pte_unmap_unlock(ptep, ptl);
814 }
815 
816 /*
817  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
818  * is valid. The argument is a physical page number.
819  *
820  * On x86, access has to be given to the first megabyte of RAM because that
821  * area traditionally contains BIOS code and data regions used by X, dosemu,
822  * and similar apps. Since they map the entire memory range, the whole range
823  * must be allowed (for mapping), but any areas that would otherwise be
824  * disallowed are flagged as being "zero filled" instead of rejected.
825  * Access has to be given to non-kernel-ram areas as well, these contain the
826  * PCI mmio resources as well as potential bios/acpi data regions.
827  */
828 int devmem_is_allowed(unsigned long pagenr)
829 {
830 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
831 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
832 			!= REGION_DISJOINT) {
833 		/*
834 		 * For disallowed memory regions in the low 1MB range,
835 		 * request that the page be shown as all zeros.
836 		 */
837 		if (pagenr < 256)
838 			return 2;
839 
840 		return 0;
841 	}
842 
843 	/*
844 	 * This must follow RAM test, since System RAM is considered a
845 	 * restricted resource under CONFIG_STRICT_IOMEM.
846 	 */
847 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
848 		/* Low 1MB bypasses iomem restrictions. */
849 		if (pagenr < 256)
850 			return 1;
851 
852 		return 0;
853 	}
854 
855 	return 1;
856 }
857 
858 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
859 {
860 	unsigned long begin_aligned, end_aligned;
861 
862 	/* Make sure boundaries are page aligned */
863 	begin_aligned = PAGE_ALIGN(begin);
864 	end_aligned   = end & PAGE_MASK;
865 
866 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
867 		begin = begin_aligned;
868 		end   = end_aligned;
869 	}
870 
871 	if (begin >= end)
872 		return;
873 
874 	/*
875 	 * If debugging page accesses then do not free this memory but
876 	 * mark them not present - any buggy init-section access will
877 	 * create a kernel page fault:
878 	 */
879 	if (debug_pagealloc_enabled()) {
880 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
881 			begin, end - 1);
882 		/*
883 		 * Inform kmemleak about the hole in the memory since the
884 		 * corresponding pages will be unmapped.
885 		 */
886 		kmemleak_free_part((void *)begin, end - begin);
887 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
888 	} else {
889 		/*
890 		 * We just marked the kernel text read only above, now that
891 		 * we are going to free part of that, we need to make that
892 		 * writeable and non-executable first.
893 		 */
894 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
895 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
896 
897 		free_reserved_area((void *)begin, (void *)end,
898 				   POISON_FREE_INITMEM, what);
899 	}
900 }
901 
902 /*
903  * begin/end can be in the direct map or the "high kernel mapping"
904  * used for the kernel image only.  free_init_pages() will do the
905  * right thing for either kind of address.
906  */
907 void free_kernel_image_pages(const char *what, void *begin, void *end)
908 {
909 	unsigned long begin_ul = (unsigned long)begin;
910 	unsigned long end_ul = (unsigned long)end;
911 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
912 
913 	free_init_pages(what, begin_ul, end_ul);
914 
915 	/*
916 	 * PTI maps some of the kernel into userspace.  For performance,
917 	 * this includes some kernel areas that do not contain secrets.
918 	 * Those areas might be adjacent to the parts of the kernel image
919 	 * being freed, which may contain secrets.  Remove the "high kernel
920 	 * image mapping" for these freed areas, ensuring they are not even
921 	 * potentially vulnerable to Meltdown regardless of the specific
922 	 * optimizations PTI is currently using.
923 	 *
924 	 * The "noalias" prevents unmapping the direct map alias which is
925 	 * needed to access the freed pages.
926 	 *
927 	 * This is only valid for 64bit kernels. 32bit has only one mapping
928 	 * which can't be treated in this way for obvious reasons.
929 	 */
930 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
931 		set_memory_np_noalias(begin_ul, len_pages);
932 }
933 
934 void __ref free_initmem(void)
935 {
936 	e820__reallocate_tables();
937 
938 	mem_encrypt_free_decrypted_mem();
939 
940 	free_kernel_image_pages("unused kernel image (initmem)",
941 				&__init_begin, &__init_end);
942 }
943 
944 #ifdef CONFIG_BLK_DEV_INITRD
945 void __init free_initrd_mem(unsigned long start, unsigned long end)
946 {
947 	/*
948 	 * end could be not aligned, and We can not align that,
949 	 * decompressor could be confused by aligned initrd_end
950 	 * We already reserve the end partial page before in
951 	 *   - i386_start_kernel()
952 	 *   - x86_64_start_kernel()
953 	 *   - relocate_initrd()
954 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
955 	 */
956 	free_init_pages("initrd", start, PAGE_ALIGN(end));
957 }
958 #endif
959 
960 /*
961  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
962  * and pass it to the MM layer - to help it set zone watermarks more
963  * accurately.
964  *
965  * Done on 64-bit systems only for the time being, although 32-bit systems
966  * might benefit from this as well.
967  */
968 void __init memblock_find_dma_reserve(void)
969 {
970 #ifdef CONFIG_X86_64
971 	u64 nr_pages = 0, nr_free_pages = 0;
972 	unsigned long start_pfn, end_pfn;
973 	phys_addr_t start_addr, end_addr;
974 	int i;
975 	u64 u;
976 
977 	/*
978 	 * Iterate over all memory ranges (free and reserved ones alike),
979 	 * to calculate the total number of pages in the first 16 MB of RAM:
980 	 */
981 	nr_pages = 0;
982 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
983 		start_pfn = min(start_pfn, MAX_DMA_PFN);
984 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
985 
986 		nr_pages += end_pfn - start_pfn;
987 	}
988 
989 	/*
990 	 * Iterate over free memory ranges to calculate the number of free
991 	 * pages in the DMA zone, while not counting potential partial
992 	 * pages at the beginning or the end of the range:
993 	 */
994 	nr_free_pages = 0;
995 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
996 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
997 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
998 
999 		if (start_pfn < end_pfn)
1000 			nr_free_pages += end_pfn - start_pfn;
1001 	}
1002 
1003 	set_dma_reserve(nr_pages - nr_free_pages);
1004 #endif
1005 }
1006 
1007 void __init zone_sizes_init(void)
1008 {
1009 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1010 
1011 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1012 
1013 #ifdef CONFIG_ZONE_DMA
1014 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1015 #endif
1016 #ifdef CONFIG_ZONE_DMA32
1017 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1018 #endif
1019 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1020 #ifdef CONFIG_HIGHMEM
1021 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1022 #endif
1023 
1024 	free_area_init(max_zone_pfns);
1025 }
1026 
1027 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1028 	.loaded_mm = &init_mm,
1029 	.next_asid = 1,
1030 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1031 };
1032 
1033 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1034 {
1035 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1036 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1037 
1038 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1039 	__pte2cachemode_tbl[entry] = cache;
1040 }
1041 
1042 #ifdef CONFIG_SWAP
1043 unsigned long max_swapfile_size(void)
1044 {
1045 	unsigned long pages;
1046 
1047 	pages = generic_max_swapfile_size();
1048 
1049 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1050 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1051 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1052 		/*
1053 		 * We encode swap offsets also with 3 bits below those for pfn
1054 		 * which makes the usable limit higher.
1055 		 */
1056 #if CONFIG_PGTABLE_LEVELS > 2
1057 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1058 #endif
1059 		pages = min_t(unsigned long long, l1tf_limit, pages);
1060 	}
1061 	return pages;
1062 }
1063 #endif
1064