xref: /openbmc/linux/arch/x86/mm/init.c (revision 6d99a79c)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 
9 #include <asm/set_memory.h>
10 #include <asm/e820/api.h>
11 #include <asm/init.h>
12 #include <asm/page.h>
13 #include <asm/page_types.h>
14 #include <asm/sections.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/tlb.h>
18 #include <asm/proto.h>
19 #include <asm/dma.h>		/* for MAX_DMA_PFN */
20 #include <asm/microcode.h>
21 #include <asm/kaslr.h>
22 #include <asm/hypervisor.h>
23 #include <asm/cpufeature.h>
24 #include <asm/pti.h>
25 
26 /*
27  * We need to define the tracepoints somewhere, and tlb.c
28  * is only compied when SMP=y.
29  */
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/tlb.h>
32 
33 #include "mm_internal.h"
34 
35 /*
36  * Tables translating between page_cache_type_t and pte encoding.
37  *
38  * The default values are defined statically as minimal supported mode;
39  * WC and WT fall back to UC-.  pat_init() updates these values to support
40  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
41  * for the details.  Note, __early_ioremap() used during early boot-time
42  * takes pgprot_t (pte encoding) and does not use these tables.
43  *
44  *   Index into __cachemode2pte_tbl[] is the cachemode.
45  *
46  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
47  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
48  */
49 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
50 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
51 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
52 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
53 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
54 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
55 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
56 };
57 EXPORT_SYMBOL(__cachemode2pte_tbl);
58 
59 uint8_t __pte2cachemode_tbl[8] = {
60 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
61 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
62 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
63 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
64 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
65 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
66 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
67 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
68 };
69 EXPORT_SYMBOL(__pte2cachemode_tbl);
70 
71 static unsigned long __initdata pgt_buf_start;
72 static unsigned long __initdata pgt_buf_end;
73 static unsigned long __initdata pgt_buf_top;
74 
75 static unsigned long min_pfn_mapped;
76 
77 static bool __initdata can_use_brk_pgt = true;
78 
79 /*
80  * Pages returned are already directly mapped.
81  *
82  * Changing that is likely to break Xen, see commit:
83  *
84  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
85  *
86  * for detailed information.
87  */
88 __ref void *alloc_low_pages(unsigned int num)
89 {
90 	unsigned long pfn;
91 	int i;
92 
93 	if (after_bootmem) {
94 		unsigned int order;
95 
96 		order = get_order((unsigned long)num << PAGE_SHIFT);
97 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
98 	}
99 
100 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
101 		unsigned long ret = 0;
102 
103 		if (min_pfn_mapped < max_pfn_mapped) {
104 			ret = memblock_find_in_range(
105 					min_pfn_mapped << PAGE_SHIFT,
106 					max_pfn_mapped << PAGE_SHIFT,
107 					PAGE_SIZE * num , PAGE_SIZE);
108 		}
109 		if (ret)
110 			memblock_reserve(ret, PAGE_SIZE * num);
111 		else if (can_use_brk_pgt)
112 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
113 
114 		if (!ret)
115 			panic("alloc_low_pages: can not alloc memory");
116 
117 		pfn = ret >> PAGE_SHIFT;
118 	} else {
119 		pfn = pgt_buf_end;
120 		pgt_buf_end += num;
121 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
122 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
123 	}
124 
125 	for (i = 0; i < num; i++) {
126 		void *adr;
127 
128 		adr = __va((pfn + i) << PAGE_SHIFT);
129 		clear_page(adr);
130 	}
131 
132 	return __va(pfn << PAGE_SHIFT);
133 }
134 
135 /*
136  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
137  * With KASLR memory randomization, depending on the machine e820 memory
138  * and the PUD alignment. We may need twice more pages when KASLR memory
139  * randomization is enabled.
140  */
141 #ifndef CONFIG_RANDOMIZE_MEMORY
142 #define INIT_PGD_PAGE_COUNT      6
143 #else
144 #define INIT_PGD_PAGE_COUNT      12
145 #endif
146 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
147 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
148 void  __init early_alloc_pgt_buf(void)
149 {
150 	unsigned long tables = INIT_PGT_BUF_SIZE;
151 	phys_addr_t base;
152 
153 	base = __pa(extend_brk(tables, PAGE_SIZE));
154 
155 	pgt_buf_start = base >> PAGE_SHIFT;
156 	pgt_buf_end = pgt_buf_start;
157 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
158 }
159 
160 int after_bootmem;
161 
162 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
163 
164 struct map_range {
165 	unsigned long start;
166 	unsigned long end;
167 	unsigned page_size_mask;
168 };
169 
170 static int page_size_mask;
171 
172 static void __init probe_page_size_mask(void)
173 {
174 	/*
175 	 * For pagealloc debugging, identity mapping will use small pages.
176 	 * This will simplify cpa(), which otherwise needs to support splitting
177 	 * large pages into small in interrupt context, etc.
178 	 */
179 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
180 		page_size_mask |= 1 << PG_LEVEL_2M;
181 	else
182 		direct_gbpages = 0;
183 
184 	/* Enable PSE if available */
185 	if (boot_cpu_has(X86_FEATURE_PSE))
186 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
187 
188 	/* Enable PGE if available */
189 	__supported_pte_mask &= ~_PAGE_GLOBAL;
190 	if (boot_cpu_has(X86_FEATURE_PGE)) {
191 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
192 		__supported_pte_mask |= _PAGE_GLOBAL;
193 	}
194 
195 	/* By the default is everything supported: */
196 	__default_kernel_pte_mask = __supported_pte_mask;
197 	/* Except when with PTI where the kernel is mostly non-Global: */
198 	if (cpu_feature_enabled(X86_FEATURE_PTI))
199 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
200 
201 	/* Enable 1 GB linear kernel mappings if available: */
202 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
203 		printk(KERN_INFO "Using GB pages for direct mapping\n");
204 		page_size_mask |= 1 << PG_LEVEL_1G;
205 	} else {
206 		direct_gbpages = 0;
207 	}
208 }
209 
210 static void setup_pcid(void)
211 {
212 	if (!IS_ENABLED(CONFIG_X86_64))
213 		return;
214 
215 	if (!boot_cpu_has(X86_FEATURE_PCID))
216 		return;
217 
218 	if (boot_cpu_has(X86_FEATURE_PGE)) {
219 		/*
220 		 * This can't be cr4_set_bits_and_update_boot() -- the
221 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
222 		 * do any good anyway.  Despite the name,
223 		 * cr4_set_bits_and_update_boot() doesn't actually cause
224 		 * the bits in question to remain set all the way through
225 		 * the secondary boot asm.
226 		 *
227 		 * Instead, we brute-force it and set CR4.PCIDE manually in
228 		 * start_secondary().
229 		 */
230 		cr4_set_bits(X86_CR4_PCIDE);
231 
232 		/*
233 		 * INVPCID's single-context modes (2/3) only work if we set
234 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
235 		 * on systems that have X86_CR4_PCIDE clear, or that have
236 		 * no INVPCID support at all.
237 		 */
238 		if (boot_cpu_has(X86_FEATURE_INVPCID))
239 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
240 	} else {
241 		/*
242 		 * flush_tlb_all(), as currently implemented, won't work if
243 		 * PCID is on but PGE is not.  Since that combination
244 		 * doesn't exist on real hardware, there's no reason to try
245 		 * to fully support it, but it's polite to avoid corrupting
246 		 * data if we're on an improperly configured VM.
247 		 */
248 		setup_clear_cpu_cap(X86_FEATURE_PCID);
249 	}
250 }
251 
252 #ifdef CONFIG_X86_32
253 #define NR_RANGE_MR 3
254 #else /* CONFIG_X86_64 */
255 #define NR_RANGE_MR 5
256 #endif
257 
258 static int __meminit save_mr(struct map_range *mr, int nr_range,
259 			     unsigned long start_pfn, unsigned long end_pfn,
260 			     unsigned long page_size_mask)
261 {
262 	if (start_pfn < end_pfn) {
263 		if (nr_range >= NR_RANGE_MR)
264 			panic("run out of range for init_memory_mapping\n");
265 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
266 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
267 		mr[nr_range].page_size_mask = page_size_mask;
268 		nr_range++;
269 	}
270 
271 	return nr_range;
272 }
273 
274 /*
275  * adjust the page_size_mask for small range to go with
276  *	big page size instead small one if nearby are ram too.
277  */
278 static void __ref adjust_range_page_size_mask(struct map_range *mr,
279 							 int nr_range)
280 {
281 	int i;
282 
283 	for (i = 0; i < nr_range; i++) {
284 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
285 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
286 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
287 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
288 
289 #ifdef CONFIG_X86_32
290 			if ((end >> PAGE_SHIFT) > max_low_pfn)
291 				continue;
292 #endif
293 
294 			if (memblock_is_region_memory(start, end - start))
295 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
296 		}
297 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
298 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
299 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
300 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
301 
302 			if (memblock_is_region_memory(start, end - start))
303 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
304 		}
305 	}
306 }
307 
308 static const char *page_size_string(struct map_range *mr)
309 {
310 	static const char str_1g[] = "1G";
311 	static const char str_2m[] = "2M";
312 	static const char str_4m[] = "4M";
313 	static const char str_4k[] = "4k";
314 
315 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
316 		return str_1g;
317 	/*
318 	 * 32-bit without PAE has a 4M large page size.
319 	 * PG_LEVEL_2M is misnamed, but we can at least
320 	 * print out the right size in the string.
321 	 */
322 	if (IS_ENABLED(CONFIG_X86_32) &&
323 	    !IS_ENABLED(CONFIG_X86_PAE) &&
324 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
325 		return str_4m;
326 
327 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
328 		return str_2m;
329 
330 	return str_4k;
331 }
332 
333 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
334 				     unsigned long start,
335 				     unsigned long end)
336 {
337 	unsigned long start_pfn, end_pfn, limit_pfn;
338 	unsigned long pfn;
339 	int i;
340 
341 	limit_pfn = PFN_DOWN(end);
342 
343 	/* head if not big page alignment ? */
344 	pfn = start_pfn = PFN_DOWN(start);
345 #ifdef CONFIG_X86_32
346 	/*
347 	 * Don't use a large page for the first 2/4MB of memory
348 	 * because there are often fixed size MTRRs in there
349 	 * and overlapping MTRRs into large pages can cause
350 	 * slowdowns.
351 	 */
352 	if (pfn == 0)
353 		end_pfn = PFN_DOWN(PMD_SIZE);
354 	else
355 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
356 #else /* CONFIG_X86_64 */
357 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
358 #endif
359 	if (end_pfn > limit_pfn)
360 		end_pfn = limit_pfn;
361 	if (start_pfn < end_pfn) {
362 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
363 		pfn = end_pfn;
364 	}
365 
366 	/* big page (2M) range */
367 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
368 #ifdef CONFIG_X86_32
369 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
370 #else /* CONFIG_X86_64 */
371 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
372 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
373 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
374 #endif
375 
376 	if (start_pfn < end_pfn) {
377 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
378 				page_size_mask & (1<<PG_LEVEL_2M));
379 		pfn = end_pfn;
380 	}
381 
382 #ifdef CONFIG_X86_64
383 	/* big page (1G) range */
384 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
385 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
386 	if (start_pfn < end_pfn) {
387 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
388 				page_size_mask &
389 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
390 		pfn = end_pfn;
391 	}
392 
393 	/* tail is not big page (1G) alignment */
394 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
395 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
396 	if (start_pfn < end_pfn) {
397 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
398 				page_size_mask & (1<<PG_LEVEL_2M));
399 		pfn = end_pfn;
400 	}
401 #endif
402 
403 	/* tail is not big page (2M) alignment */
404 	start_pfn = pfn;
405 	end_pfn = limit_pfn;
406 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
407 
408 	if (!after_bootmem)
409 		adjust_range_page_size_mask(mr, nr_range);
410 
411 	/* try to merge same page size and continuous */
412 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
413 		unsigned long old_start;
414 		if (mr[i].end != mr[i+1].start ||
415 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
416 			continue;
417 		/* move it */
418 		old_start = mr[i].start;
419 		memmove(&mr[i], &mr[i+1],
420 			(nr_range - 1 - i) * sizeof(struct map_range));
421 		mr[i--].start = old_start;
422 		nr_range--;
423 	}
424 
425 	for (i = 0; i < nr_range; i++)
426 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
427 				mr[i].start, mr[i].end - 1,
428 				page_size_string(&mr[i]));
429 
430 	return nr_range;
431 }
432 
433 struct range pfn_mapped[E820_MAX_ENTRIES];
434 int nr_pfn_mapped;
435 
436 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
437 {
438 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
439 					     nr_pfn_mapped, start_pfn, end_pfn);
440 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
441 
442 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
443 
444 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
445 		max_low_pfn_mapped = max(max_low_pfn_mapped,
446 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
447 }
448 
449 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
450 {
451 	int i;
452 
453 	for (i = 0; i < nr_pfn_mapped; i++)
454 		if ((start_pfn >= pfn_mapped[i].start) &&
455 		    (end_pfn <= pfn_mapped[i].end))
456 			return true;
457 
458 	return false;
459 }
460 
461 /*
462  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
463  * This runs before bootmem is initialized and gets pages directly from
464  * the physical memory. To access them they are temporarily mapped.
465  */
466 unsigned long __ref init_memory_mapping(unsigned long start,
467 					       unsigned long end)
468 {
469 	struct map_range mr[NR_RANGE_MR];
470 	unsigned long ret = 0;
471 	int nr_range, i;
472 
473 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
474 	       start, end - 1);
475 
476 	memset(mr, 0, sizeof(mr));
477 	nr_range = split_mem_range(mr, 0, start, end);
478 
479 	for (i = 0; i < nr_range; i++)
480 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
481 						   mr[i].page_size_mask);
482 
483 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
484 
485 	return ret >> PAGE_SHIFT;
486 }
487 
488 /*
489  * We need to iterate through the E820 memory map and create direct mappings
490  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
491  * create direct mappings for all pfns from [0 to max_low_pfn) and
492  * [4GB to max_pfn) because of possible memory holes in high addresses
493  * that cannot be marked as UC by fixed/variable range MTRRs.
494  * Depending on the alignment of E820 ranges, this may possibly result
495  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
496  *
497  * init_mem_mapping() calls init_range_memory_mapping() with big range.
498  * That range would have hole in the middle or ends, and only ram parts
499  * will be mapped in init_range_memory_mapping().
500  */
501 static unsigned long __init init_range_memory_mapping(
502 					   unsigned long r_start,
503 					   unsigned long r_end)
504 {
505 	unsigned long start_pfn, end_pfn;
506 	unsigned long mapped_ram_size = 0;
507 	int i;
508 
509 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
510 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
511 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
512 		if (start >= end)
513 			continue;
514 
515 		/*
516 		 * if it is overlapping with brk pgt, we need to
517 		 * alloc pgt buf from memblock instead.
518 		 */
519 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
520 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
521 		init_memory_mapping(start, end);
522 		mapped_ram_size += end - start;
523 		can_use_brk_pgt = true;
524 	}
525 
526 	return mapped_ram_size;
527 }
528 
529 static unsigned long __init get_new_step_size(unsigned long step_size)
530 {
531 	/*
532 	 * Initial mapped size is PMD_SIZE (2M).
533 	 * We can not set step_size to be PUD_SIZE (1G) yet.
534 	 * In worse case, when we cross the 1G boundary, and
535 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
536 	 * to map 1G range with PTE. Hence we use one less than the
537 	 * difference of page table level shifts.
538 	 *
539 	 * Don't need to worry about overflow in the top-down case, on 32bit,
540 	 * when step_size is 0, round_down() returns 0 for start, and that
541 	 * turns it into 0x100000000ULL.
542 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
543 	 * needs to be taken into consideration by the code below.
544 	 */
545 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
546 }
547 
548 /**
549  * memory_map_top_down - Map [map_start, map_end) top down
550  * @map_start: start address of the target memory range
551  * @map_end: end address of the target memory range
552  *
553  * This function will setup direct mapping for memory range
554  * [map_start, map_end) in top-down. That said, the page tables
555  * will be allocated at the end of the memory, and we map the
556  * memory in top-down.
557  */
558 static void __init memory_map_top_down(unsigned long map_start,
559 				       unsigned long map_end)
560 {
561 	unsigned long real_end, start, last_start;
562 	unsigned long step_size;
563 	unsigned long addr;
564 	unsigned long mapped_ram_size = 0;
565 
566 	/* xen has big range in reserved near end of ram, skip it at first.*/
567 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
568 	real_end = addr + PMD_SIZE;
569 
570 	/* step_size need to be small so pgt_buf from BRK could cover it */
571 	step_size = PMD_SIZE;
572 	max_pfn_mapped = 0; /* will get exact value next */
573 	min_pfn_mapped = real_end >> PAGE_SHIFT;
574 	last_start = start = real_end;
575 
576 	/*
577 	 * We start from the top (end of memory) and go to the bottom.
578 	 * The memblock_find_in_range() gets us a block of RAM from the
579 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
580 	 * for page table.
581 	 */
582 	while (last_start > map_start) {
583 		if (last_start > step_size) {
584 			start = round_down(last_start - 1, step_size);
585 			if (start < map_start)
586 				start = map_start;
587 		} else
588 			start = map_start;
589 		mapped_ram_size += init_range_memory_mapping(start,
590 							last_start);
591 		last_start = start;
592 		min_pfn_mapped = last_start >> PAGE_SHIFT;
593 		if (mapped_ram_size >= step_size)
594 			step_size = get_new_step_size(step_size);
595 	}
596 
597 	if (real_end < map_end)
598 		init_range_memory_mapping(real_end, map_end);
599 }
600 
601 /**
602  * memory_map_bottom_up - Map [map_start, map_end) bottom up
603  * @map_start: start address of the target memory range
604  * @map_end: end address of the target memory range
605  *
606  * This function will setup direct mapping for memory range
607  * [map_start, map_end) in bottom-up. Since we have limited the
608  * bottom-up allocation above the kernel, the page tables will
609  * be allocated just above the kernel and we map the memory
610  * in [map_start, map_end) in bottom-up.
611  */
612 static void __init memory_map_bottom_up(unsigned long map_start,
613 					unsigned long map_end)
614 {
615 	unsigned long next, start;
616 	unsigned long mapped_ram_size = 0;
617 	/* step_size need to be small so pgt_buf from BRK could cover it */
618 	unsigned long step_size = PMD_SIZE;
619 
620 	start = map_start;
621 	min_pfn_mapped = start >> PAGE_SHIFT;
622 
623 	/*
624 	 * We start from the bottom (@map_start) and go to the top (@map_end).
625 	 * The memblock_find_in_range() gets us a block of RAM from the
626 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
627 	 * for page table.
628 	 */
629 	while (start < map_end) {
630 		if (step_size && map_end - start > step_size) {
631 			next = round_up(start + 1, step_size);
632 			if (next > map_end)
633 				next = map_end;
634 		} else {
635 			next = map_end;
636 		}
637 
638 		mapped_ram_size += init_range_memory_mapping(start, next);
639 		start = next;
640 
641 		if (mapped_ram_size >= step_size)
642 			step_size = get_new_step_size(step_size);
643 	}
644 }
645 
646 void __init init_mem_mapping(void)
647 {
648 	unsigned long end;
649 
650 	pti_check_boottime_disable();
651 	probe_page_size_mask();
652 	setup_pcid();
653 
654 #ifdef CONFIG_X86_64
655 	end = max_pfn << PAGE_SHIFT;
656 #else
657 	end = max_low_pfn << PAGE_SHIFT;
658 #endif
659 
660 	/* the ISA range is always mapped regardless of memory holes */
661 	init_memory_mapping(0, ISA_END_ADDRESS);
662 
663 	/* Init the trampoline, possibly with KASLR memory offset */
664 	init_trampoline();
665 
666 	/*
667 	 * If the allocation is in bottom-up direction, we setup direct mapping
668 	 * in bottom-up, otherwise we setup direct mapping in top-down.
669 	 */
670 	if (memblock_bottom_up()) {
671 		unsigned long kernel_end = __pa_symbol(_end);
672 
673 		/*
674 		 * we need two separate calls here. This is because we want to
675 		 * allocate page tables above the kernel. So we first map
676 		 * [kernel_end, end) to make memory above the kernel be mapped
677 		 * as soon as possible. And then use page tables allocated above
678 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
679 		 */
680 		memory_map_bottom_up(kernel_end, end);
681 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
682 	} else {
683 		memory_map_top_down(ISA_END_ADDRESS, end);
684 	}
685 
686 #ifdef CONFIG_X86_64
687 	if (max_pfn > max_low_pfn) {
688 		/* can we preseve max_low_pfn ?*/
689 		max_low_pfn = max_pfn;
690 	}
691 #else
692 	early_ioremap_page_table_range_init();
693 #endif
694 
695 	load_cr3(swapper_pg_dir);
696 	__flush_tlb_all();
697 
698 	x86_init.hyper.init_mem_mapping();
699 
700 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
701 }
702 
703 /*
704  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
705  * is valid. The argument is a physical page number.
706  *
707  * On x86, access has to be given to the first megabyte of RAM because that
708  * area traditionally contains BIOS code and data regions used by X, dosemu,
709  * and similar apps. Since they map the entire memory range, the whole range
710  * must be allowed (for mapping), but any areas that would otherwise be
711  * disallowed are flagged as being "zero filled" instead of rejected.
712  * Access has to be given to non-kernel-ram areas as well, these contain the
713  * PCI mmio resources as well as potential bios/acpi data regions.
714  */
715 int devmem_is_allowed(unsigned long pagenr)
716 {
717 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
718 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
719 			!= REGION_DISJOINT) {
720 		/*
721 		 * For disallowed memory regions in the low 1MB range,
722 		 * request that the page be shown as all zeros.
723 		 */
724 		if (pagenr < 256)
725 			return 2;
726 
727 		return 0;
728 	}
729 
730 	/*
731 	 * This must follow RAM test, since System RAM is considered a
732 	 * restricted resource under CONFIG_STRICT_IOMEM.
733 	 */
734 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
735 		/* Low 1MB bypasses iomem restrictions. */
736 		if (pagenr < 256)
737 			return 1;
738 
739 		return 0;
740 	}
741 
742 	return 1;
743 }
744 
745 void free_init_pages(char *what, unsigned long begin, unsigned long end)
746 {
747 	unsigned long begin_aligned, end_aligned;
748 
749 	/* Make sure boundaries are page aligned */
750 	begin_aligned = PAGE_ALIGN(begin);
751 	end_aligned   = end & PAGE_MASK;
752 
753 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
754 		begin = begin_aligned;
755 		end   = end_aligned;
756 	}
757 
758 	if (begin >= end)
759 		return;
760 
761 	/*
762 	 * If debugging page accesses then do not free this memory but
763 	 * mark them not present - any buggy init-section access will
764 	 * create a kernel page fault:
765 	 */
766 	if (debug_pagealloc_enabled()) {
767 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
768 			begin, end - 1);
769 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
770 	} else {
771 		/*
772 		 * We just marked the kernel text read only above, now that
773 		 * we are going to free part of that, we need to make that
774 		 * writeable and non-executable first.
775 		 */
776 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
777 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
778 
779 		free_reserved_area((void *)begin, (void *)end,
780 				   POISON_FREE_INITMEM, what);
781 	}
782 }
783 
784 /*
785  * begin/end can be in the direct map or the "high kernel mapping"
786  * used for the kernel image only.  free_init_pages() will do the
787  * right thing for either kind of address.
788  */
789 void free_kernel_image_pages(void *begin, void *end)
790 {
791 	unsigned long begin_ul = (unsigned long)begin;
792 	unsigned long end_ul = (unsigned long)end;
793 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
794 
795 
796 	free_init_pages("unused kernel image", begin_ul, end_ul);
797 
798 	/*
799 	 * PTI maps some of the kernel into userspace.  For performance,
800 	 * this includes some kernel areas that do not contain secrets.
801 	 * Those areas might be adjacent to the parts of the kernel image
802 	 * being freed, which may contain secrets.  Remove the "high kernel
803 	 * image mapping" for these freed areas, ensuring they are not even
804 	 * potentially vulnerable to Meltdown regardless of the specific
805 	 * optimizations PTI is currently using.
806 	 *
807 	 * The "noalias" prevents unmapping the direct map alias which is
808 	 * needed to access the freed pages.
809 	 *
810 	 * This is only valid for 64bit kernels. 32bit has only one mapping
811 	 * which can't be treated in this way for obvious reasons.
812 	 */
813 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
814 		set_memory_np_noalias(begin_ul, len_pages);
815 }
816 
817 void __weak mem_encrypt_free_decrypted_mem(void) { }
818 
819 void __ref free_initmem(void)
820 {
821 	e820__reallocate_tables();
822 
823 	mem_encrypt_free_decrypted_mem();
824 
825 	free_kernel_image_pages(&__init_begin, &__init_end);
826 }
827 
828 #ifdef CONFIG_BLK_DEV_INITRD
829 void __init free_initrd_mem(unsigned long start, unsigned long end)
830 {
831 	/*
832 	 * end could be not aligned, and We can not align that,
833 	 * decompresser could be confused by aligned initrd_end
834 	 * We already reserve the end partial page before in
835 	 *   - i386_start_kernel()
836 	 *   - x86_64_start_kernel()
837 	 *   - relocate_initrd()
838 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
839 	 */
840 	free_init_pages("initrd", start, PAGE_ALIGN(end));
841 }
842 #endif
843 
844 /*
845  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
846  * and pass it to the MM layer - to help it set zone watermarks more
847  * accurately.
848  *
849  * Done on 64-bit systems only for the time being, although 32-bit systems
850  * might benefit from this as well.
851  */
852 void __init memblock_find_dma_reserve(void)
853 {
854 #ifdef CONFIG_X86_64
855 	u64 nr_pages = 0, nr_free_pages = 0;
856 	unsigned long start_pfn, end_pfn;
857 	phys_addr_t start_addr, end_addr;
858 	int i;
859 	u64 u;
860 
861 	/*
862 	 * Iterate over all memory ranges (free and reserved ones alike),
863 	 * to calculate the total number of pages in the first 16 MB of RAM:
864 	 */
865 	nr_pages = 0;
866 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
867 		start_pfn = min(start_pfn, MAX_DMA_PFN);
868 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
869 
870 		nr_pages += end_pfn - start_pfn;
871 	}
872 
873 	/*
874 	 * Iterate over free memory ranges to calculate the number of free
875 	 * pages in the DMA zone, while not counting potential partial
876 	 * pages at the beginning or the end of the range:
877 	 */
878 	nr_free_pages = 0;
879 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
880 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
881 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
882 
883 		if (start_pfn < end_pfn)
884 			nr_free_pages += end_pfn - start_pfn;
885 	}
886 
887 	set_dma_reserve(nr_pages - nr_free_pages);
888 #endif
889 }
890 
891 void __init zone_sizes_init(void)
892 {
893 	unsigned long max_zone_pfns[MAX_NR_ZONES];
894 
895 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
896 
897 #ifdef CONFIG_ZONE_DMA
898 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
899 #endif
900 #ifdef CONFIG_ZONE_DMA32
901 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
902 #endif
903 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
904 #ifdef CONFIG_HIGHMEM
905 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
906 #endif
907 
908 	free_area_init_nodes(max_zone_pfns);
909 }
910 
911 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
912 	.loaded_mm = &init_mm,
913 	.next_asid = 1,
914 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
915 };
916 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
917 
918 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
919 {
920 	/* entry 0 MUST be WB (hardwired to speed up translations) */
921 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
922 
923 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
924 	__pte2cachemode_tbl[entry] = cache;
925 }
926 
927 #ifdef CONFIG_SWAP
928 unsigned long max_swapfile_size(void)
929 {
930 	unsigned long pages;
931 
932 	pages = generic_max_swapfile_size();
933 
934 	if (boot_cpu_has_bug(X86_BUG_L1TF)) {
935 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
936 		unsigned long long l1tf_limit = l1tf_pfn_limit();
937 		/*
938 		 * We encode swap offsets also with 3 bits below those for pfn
939 		 * which makes the usable limit higher.
940 		 */
941 #if CONFIG_PGTABLE_LEVELS > 2
942 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
943 #endif
944 		pages = min_t(unsigned long long, l1tf_limit, pages);
945 	}
946 	return pages;
947 }
948 #endif
949