1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/bootmem.h> /* for max_low_pfn */ 7 8 #include <asm/set_memory.h> 9 #include <asm/e820/api.h> 10 #include <asm/init.h> 11 #include <asm/page.h> 12 #include <asm/page_types.h> 13 #include <asm/sections.h> 14 #include <asm/setup.h> 15 #include <asm/tlbflush.h> 16 #include <asm/tlb.h> 17 #include <asm/proto.h> 18 #include <asm/dma.h> /* for MAX_DMA_PFN */ 19 #include <asm/microcode.h> 20 #include <asm/kaslr.h> 21 #include <asm/hypervisor.h> 22 #include <asm/cpufeature.h> 23 24 /* 25 * We need to define the tracepoints somewhere, and tlb.c 26 * is only compied when SMP=y. 27 */ 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/tlb.h> 30 31 #include "mm_internal.h" 32 33 /* 34 * Tables translating between page_cache_type_t and pte encoding. 35 * 36 * The default values are defined statically as minimal supported mode; 37 * WC and WT fall back to UC-. pat_init() updates these values to support 38 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 39 * for the details. Note, __early_ioremap() used during early boot-time 40 * takes pgprot_t (pte encoding) and does not use these tables. 41 * 42 * Index into __cachemode2pte_tbl[] is the cachemode. 43 * 44 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 45 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 46 */ 47 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 48 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 49 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 50 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 51 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 52 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 53 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 54 }; 55 EXPORT_SYMBOL(__cachemode2pte_tbl); 56 57 uint8_t __pte2cachemode_tbl[8] = { 58 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 59 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 60 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 61 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 62 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 63 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 64 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 65 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 66 }; 67 EXPORT_SYMBOL(__pte2cachemode_tbl); 68 69 static unsigned long __initdata pgt_buf_start; 70 static unsigned long __initdata pgt_buf_end; 71 static unsigned long __initdata pgt_buf_top; 72 73 static unsigned long min_pfn_mapped; 74 75 static bool __initdata can_use_brk_pgt = true; 76 77 /* 78 * Pages returned are already directly mapped. 79 * 80 * Changing that is likely to break Xen, see commit: 81 * 82 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 83 * 84 * for detailed information. 85 */ 86 __ref void *alloc_low_pages(unsigned int num) 87 { 88 unsigned long pfn; 89 int i; 90 91 if (after_bootmem) { 92 unsigned int order; 93 94 order = get_order((unsigned long)num << PAGE_SHIFT); 95 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK | 96 __GFP_ZERO, order); 97 } 98 99 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 100 unsigned long ret; 101 if (min_pfn_mapped >= max_pfn_mapped) 102 panic("alloc_low_pages: ran out of memory"); 103 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, 104 max_pfn_mapped << PAGE_SHIFT, 105 PAGE_SIZE * num , PAGE_SIZE); 106 if (!ret) 107 panic("alloc_low_pages: can not alloc memory"); 108 memblock_reserve(ret, PAGE_SIZE * num); 109 pfn = ret >> PAGE_SHIFT; 110 } else { 111 pfn = pgt_buf_end; 112 pgt_buf_end += num; 113 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", 114 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); 115 } 116 117 for (i = 0; i < num; i++) { 118 void *adr; 119 120 adr = __va((pfn + i) << PAGE_SHIFT); 121 clear_page(adr); 122 } 123 124 return __va(pfn << PAGE_SHIFT); 125 } 126 127 /* 128 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS. 129 * With KASLR memory randomization, depending on the machine e820 memory 130 * and the PUD alignment. We may need twice more pages when KASLR memory 131 * randomization is enabled. 132 */ 133 #ifndef CONFIG_RANDOMIZE_MEMORY 134 #define INIT_PGD_PAGE_COUNT 6 135 #else 136 #define INIT_PGD_PAGE_COUNT 12 137 #endif 138 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 139 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 140 void __init early_alloc_pgt_buf(void) 141 { 142 unsigned long tables = INIT_PGT_BUF_SIZE; 143 phys_addr_t base; 144 145 base = __pa(extend_brk(tables, PAGE_SIZE)); 146 147 pgt_buf_start = base >> PAGE_SHIFT; 148 pgt_buf_end = pgt_buf_start; 149 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 150 } 151 152 int after_bootmem; 153 154 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 155 156 struct map_range { 157 unsigned long start; 158 unsigned long end; 159 unsigned page_size_mask; 160 }; 161 162 static int page_size_mask; 163 164 static void __init probe_page_size_mask(void) 165 { 166 /* 167 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will 168 * use small pages. 169 * This will simplify cpa(), which otherwise needs to support splitting 170 * large pages into small in interrupt context, etc. 171 */ 172 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK)) 173 page_size_mask |= 1 << PG_LEVEL_2M; 174 else 175 direct_gbpages = 0; 176 177 /* Enable PSE if available */ 178 if (boot_cpu_has(X86_FEATURE_PSE)) 179 cr4_set_bits_and_update_boot(X86_CR4_PSE); 180 181 /* Enable PGE if available */ 182 if (boot_cpu_has(X86_FEATURE_PGE)) { 183 cr4_set_bits_and_update_boot(X86_CR4_PGE); 184 __supported_pte_mask |= _PAGE_GLOBAL; 185 } else 186 __supported_pte_mask &= ~_PAGE_GLOBAL; 187 188 /* Enable 1 GB linear kernel mappings if available: */ 189 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 190 printk(KERN_INFO "Using GB pages for direct mapping\n"); 191 page_size_mask |= 1 << PG_LEVEL_1G; 192 } else { 193 direct_gbpages = 0; 194 } 195 } 196 197 static void setup_pcid(void) 198 { 199 #ifdef CONFIG_X86_64 200 if (boot_cpu_has(X86_FEATURE_PCID)) { 201 if (boot_cpu_has(X86_FEATURE_PGE)) { 202 /* 203 * This can't be cr4_set_bits_and_update_boot() -- 204 * the trampoline code can't handle CR4.PCIDE and 205 * it wouldn't do any good anyway. Despite the name, 206 * cr4_set_bits_and_update_boot() doesn't actually 207 * cause the bits in question to remain set all the 208 * way through the secondary boot asm. 209 * 210 * Instead, we brute-force it and set CR4.PCIDE 211 * manually in start_secondary(). 212 */ 213 cr4_set_bits(X86_CR4_PCIDE); 214 } else { 215 /* 216 * flush_tlb_all(), as currently implemented, won't 217 * work if PCID is on but PGE is not. Since that 218 * combination doesn't exist on real hardware, there's 219 * no reason to try to fully support it, but it's 220 * polite to avoid corrupting data if we're on 221 * an improperly configured VM. 222 */ 223 setup_clear_cpu_cap(X86_FEATURE_PCID); 224 } 225 } 226 #endif 227 } 228 229 #ifdef CONFIG_X86_32 230 #define NR_RANGE_MR 3 231 #else /* CONFIG_X86_64 */ 232 #define NR_RANGE_MR 5 233 #endif 234 235 static int __meminit save_mr(struct map_range *mr, int nr_range, 236 unsigned long start_pfn, unsigned long end_pfn, 237 unsigned long page_size_mask) 238 { 239 if (start_pfn < end_pfn) { 240 if (nr_range >= NR_RANGE_MR) 241 panic("run out of range for init_memory_mapping\n"); 242 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 243 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 244 mr[nr_range].page_size_mask = page_size_mask; 245 nr_range++; 246 } 247 248 return nr_range; 249 } 250 251 /* 252 * adjust the page_size_mask for small range to go with 253 * big page size instead small one if nearby are ram too. 254 */ 255 static void __ref adjust_range_page_size_mask(struct map_range *mr, 256 int nr_range) 257 { 258 int i; 259 260 for (i = 0; i < nr_range; i++) { 261 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 262 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 263 unsigned long start = round_down(mr[i].start, PMD_SIZE); 264 unsigned long end = round_up(mr[i].end, PMD_SIZE); 265 266 #ifdef CONFIG_X86_32 267 if ((end >> PAGE_SHIFT) > max_low_pfn) 268 continue; 269 #endif 270 271 if (memblock_is_region_memory(start, end - start)) 272 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 273 } 274 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 275 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 276 unsigned long start = round_down(mr[i].start, PUD_SIZE); 277 unsigned long end = round_up(mr[i].end, PUD_SIZE); 278 279 if (memblock_is_region_memory(start, end - start)) 280 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 281 } 282 } 283 } 284 285 static const char *page_size_string(struct map_range *mr) 286 { 287 static const char str_1g[] = "1G"; 288 static const char str_2m[] = "2M"; 289 static const char str_4m[] = "4M"; 290 static const char str_4k[] = "4k"; 291 292 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 293 return str_1g; 294 /* 295 * 32-bit without PAE has a 4M large page size. 296 * PG_LEVEL_2M is misnamed, but we can at least 297 * print out the right size in the string. 298 */ 299 if (IS_ENABLED(CONFIG_X86_32) && 300 !IS_ENABLED(CONFIG_X86_PAE) && 301 mr->page_size_mask & (1<<PG_LEVEL_2M)) 302 return str_4m; 303 304 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 305 return str_2m; 306 307 return str_4k; 308 } 309 310 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 311 unsigned long start, 312 unsigned long end) 313 { 314 unsigned long start_pfn, end_pfn, limit_pfn; 315 unsigned long pfn; 316 int i; 317 318 limit_pfn = PFN_DOWN(end); 319 320 /* head if not big page alignment ? */ 321 pfn = start_pfn = PFN_DOWN(start); 322 #ifdef CONFIG_X86_32 323 /* 324 * Don't use a large page for the first 2/4MB of memory 325 * because there are often fixed size MTRRs in there 326 * and overlapping MTRRs into large pages can cause 327 * slowdowns. 328 */ 329 if (pfn == 0) 330 end_pfn = PFN_DOWN(PMD_SIZE); 331 else 332 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 333 #else /* CONFIG_X86_64 */ 334 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 335 #endif 336 if (end_pfn > limit_pfn) 337 end_pfn = limit_pfn; 338 if (start_pfn < end_pfn) { 339 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 340 pfn = end_pfn; 341 } 342 343 /* big page (2M) range */ 344 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 345 #ifdef CONFIG_X86_32 346 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 347 #else /* CONFIG_X86_64 */ 348 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 349 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 350 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 351 #endif 352 353 if (start_pfn < end_pfn) { 354 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 355 page_size_mask & (1<<PG_LEVEL_2M)); 356 pfn = end_pfn; 357 } 358 359 #ifdef CONFIG_X86_64 360 /* big page (1G) range */ 361 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 362 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 363 if (start_pfn < end_pfn) { 364 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 365 page_size_mask & 366 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 367 pfn = end_pfn; 368 } 369 370 /* tail is not big page (1G) alignment */ 371 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 372 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 373 if (start_pfn < end_pfn) { 374 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 375 page_size_mask & (1<<PG_LEVEL_2M)); 376 pfn = end_pfn; 377 } 378 #endif 379 380 /* tail is not big page (2M) alignment */ 381 start_pfn = pfn; 382 end_pfn = limit_pfn; 383 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 384 385 if (!after_bootmem) 386 adjust_range_page_size_mask(mr, nr_range); 387 388 /* try to merge same page size and continuous */ 389 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 390 unsigned long old_start; 391 if (mr[i].end != mr[i+1].start || 392 mr[i].page_size_mask != mr[i+1].page_size_mask) 393 continue; 394 /* move it */ 395 old_start = mr[i].start; 396 memmove(&mr[i], &mr[i+1], 397 (nr_range - 1 - i) * sizeof(struct map_range)); 398 mr[i--].start = old_start; 399 nr_range--; 400 } 401 402 for (i = 0; i < nr_range; i++) 403 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 404 mr[i].start, mr[i].end - 1, 405 page_size_string(&mr[i])); 406 407 return nr_range; 408 } 409 410 struct range pfn_mapped[E820_MAX_ENTRIES]; 411 int nr_pfn_mapped; 412 413 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 414 { 415 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 416 nr_pfn_mapped, start_pfn, end_pfn); 417 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 418 419 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 420 421 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 422 max_low_pfn_mapped = max(max_low_pfn_mapped, 423 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 424 } 425 426 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 427 { 428 int i; 429 430 for (i = 0; i < nr_pfn_mapped; i++) 431 if ((start_pfn >= pfn_mapped[i].start) && 432 (end_pfn <= pfn_mapped[i].end)) 433 return true; 434 435 return false; 436 } 437 438 /* 439 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 440 * This runs before bootmem is initialized and gets pages directly from 441 * the physical memory. To access them they are temporarily mapped. 442 */ 443 unsigned long __ref init_memory_mapping(unsigned long start, 444 unsigned long end) 445 { 446 struct map_range mr[NR_RANGE_MR]; 447 unsigned long ret = 0; 448 int nr_range, i; 449 450 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 451 start, end - 1); 452 453 memset(mr, 0, sizeof(mr)); 454 nr_range = split_mem_range(mr, 0, start, end); 455 456 for (i = 0; i < nr_range; i++) 457 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 458 mr[i].page_size_mask); 459 460 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 461 462 return ret >> PAGE_SHIFT; 463 } 464 465 /* 466 * We need to iterate through the E820 memory map and create direct mappings 467 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 468 * create direct mappings for all pfns from [0 to max_low_pfn) and 469 * [4GB to max_pfn) because of possible memory holes in high addresses 470 * that cannot be marked as UC by fixed/variable range MTRRs. 471 * Depending on the alignment of E820 ranges, this may possibly result 472 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 473 * 474 * init_mem_mapping() calls init_range_memory_mapping() with big range. 475 * That range would have hole in the middle or ends, and only ram parts 476 * will be mapped in init_range_memory_mapping(). 477 */ 478 static unsigned long __init init_range_memory_mapping( 479 unsigned long r_start, 480 unsigned long r_end) 481 { 482 unsigned long start_pfn, end_pfn; 483 unsigned long mapped_ram_size = 0; 484 int i; 485 486 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 487 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 488 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 489 if (start >= end) 490 continue; 491 492 /* 493 * if it is overlapping with brk pgt, we need to 494 * alloc pgt buf from memblock instead. 495 */ 496 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 497 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 498 init_memory_mapping(start, end); 499 mapped_ram_size += end - start; 500 can_use_brk_pgt = true; 501 } 502 503 return mapped_ram_size; 504 } 505 506 static unsigned long __init get_new_step_size(unsigned long step_size) 507 { 508 /* 509 * Initial mapped size is PMD_SIZE (2M). 510 * We can not set step_size to be PUD_SIZE (1G) yet. 511 * In worse case, when we cross the 1G boundary, and 512 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 513 * to map 1G range with PTE. Hence we use one less than the 514 * difference of page table level shifts. 515 * 516 * Don't need to worry about overflow in the top-down case, on 32bit, 517 * when step_size is 0, round_down() returns 0 for start, and that 518 * turns it into 0x100000000ULL. 519 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 520 * needs to be taken into consideration by the code below. 521 */ 522 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 523 } 524 525 /** 526 * memory_map_top_down - Map [map_start, map_end) top down 527 * @map_start: start address of the target memory range 528 * @map_end: end address of the target memory range 529 * 530 * This function will setup direct mapping for memory range 531 * [map_start, map_end) in top-down. That said, the page tables 532 * will be allocated at the end of the memory, and we map the 533 * memory in top-down. 534 */ 535 static void __init memory_map_top_down(unsigned long map_start, 536 unsigned long map_end) 537 { 538 unsigned long real_end, start, last_start; 539 unsigned long step_size; 540 unsigned long addr; 541 unsigned long mapped_ram_size = 0; 542 543 /* xen has big range in reserved near end of ram, skip it at first.*/ 544 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); 545 real_end = addr + PMD_SIZE; 546 547 /* step_size need to be small so pgt_buf from BRK could cover it */ 548 step_size = PMD_SIZE; 549 max_pfn_mapped = 0; /* will get exact value next */ 550 min_pfn_mapped = real_end >> PAGE_SHIFT; 551 last_start = start = real_end; 552 553 /* 554 * We start from the top (end of memory) and go to the bottom. 555 * The memblock_find_in_range() gets us a block of RAM from the 556 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 557 * for page table. 558 */ 559 while (last_start > map_start) { 560 if (last_start > step_size) { 561 start = round_down(last_start - 1, step_size); 562 if (start < map_start) 563 start = map_start; 564 } else 565 start = map_start; 566 mapped_ram_size += init_range_memory_mapping(start, 567 last_start); 568 last_start = start; 569 min_pfn_mapped = last_start >> PAGE_SHIFT; 570 if (mapped_ram_size >= step_size) 571 step_size = get_new_step_size(step_size); 572 } 573 574 if (real_end < map_end) 575 init_range_memory_mapping(real_end, map_end); 576 } 577 578 /** 579 * memory_map_bottom_up - Map [map_start, map_end) bottom up 580 * @map_start: start address of the target memory range 581 * @map_end: end address of the target memory range 582 * 583 * This function will setup direct mapping for memory range 584 * [map_start, map_end) in bottom-up. Since we have limited the 585 * bottom-up allocation above the kernel, the page tables will 586 * be allocated just above the kernel and we map the memory 587 * in [map_start, map_end) in bottom-up. 588 */ 589 static void __init memory_map_bottom_up(unsigned long map_start, 590 unsigned long map_end) 591 { 592 unsigned long next, start; 593 unsigned long mapped_ram_size = 0; 594 /* step_size need to be small so pgt_buf from BRK could cover it */ 595 unsigned long step_size = PMD_SIZE; 596 597 start = map_start; 598 min_pfn_mapped = start >> PAGE_SHIFT; 599 600 /* 601 * We start from the bottom (@map_start) and go to the top (@map_end). 602 * The memblock_find_in_range() gets us a block of RAM from the 603 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 604 * for page table. 605 */ 606 while (start < map_end) { 607 if (step_size && map_end - start > step_size) { 608 next = round_up(start + 1, step_size); 609 if (next > map_end) 610 next = map_end; 611 } else { 612 next = map_end; 613 } 614 615 mapped_ram_size += init_range_memory_mapping(start, next); 616 start = next; 617 618 if (mapped_ram_size >= step_size) 619 step_size = get_new_step_size(step_size); 620 } 621 } 622 623 void __init init_mem_mapping(void) 624 { 625 unsigned long end; 626 627 probe_page_size_mask(); 628 setup_pcid(); 629 630 #ifdef CONFIG_X86_64 631 end = max_pfn << PAGE_SHIFT; 632 #else 633 end = max_low_pfn << PAGE_SHIFT; 634 #endif 635 636 /* the ISA range is always mapped regardless of memory holes */ 637 init_memory_mapping(0, ISA_END_ADDRESS); 638 639 /* Init the trampoline, possibly with KASLR memory offset */ 640 init_trampoline(); 641 642 /* 643 * If the allocation is in bottom-up direction, we setup direct mapping 644 * in bottom-up, otherwise we setup direct mapping in top-down. 645 */ 646 if (memblock_bottom_up()) { 647 unsigned long kernel_end = __pa_symbol(_end); 648 649 /* 650 * we need two separate calls here. This is because we want to 651 * allocate page tables above the kernel. So we first map 652 * [kernel_end, end) to make memory above the kernel be mapped 653 * as soon as possible. And then use page tables allocated above 654 * the kernel to map [ISA_END_ADDRESS, kernel_end). 655 */ 656 memory_map_bottom_up(kernel_end, end); 657 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 658 } else { 659 memory_map_top_down(ISA_END_ADDRESS, end); 660 } 661 662 #ifdef CONFIG_X86_64 663 if (max_pfn > max_low_pfn) { 664 /* can we preseve max_low_pfn ?*/ 665 max_low_pfn = max_pfn; 666 } 667 #else 668 early_ioremap_page_table_range_init(); 669 #endif 670 671 load_cr3(swapper_pg_dir); 672 __flush_tlb_all(); 673 674 hypervisor_init_mem_mapping(); 675 676 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 677 } 678 679 /* 680 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 681 * is valid. The argument is a physical page number. 682 * 683 * On x86, access has to be given to the first megabyte of RAM because that 684 * area traditionally contains BIOS code and data regions used by X, dosemu, 685 * and similar apps. Since they map the entire memory range, the whole range 686 * must be allowed (for mapping), but any areas that would otherwise be 687 * disallowed are flagged as being "zero filled" instead of rejected. 688 * Access has to be given to non-kernel-ram areas as well, these contain the 689 * PCI mmio resources as well as potential bios/acpi data regions. 690 */ 691 int devmem_is_allowed(unsigned long pagenr) 692 { 693 if (page_is_ram(pagenr)) { 694 /* 695 * For disallowed memory regions in the low 1MB range, 696 * request that the page be shown as all zeros. 697 */ 698 if (pagenr < 256) 699 return 2; 700 701 return 0; 702 } 703 704 /* 705 * This must follow RAM test, since System RAM is considered a 706 * restricted resource under CONFIG_STRICT_IOMEM. 707 */ 708 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 709 /* Low 1MB bypasses iomem restrictions. */ 710 if (pagenr < 256) 711 return 1; 712 713 return 0; 714 } 715 716 return 1; 717 } 718 719 void free_init_pages(char *what, unsigned long begin, unsigned long end) 720 { 721 unsigned long begin_aligned, end_aligned; 722 723 /* Make sure boundaries are page aligned */ 724 begin_aligned = PAGE_ALIGN(begin); 725 end_aligned = end & PAGE_MASK; 726 727 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 728 begin = begin_aligned; 729 end = end_aligned; 730 } 731 732 if (begin >= end) 733 return; 734 735 /* 736 * If debugging page accesses then do not free this memory but 737 * mark them not present - any buggy init-section access will 738 * create a kernel page fault: 739 */ 740 if (debug_pagealloc_enabled()) { 741 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 742 begin, end - 1); 743 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 744 } else { 745 /* 746 * We just marked the kernel text read only above, now that 747 * we are going to free part of that, we need to make that 748 * writeable and non-executable first. 749 */ 750 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 751 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 752 753 free_reserved_area((void *)begin, (void *)end, 754 POISON_FREE_INITMEM, what); 755 } 756 } 757 758 void __ref free_initmem(void) 759 { 760 e820__reallocate_tables(); 761 762 free_init_pages("unused kernel", 763 (unsigned long)(&__init_begin), 764 (unsigned long)(&__init_end)); 765 } 766 767 #ifdef CONFIG_BLK_DEV_INITRD 768 void __init free_initrd_mem(unsigned long start, unsigned long end) 769 { 770 /* 771 * end could be not aligned, and We can not align that, 772 * decompresser could be confused by aligned initrd_end 773 * We already reserve the end partial page before in 774 * - i386_start_kernel() 775 * - x86_64_start_kernel() 776 * - relocate_initrd() 777 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 778 */ 779 free_init_pages("initrd", start, PAGE_ALIGN(end)); 780 } 781 #endif 782 783 /* 784 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 785 * and pass it to the MM layer - to help it set zone watermarks more 786 * accurately. 787 * 788 * Done on 64-bit systems only for the time being, although 32-bit systems 789 * might benefit from this as well. 790 */ 791 void __init memblock_find_dma_reserve(void) 792 { 793 #ifdef CONFIG_X86_64 794 u64 nr_pages = 0, nr_free_pages = 0; 795 unsigned long start_pfn, end_pfn; 796 phys_addr_t start_addr, end_addr; 797 int i; 798 u64 u; 799 800 /* 801 * Iterate over all memory ranges (free and reserved ones alike), 802 * to calculate the total number of pages in the first 16 MB of RAM: 803 */ 804 nr_pages = 0; 805 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 806 start_pfn = min(start_pfn, MAX_DMA_PFN); 807 end_pfn = min(end_pfn, MAX_DMA_PFN); 808 809 nr_pages += end_pfn - start_pfn; 810 } 811 812 /* 813 * Iterate over free memory ranges to calculate the number of free 814 * pages in the DMA zone, while not counting potential partial 815 * pages at the beginning or the end of the range: 816 */ 817 nr_free_pages = 0; 818 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 819 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 820 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 821 822 if (start_pfn < end_pfn) 823 nr_free_pages += end_pfn - start_pfn; 824 } 825 826 set_dma_reserve(nr_pages - nr_free_pages); 827 #endif 828 } 829 830 void __init zone_sizes_init(void) 831 { 832 unsigned long max_zone_pfns[MAX_NR_ZONES]; 833 834 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 835 836 #ifdef CONFIG_ZONE_DMA 837 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 838 #endif 839 #ifdef CONFIG_ZONE_DMA32 840 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 841 #endif 842 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 843 #ifdef CONFIG_HIGHMEM 844 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 845 #endif 846 847 free_area_init_nodes(max_zone_pfns); 848 } 849 850 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { 851 .loaded_mm = &init_mm, 852 .next_asid = 1, 853 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 854 }; 855 EXPORT_SYMBOL_GPL(cpu_tlbstate); 856 857 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 858 { 859 /* entry 0 MUST be WB (hardwired to speed up translations) */ 860 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 861 862 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 863 __pte2cachemode_tbl[entry] = cache; 864 } 865