1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/swapfile.h> 7 #include <linux/swapops.h> 8 9 #include <asm/set_memory.h> 10 #include <asm/e820/api.h> 11 #include <asm/init.h> 12 #include <asm/page.h> 13 #include <asm/page_types.h> 14 #include <asm/sections.h> 15 #include <asm/setup.h> 16 #include <asm/tlbflush.h> 17 #include <asm/tlb.h> 18 #include <asm/proto.h> 19 #include <asm/dma.h> /* for MAX_DMA_PFN */ 20 #include <asm/microcode.h> 21 #include <asm/kaslr.h> 22 #include <asm/hypervisor.h> 23 #include <asm/cpufeature.h> 24 #include <asm/pti.h> 25 26 /* 27 * We need to define the tracepoints somewhere, and tlb.c 28 * is only compied when SMP=y. 29 */ 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/tlb.h> 32 33 #include "mm_internal.h" 34 35 /* 36 * Tables translating between page_cache_type_t and pte encoding. 37 * 38 * The default values are defined statically as minimal supported mode; 39 * WC and WT fall back to UC-. pat_init() updates these values to support 40 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 41 * for the details. Note, __early_ioremap() used during early boot-time 42 * takes pgprot_t (pte encoding) and does not use these tables. 43 * 44 * Index into __cachemode2pte_tbl[] is the cachemode. 45 * 46 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 47 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 48 */ 49 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 50 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 51 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 52 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 53 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 54 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 55 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 56 }; 57 EXPORT_SYMBOL(__cachemode2pte_tbl); 58 59 uint8_t __pte2cachemode_tbl[8] = { 60 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 61 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 62 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 63 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 64 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 65 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 66 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 67 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 68 }; 69 EXPORT_SYMBOL(__pte2cachemode_tbl); 70 71 static unsigned long __initdata pgt_buf_start; 72 static unsigned long __initdata pgt_buf_end; 73 static unsigned long __initdata pgt_buf_top; 74 75 static unsigned long min_pfn_mapped; 76 77 static bool __initdata can_use_brk_pgt = true; 78 79 /* 80 * Pages returned are already directly mapped. 81 * 82 * Changing that is likely to break Xen, see commit: 83 * 84 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 85 * 86 * for detailed information. 87 */ 88 __ref void *alloc_low_pages(unsigned int num) 89 { 90 unsigned long pfn; 91 int i; 92 93 if (after_bootmem) { 94 unsigned int order; 95 96 order = get_order((unsigned long)num << PAGE_SHIFT); 97 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 98 } 99 100 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 101 unsigned long ret = 0; 102 103 if (min_pfn_mapped < max_pfn_mapped) { 104 ret = memblock_find_in_range( 105 min_pfn_mapped << PAGE_SHIFT, 106 max_pfn_mapped << PAGE_SHIFT, 107 PAGE_SIZE * num , PAGE_SIZE); 108 } 109 if (ret) 110 memblock_reserve(ret, PAGE_SIZE * num); 111 else if (can_use_brk_pgt) 112 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); 113 114 if (!ret) 115 panic("alloc_low_pages: can not alloc memory"); 116 117 pfn = ret >> PAGE_SHIFT; 118 } else { 119 pfn = pgt_buf_end; 120 pgt_buf_end += num; 121 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", 122 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); 123 } 124 125 for (i = 0; i < num; i++) { 126 void *adr; 127 128 adr = __va((pfn + i) << PAGE_SHIFT); 129 clear_page(adr); 130 } 131 132 return __va(pfn << PAGE_SHIFT); 133 } 134 135 /* 136 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS. 137 * With KASLR memory randomization, depending on the machine e820 memory 138 * and the PUD alignment. We may need twice more pages when KASLR memory 139 * randomization is enabled. 140 */ 141 #ifndef CONFIG_RANDOMIZE_MEMORY 142 #define INIT_PGD_PAGE_COUNT 6 143 #else 144 #define INIT_PGD_PAGE_COUNT 12 145 #endif 146 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 147 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 148 void __init early_alloc_pgt_buf(void) 149 { 150 unsigned long tables = INIT_PGT_BUF_SIZE; 151 phys_addr_t base; 152 153 base = __pa(extend_brk(tables, PAGE_SIZE)); 154 155 pgt_buf_start = base >> PAGE_SHIFT; 156 pgt_buf_end = pgt_buf_start; 157 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 158 } 159 160 int after_bootmem; 161 162 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 163 164 struct map_range { 165 unsigned long start; 166 unsigned long end; 167 unsigned page_size_mask; 168 }; 169 170 static int page_size_mask; 171 172 static void __init probe_page_size_mask(void) 173 { 174 /* 175 * For pagealloc debugging, identity mapping will use small pages. 176 * This will simplify cpa(), which otherwise needs to support splitting 177 * large pages into small in interrupt context, etc. 178 */ 179 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 180 page_size_mask |= 1 << PG_LEVEL_2M; 181 else 182 direct_gbpages = 0; 183 184 /* Enable PSE if available */ 185 if (boot_cpu_has(X86_FEATURE_PSE)) 186 cr4_set_bits_and_update_boot(X86_CR4_PSE); 187 188 /* Enable PGE if available */ 189 __supported_pte_mask &= ~_PAGE_GLOBAL; 190 if (boot_cpu_has(X86_FEATURE_PGE)) { 191 cr4_set_bits_and_update_boot(X86_CR4_PGE); 192 __supported_pte_mask |= _PAGE_GLOBAL; 193 } 194 195 /* By the default is everything supported: */ 196 __default_kernel_pte_mask = __supported_pte_mask; 197 /* Except when with PTI where the kernel is mostly non-Global: */ 198 if (cpu_feature_enabled(X86_FEATURE_PTI)) 199 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 200 201 /* Enable 1 GB linear kernel mappings if available: */ 202 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 203 printk(KERN_INFO "Using GB pages for direct mapping\n"); 204 page_size_mask |= 1 << PG_LEVEL_1G; 205 } else { 206 direct_gbpages = 0; 207 } 208 } 209 210 static void setup_pcid(void) 211 { 212 if (!IS_ENABLED(CONFIG_X86_64)) 213 return; 214 215 if (!boot_cpu_has(X86_FEATURE_PCID)) 216 return; 217 218 if (boot_cpu_has(X86_FEATURE_PGE)) { 219 /* 220 * This can't be cr4_set_bits_and_update_boot() -- the 221 * trampoline code can't handle CR4.PCIDE and it wouldn't 222 * do any good anyway. Despite the name, 223 * cr4_set_bits_and_update_boot() doesn't actually cause 224 * the bits in question to remain set all the way through 225 * the secondary boot asm. 226 * 227 * Instead, we brute-force it and set CR4.PCIDE manually in 228 * start_secondary(). 229 */ 230 cr4_set_bits(X86_CR4_PCIDE); 231 232 /* 233 * INVPCID's single-context modes (2/3) only work if we set 234 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable 235 * on systems that have X86_CR4_PCIDE clear, or that have 236 * no INVPCID support at all. 237 */ 238 if (boot_cpu_has(X86_FEATURE_INVPCID)) 239 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); 240 } else { 241 /* 242 * flush_tlb_all(), as currently implemented, won't work if 243 * PCID is on but PGE is not. Since that combination 244 * doesn't exist on real hardware, there's no reason to try 245 * to fully support it, but it's polite to avoid corrupting 246 * data if we're on an improperly configured VM. 247 */ 248 setup_clear_cpu_cap(X86_FEATURE_PCID); 249 } 250 } 251 252 #ifdef CONFIG_X86_32 253 #define NR_RANGE_MR 3 254 #else /* CONFIG_X86_64 */ 255 #define NR_RANGE_MR 5 256 #endif 257 258 static int __meminit save_mr(struct map_range *mr, int nr_range, 259 unsigned long start_pfn, unsigned long end_pfn, 260 unsigned long page_size_mask) 261 { 262 if (start_pfn < end_pfn) { 263 if (nr_range >= NR_RANGE_MR) 264 panic("run out of range for init_memory_mapping\n"); 265 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 266 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 267 mr[nr_range].page_size_mask = page_size_mask; 268 nr_range++; 269 } 270 271 return nr_range; 272 } 273 274 /* 275 * adjust the page_size_mask for small range to go with 276 * big page size instead small one if nearby are ram too. 277 */ 278 static void __ref adjust_range_page_size_mask(struct map_range *mr, 279 int nr_range) 280 { 281 int i; 282 283 for (i = 0; i < nr_range; i++) { 284 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 285 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 286 unsigned long start = round_down(mr[i].start, PMD_SIZE); 287 unsigned long end = round_up(mr[i].end, PMD_SIZE); 288 289 #ifdef CONFIG_X86_32 290 if ((end >> PAGE_SHIFT) > max_low_pfn) 291 continue; 292 #endif 293 294 if (memblock_is_region_memory(start, end - start)) 295 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 296 } 297 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 298 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 299 unsigned long start = round_down(mr[i].start, PUD_SIZE); 300 unsigned long end = round_up(mr[i].end, PUD_SIZE); 301 302 if (memblock_is_region_memory(start, end - start)) 303 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 304 } 305 } 306 } 307 308 static const char *page_size_string(struct map_range *mr) 309 { 310 static const char str_1g[] = "1G"; 311 static const char str_2m[] = "2M"; 312 static const char str_4m[] = "4M"; 313 static const char str_4k[] = "4k"; 314 315 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 316 return str_1g; 317 /* 318 * 32-bit without PAE has a 4M large page size. 319 * PG_LEVEL_2M is misnamed, but we can at least 320 * print out the right size in the string. 321 */ 322 if (IS_ENABLED(CONFIG_X86_32) && 323 !IS_ENABLED(CONFIG_X86_PAE) && 324 mr->page_size_mask & (1<<PG_LEVEL_2M)) 325 return str_4m; 326 327 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 328 return str_2m; 329 330 return str_4k; 331 } 332 333 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 334 unsigned long start, 335 unsigned long end) 336 { 337 unsigned long start_pfn, end_pfn, limit_pfn; 338 unsigned long pfn; 339 int i; 340 341 limit_pfn = PFN_DOWN(end); 342 343 /* head if not big page alignment ? */ 344 pfn = start_pfn = PFN_DOWN(start); 345 #ifdef CONFIG_X86_32 346 /* 347 * Don't use a large page for the first 2/4MB of memory 348 * because there are often fixed size MTRRs in there 349 * and overlapping MTRRs into large pages can cause 350 * slowdowns. 351 */ 352 if (pfn == 0) 353 end_pfn = PFN_DOWN(PMD_SIZE); 354 else 355 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 356 #else /* CONFIG_X86_64 */ 357 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 358 #endif 359 if (end_pfn > limit_pfn) 360 end_pfn = limit_pfn; 361 if (start_pfn < end_pfn) { 362 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 363 pfn = end_pfn; 364 } 365 366 /* big page (2M) range */ 367 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 368 #ifdef CONFIG_X86_32 369 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 370 #else /* CONFIG_X86_64 */ 371 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 372 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 373 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 374 #endif 375 376 if (start_pfn < end_pfn) { 377 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 378 page_size_mask & (1<<PG_LEVEL_2M)); 379 pfn = end_pfn; 380 } 381 382 #ifdef CONFIG_X86_64 383 /* big page (1G) range */ 384 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 385 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 386 if (start_pfn < end_pfn) { 387 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 388 page_size_mask & 389 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 390 pfn = end_pfn; 391 } 392 393 /* tail is not big page (1G) alignment */ 394 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 395 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 396 if (start_pfn < end_pfn) { 397 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 398 page_size_mask & (1<<PG_LEVEL_2M)); 399 pfn = end_pfn; 400 } 401 #endif 402 403 /* tail is not big page (2M) alignment */ 404 start_pfn = pfn; 405 end_pfn = limit_pfn; 406 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 407 408 if (!after_bootmem) 409 adjust_range_page_size_mask(mr, nr_range); 410 411 /* try to merge same page size and continuous */ 412 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 413 unsigned long old_start; 414 if (mr[i].end != mr[i+1].start || 415 mr[i].page_size_mask != mr[i+1].page_size_mask) 416 continue; 417 /* move it */ 418 old_start = mr[i].start; 419 memmove(&mr[i], &mr[i+1], 420 (nr_range - 1 - i) * sizeof(struct map_range)); 421 mr[i--].start = old_start; 422 nr_range--; 423 } 424 425 for (i = 0; i < nr_range; i++) 426 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 427 mr[i].start, mr[i].end - 1, 428 page_size_string(&mr[i])); 429 430 return nr_range; 431 } 432 433 struct range pfn_mapped[E820_MAX_ENTRIES]; 434 int nr_pfn_mapped; 435 436 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 437 { 438 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 439 nr_pfn_mapped, start_pfn, end_pfn); 440 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 441 442 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 443 444 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 445 max_low_pfn_mapped = max(max_low_pfn_mapped, 446 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 447 } 448 449 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 450 { 451 int i; 452 453 for (i = 0; i < nr_pfn_mapped; i++) 454 if ((start_pfn >= pfn_mapped[i].start) && 455 (end_pfn <= pfn_mapped[i].end)) 456 return true; 457 458 return false; 459 } 460 461 /* 462 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 463 * This runs before bootmem is initialized and gets pages directly from 464 * the physical memory. To access them they are temporarily mapped. 465 */ 466 unsigned long __ref init_memory_mapping(unsigned long start, 467 unsigned long end) 468 { 469 struct map_range mr[NR_RANGE_MR]; 470 unsigned long ret = 0; 471 int nr_range, i; 472 473 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 474 start, end - 1); 475 476 memset(mr, 0, sizeof(mr)); 477 nr_range = split_mem_range(mr, 0, start, end); 478 479 for (i = 0; i < nr_range; i++) 480 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 481 mr[i].page_size_mask); 482 483 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 484 485 return ret >> PAGE_SHIFT; 486 } 487 488 /* 489 * We need to iterate through the E820 memory map and create direct mappings 490 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 491 * create direct mappings for all pfns from [0 to max_low_pfn) and 492 * [4GB to max_pfn) because of possible memory holes in high addresses 493 * that cannot be marked as UC by fixed/variable range MTRRs. 494 * Depending on the alignment of E820 ranges, this may possibly result 495 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 496 * 497 * init_mem_mapping() calls init_range_memory_mapping() with big range. 498 * That range would have hole in the middle or ends, and only ram parts 499 * will be mapped in init_range_memory_mapping(). 500 */ 501 static unsigned long __init init_range_memory_mapping( 502 unsigned long r_start, 503 unsigned long r_end) 504 { 505 unsigned long start_pfn, end_pfn; 506 unsigned long mapped_ram_size = 0; 507 int i; 508 509 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 510 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 511 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 512 if (start >= end) 513 continue; 514 515 /* 516 * if it is overlapping with brk pgt, we need to 517 * alloc pgt buf from memblock instead. 518 */ 519 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 520 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 521 init_memory_mapping(start, end); 522 mapped_ram_size += end - start; 523 can_use_brk_pgt = true; 524 } 525 526 return mapped_ram_size; 527 } 528 529 static unsigned long __init get_new_step_size(unsigned long step_size) 530 { 531 /* 532 * Initial mapped size is PMD_SIZE (2M). 533 * We can not set step_size to be PUD_SIZE (1G) yet. 534 * In worse case, when we cross the 1G boundary, and 535 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 536 * to map 1G range with PTE. Hence we use one less than the 537 * difference of page table level shifts. 538 * 539 * Don't need to worry about overflow in the top-down case, on 32bit, 540 * when step_size is 0, round_down() returns 0 for start, and that 541 * turns it into 0x100000000ULL. 542 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 543 * needs to be taken into consideration by the code below. 544 */ 545 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 546 } 547 548 /** 549 * memory_map_top_down - Map [map_start, map_end) top down 550 * @map_start: start address of the target memory range 551 * @map_end: end address of the target memory range 552 * 553 * This function will setup direct mapping for memory range 554 * [map_start, map_end) in top-down. That said, the page tables 555 * will be allocated at the end of the memory, and we map the 556 * memory in top-down. 557 */ 558 static void __init memory_map_top_down(unsigned long map_start, 559 unsigned long map_end) 560 { 561 unsigned long real_end, start, last_start; 562 unsigned long step_size; 563 unsigned long addr; 564 unsigned long mapped_ram_size = 0; 565 566 /* xen has big range in reserved near end of ram, skip it at first.*/ 567 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); 568 real_end = addr + PMD_SIZE; 569 570 /* step_size need to be small so pgt_buf from BRK could cover it */ 571 step_size = PMD_SIZE; 572 max_pfn_mapped = 0; /* will get exact value next */ 573 min_pfn_mapped = real_end >> PAGE_SHIFT; 574 last_start = start = real_end; 575 576 /* 577 * We start from the top (end of memory) and go to the bottom. 578 * The memblock_find_in_range() gets us a block of RAM from the 579 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 580 * for page table. 581 */ 582 while (last_start > map_start) { 583 if (last_start > step_size) { 584 start = round_down(last_start - 1, step_size); 585 if (start < map_start) 586 start = map_start; 587 } else 588 start = map_start; 589 mapped_ram_size += init_range_memory_mapping(start, 590 last_start); 591 last_start = start; 592 min_pfn_mapped = last_start >> PAGE_SHIFT; 593 if (mapped_ram_size >= step_size) 594 step_size = get_new_step_size(step_size); 595 } 596 597 if (real_end < map_end) 598 init_range_memory_mapping(real_end, map_end); 599 } 600 601 /** 602 * memory_map_bottom_up - Map [map_start, map_end) bottom up 603 * @map_start: start address of the target memory range 604 * @map_end: end address of the target memory range 605 * 606 * This function will setup direct mapping for memory range 607 * [map_start, map_end) in bottom-up. Since we have limited the 608 * bottom-up allocation above the kernel, the page tables will 609 * be allocated just above the kernel and we map the memory 610 * in [map_start, map_end) in bottom-up. 611 */ 612 static void __init memory_map_bottom_up(unsigned long map_start, 613 unsigned long map_end) 614 { 615 unsigned long next, start; 616 unsigned long mapped_ram_size = 0; 617 /* step_size need to be small so pgt_buf from BRK could cover it */ 618 unsigned long step_size = PMD_SIZE; 619 620 start = map_start; 621 min_pfn_mapped = start >> PAGE_SHIFT; 622 623 /* 624 * We start from the bottom (@map_start) and go to the top (@map_end). 625 * The memblock_find_in_range() gets us a block of RAM from the 626 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 627 * for page table. 628 */ 629 while (start < map_end) { 630 if (step_size && map_end - start > step_size) { 631 next = round_up(start + 1, step_size); 632 if (next > map_end) 633 next = map_end; 634 } else { 635 next = map_end; 636 } 637 638 mapped_ram_size += init_range_memory_mapping(start, next); 639 start = next; 640 641 if (mapped_ram_size >= step_size) 642 step_size = get_new_step_size(step_size); 643 } 644 } 645 646 void __init init_mem_mapping(void) 647 { 648 unsigned long end; 649 650 pti_check_boottime_disable(); 651 probe_page_size_mask(); 652 setup_pcid(); 653 654 #ifdef CONFIG_X86_64 655 end = max_pfn << PAGE_SHIFT; 656 #else 657 end = max_low_pfn << PAGE_SHIFT; 658 #endif 659 660 /* the ISA range is always mapped regardless of memory holes */ 661 init_memory_mapping(0, ISA_END_ADDRESS); 662 663 /* Init the trampoline, possibly with KASLR memory offset */ 664 init_trampoline(); 665 666 /* 667 * If the allocation is in bottom-up direction, we setup direct mapping 668 * in bottom-up, otherwise we setup direct mapping in top-down. 669 */ 670 if (memblock_bottom_up()) { 671 unsigned long kernel_end = __pa_symbol(_end); 672 673 /* 674 * we need two separate calls here. This is because we want to 675 * allocate page tables above the kernel. So we first map 676 * [kernel_end, end) to make memory above the kernel be mapped 677 * as soon as possible. And then use page tables allocated above 678 * the kernel to map [ISA_END_ADDRESS, kernel_end). 679 */ 680 memory_map_bottom_up(kernel_end, end); 681 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 682 } else { 683 memory_map_top_down(ISA_END_ADDRESS, end); 684 } 685 686 #ifdef CONFIG_X86_64 687 if (max_pfn > max_low_pfn) { 688 /* can we preseve max_low_pfn ?*/ 689 max_low_pfn = max_pfn; 690 } 691 #else 692 early_ioremap_page_table_range_init(); 693 #endif 694 695 load_cr3(swapper_pg_dir); 696 __flush_tlb_all(); 697 698 x86_init.hyper.init_mem_mapping(); 699 700 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 701 } 702 703 /* 704 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 705 * is valid. The argument is a physical page number. 706 * 707 * On x86, access has to be given to the first megabyte of RAM because that 708 * area traditionally contains BIOS code and data regions used by X, dosemu, 709 * and similar apps. Since they map the entire memory range, the whole range 710 * must be allowed (for mapping), but any areas that would otherwise be 711 * disallowed are flagged as being "zero filled" instead of rejected. 712 * Access has to be given to non-kernel-ram areas as well, these contain the 713 * PCI mmio resources as well as potential bios/acpi data regions. 714 */ 715 int devmem_is_allowed(unsigned long pagenr) 716 { 717 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, 718 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) 719 != REGION_DISJOINT) { 720 /* 721 * For disallowed memory regions in the low 1MB range, 722 * request that the page be shown as all zeros. 723 */ 724 if (pagenr < 256) 725 return 2; 726 727 return 0; 728 } 729 730 /* 731 * This must follow RAM test, since System RAM is considered a 732 * restricted resource under CONFIG_STRICT_IOMEM. 733 */ 734 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 735 /* Low 1MB bypasses iomem restrictions. */ 736 if (pagenr < 256) 737 return 1; 738 739 return 0; 740 } 741 742 return 1; 743 } 744 745 void free_init_pages(char *what, unsigned long begin, unsigned long end) 746 { 747 unsigned long begin_aligned, end_aligned; 748 749 /* Make sure boundaries are page aligned */ 750 begin_aligned = PAGE_ALIGN(begin); 751 end_aligned = end & PAGE_MASK; 752 753 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 754 begin = begin_aligned; 755 end = end_aligned; 756 } 757 758 if (begin >= end) 759 return; 760 761 /* 762 * If debugging page accesses then do not free this memory but 763 * mark them not present - any buggy init-section access will 764 * create a kernel page fault: 765 */ 766 if (debug_pagealloc_enabled()) { 767 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 768 begin, end - 1); 769 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 770 } else { 771 /* 772 * We just marked the kernel text read only above, now that 773 * we are going to free part of that, we need to make that 774 * writeable and non-executable first. 775 */ 776 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 777 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 778 779 free_reserved_area((void *)begin, (void *)end, 780 POISON_FREE_INITMEM, what); 781 } 782 } 783 784 /* 785 * begin/end can be in the direct map or the "high kernel mapping" 786 * used for the kernel image only. free_init_pages() will do the 787 * right thing for either kind of address. 788 */ 789 void free_kernel_image_pages(void *begin, void *end) 790 { 791 unsigned long begin_ul = (unsigned long)begin; 792 unsigned long end_ul = (unsigned long)end; 793 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; 794 795 796 free_init_pages("unused kernel image", begin_ul, end_ul); 797 798 /* 799 * PTI maps some of the kernel into userspace. For performance, 800 * this includes some kernel areas that do not contain secrets. 801 * Those areas might be adjacent to the parts of the kernel image 802 * being freed, which may contain secrets. Remove the "high kernel 803 * image mapping" for these freed areas, ensuring they are not even 804 * potentially vulnerable to Meltdown regardless of the specific 805 * optimizations PTI is currently using. 806 * 807 * The "noalias" prevents unmapping the direct map alias which is 808 * needed to access the freed pages. 809 * 810 * This is only valid for 64bit kernels. 32bit has only one mapping 811 * which can't be treated in this way for obvious reasons. 812 */ 813 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) 814 set_memory_np_noalias(begin_ul, len_pages); 815 } 816 817 void __weak mem_encrypt_free_decrypted_mem(void) { } 818 819 void __ref free_initmem(void) 820 { 821 e820__reallocate_tables(); 822 823 mem_encrypt_free_decrypted_mem(); 824 825 free_kernel_image_pages(&__init_begin, &__init_end); 826 } 827 828 #ifdef CONFIG_BLK_DEV_INITRD 829 void __init free_initrd_mem(unsigned long start, unsigned long end) 830 { 831 /* 832 * end could be not aligned, and We can not align that, 833 * decompresser could be confused by aligned initrd_end 834 * We already reserve the end partial page before in 835 * - i386_start_kernel() 836 * - x86_64_start_kernel() 837 * - relocate_initrd() 838 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 839 */ 840 free_init_pages("initrd", start, PAGE_ALIGN(end)); 841 } 842 #endif 843 844 /* 845 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 846 * and pass it to the MM layer - to help it set zone watermarks more 847 * accurately. 848 * 849 * Done on 64-bit systems only for the time being, although 32-bit systems 850 * might benefit from this as well. 851 */ 852 void __init memblock_find_dma_reserve(void) 853 { 854 #ifdef CONFIG_X86_64 855 u64 nr_pages = 0, nr_free_pages = 0; 856 unsigned long start_pfn, end_pfn; 857 phys_addr_t start_addr, end_addr; 858 int i; 859 u64 u; 860 861 /* 862 * Iterate over all memory ranges (free and reserved ones alike), 863 * to calculate the total number of pages in the first 16 MB of RAM: 864 */ 865 nr_pages = 0; 866 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 867 start_pfn = min(start_pfn, MAX_DMA_PFN); 868 end_pfn = min(end_pfn, MAX_DMA_PFN); 869 870 nr_pages += end_pfn - start_pfn; 871 } 872 873 /* 874 * Iterate over free memory ranges to calculate the number of free 875 * pages in the DMA zone, while not counting potential partial 876 * pages at the beginning or the end of the range: 877 */ 878 nr_free_pages = 0; 879 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 880 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 881 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 882 883 if (start_pfn < end_pfn) 884 nr_free_pages += end_pfn - start_pfn; 885 } 886 887 set_dma_reserve(nr_pages - nr_free_pages); 888 #endif 889 } 890 891 void __init zone_sizes_init(void) 892 { 893 unsigned long max_zone_pfns[MAX_NR_ZONES]; 894 895 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 896 897 #ifdef CONFIG_ZONE_DMA 898 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 899 #endif 900 #ifdef CONFIG_ZONE_DMA32 901 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 902 #endif 903 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 904 #ifdef CONFIG_HIGHMEM 905 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 906 #endif 907 908 free_area_init_nodes(max_zone_pfns); 909 } 910 911 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { 912 .loaded_mm = &init_mm, 913 .next_asid = 1, 914 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 915 }; 916 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate); 917 918 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 919 { 920 /* entry 0 MUST be WB (hardwired to speed up translations) */ 921 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 922 923 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 924 __pte2cachemode_tbl[entry] = cache; 925 } 926 927 #ifdef CONFIG_SWAP 928 unsigned long max_swapfile_size(void) 929 { 930 unsigned long pages; 931 932 pages = generic_max_swapfile_size(); 933 934 if (boot_cpu_has_bug(X86_BUG_L1TF)) { 935 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ 936 unsigned long long l1tf_limit = l1tf_pfn_limit(); 937 /* 938 * We encode swap offsets also with 3 bits below those for pfn 939 * which makes the usable limit higher. 940 */ 941 #if CONFIG_PGTABLE_LEVELS > 2 942 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; 943 #endif 944 pages = min_t(unsigned long long, l1tf_limit, pages); 945 } 946 return pages; 947 } 948 #endif 949