xref: /openbmc/linux/arch/x86/mm/init.c (revision 4da722ca)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21 
22 /*
23  * We need to define the tracepoints somewhere, and tlb.c
24  * is only compied when SMP=y.
25  */
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/tlb.h>
28 
29 #include "mm_internal.h"
30 
31 /*
32  * Tables translating between page_cache_type_t and pte encoding.
33  *
34  * The default values are defined statically as minimal supported mode;
35  * WC and WT fall back to UC-.  pat_init() updates these values to support
36  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
37  * for the details.  Note, __early_ioremap() used during early boot-time
38  * takes pgprot_t (pte encoding) and does not use these tables.
39  *
40  *   Index into __cachemode2pte_tbl[] is the cachemode.
41  *
42  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
43  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
44  */
45 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
46 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
47 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
48 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
49 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
50 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
51 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
52 };
53 EXPORT_SYMBOL(__cachemode2pte_tbl);
54 
55 uint8_t __pte2cachemode_tbl[8] = {
56 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
57 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
58 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
59 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
60 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
61 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
62 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
63 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
64 };
65 EXPORT_SYMBOL(__pte2cachemode_tbl);
66 
67 static unsigned long __initdata pgt_buf_start;
68 static unsigned long __initdata pgt_buf_end;
69 static unsigned long __initdata pgt_buf_top;
70 
71 static unsigned long min_pfn_mapped;
72 
73 static bool __initdata can_use_brk_pgt = true;
74 
75 /*
76  * Pages returned are already directly mapped.
77  *
78  * Changing that is likely to break Xen, see commit:
79  *
80  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
81  *
82  * for detailed information.
83  */
84 __ref void *alloc_low_pages(unsigned int num)
85 {
86 	unsigned long pfn;
87 	int i;
88 
89 	if (after_bootmem) {
90 		unsigned int order;
91 
92 		order = get_order((unsigned long)num << PAGE_SHIFT);
93 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
94 						__GFP_ZERO, order);
95 	}
96 
97 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
98 		unsigned long ret;
99 		if (min_pfn_mapped >= max_pfn_mapped)
100 			panic("alloc_low_pages: ran out of memory");
101 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
102 					max_pfn_mapped << PAGE_SHIFT,
103 					PAGE_SIZE * num , PAGE_SIZE);
104 		if (!ret)
105 			panic("alloc_low_pages: can not alloc memory");
106 		memblock_reserve(ret, PAGE_SIZE * num);
107 		pfn = ret >> PAGE_SHIFT;
108 	} else {
109 		pfn = pgt_buf_end;
110 		pgt_buf_end += num;
111 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
112 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
113 	}
114 
115 	for (i = 0; i < num; i++) {
116 		void *adr;
117 
118 		adr = __va((pfn + i) << PAGE_SHIFT);
119 		clear_page(adr);
120 	}
121 
122 	return __va(pfn << PAGE_SHIFT);
123 }
124 
125 /*
126  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
127  * With KASLR memory randomization, depending on the machine e820 memory
128  * and the PUD alignment. We may need twice more pages when KASLR memory
129  * randomization is enabled.
130  */
131 #ifndef CONFIG_RANDOMIZE_MEMORY
132 #define INIT_PGD_PAGE_COUNT      6
133 #else
134 #define INIT_PGD_PAGE_COUNT      12
135 #endif
136 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
137 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
138 void  __init early_alloc_pgt_buf(void)
139 {
140 	unsigned long tables = INIT_PGT_BUF_SIZE;
141 	phys_addr_t base;
142 
143 	base = __pa(extend_brk(tables, PAGE_SIZE));
144 
145 	pgt_buf_start = base >> PAGE_SHIFT;
146 	pgt_buf_end = pgt_buf_start;
147 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
148 }
149 
150 int after_bootmem;
151 
152 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
153 
154 struct map_range {
155 	unsigned long start;
156 	unsigned long end;
157 	unsigned page_size_mask;
158 };
159 
160 static int page_size_mask;
161 
162 static void __init probe_page_size_mask(void)
163 {
164 	/*
165 	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
166 	 * use small pages.
167 	 * This will simplify cpa(), which otherwise needs to support splitting
168 	 * large pages into small in interrupt context, etc.
169 	 */
170 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
171 		page_size_mask |= 1 << PG_LEVEL_2M;
172 	else
173 		direct_gbpages = 0;
174 
175 	/* Enable PSE if available */
176 	if (boot_cpu_has(X86_FEATURE_PSE))
177 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
178 
179 	/* Enable PGE if available */
180 	if (boot_cpu_has(X86_FEATURE_PGE)) {
181 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
182 		__supported_pte_mask |= _PAGE_GLOBAL;
183 	} else
184 		__supported_pte_mask &= ~_PAGE_GLOBAL;
185 
186 	/* Enable 1 GB linear kernel mappings if available: */
187 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
188 		printk(KERN_INFO "Using GB pages for direct mapping\n");
189 		page_size_mask |= 1 << PG_LEVEL_1G;
190 	} else {
191 		direct_gbpages = 0;
192 	}
193 }
194 
195 #ifdef CONFIG_X86_32
196 #define NR_RANGE_MR 3
197 #else /* CONFIG_X86_64 */
198 #define NR_RANGE_MR 5
199 #endif
200 
201 static int __meminit save_mr(struct map_range *mr, int nr_range,
202 			     unsigned long start_pfn, unsigned long end_pfn,
203 			     unsigned long page_size_mask)
204 {
205 	if (start_pfn < end_pfn) {
206 		if (nr_range >= NR_RANGE_MR)
207 			panic("run out of range for init_memory_mapping\n");
208 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
209 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
210 		mr[nr_range].page_size_mask = page_size_mask;
211 		nr_range++;
212 	}
213 
214 	return nr_range;
215 }
216 
217 /*
218  * adjust the page_size_mask for small range to go with
219  *	big page size instead small one if nearby are ram too.
220  */
221 static void __ref adjust_range_page_size_mask(struct map_range *mr,
222 							 int nr_range)
223 {
224 	int i;
225 
226 	for (i = 0; i < nr_range; i++) {
227 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
228 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
229 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
230 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
231 
232 #ifdef CONFIG_X86_32
233 			if ((end >> PAGE_SHIFT) > max_low_pfn)
234 				continue;
235 #endif
236 
237 			if (memblock_is_region_memory(start, end - start))
238 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
239 		}
240 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
241 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
242 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
243 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
244 
245 			if (memblock_is_region_memory(start, end - start))
246 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
247 		}
248 	}
249 }
250 
251 static const char *page_size_string(struct map_range *mr)
252 {
253 	static const char str_1g[] = "1G";
254 	static const char str_2m[] = "2M";
255 	static const char str_4m[] = "4M";
256 	static const char str_4k[] = "4k";
257 
258 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
259 		return str_1g;
260 	/*
261 	 * 32-bit without PAE has a 4M large page size.
262 	 * PG_LEVEL_2M is misnamed, but we can at least
263 	 * print out the right size in the string.
264 	 */
265 	if (IS_ENABLED(CONFIG_X86_32) &&
266 	    !IS_ENABLED(CONFIG_X86_PAE) &&
267 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
268 		return str_4m;
269 
270 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
271 		return str_2m;
272 
273 	return str_4k;
274 }
275 
276 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
277 				     unsigned long start,
278 				     unsigned long end)
279 {
280 	unsigned long start_pfn, end_pfn, limit_pfn;
281 	unsigned long pfn;
282 	int i;
283 
284 	limit_pfn = PFN_DOWN(end);
285 
286 	/* head if not big page alignment ? */
287 	pfn = start_pfn = PFN_DOWN(start);
288 #ifdef CONFIG_X86_32
289 	/*
290 	 * Don't use a large page for the first 2/4MB of memory
291 	 * because there are often fixed size MTRRs in there
292 	 * and overlapping MTRRs into large pages can cause
293 	 * slowdowns.
294 	 */
295 	if (pfn == 0)
296 		end_pfn = PFN_DOWN(PMD_SIZE);
297 	else
298 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299 #else /* CONFIG_X86_64 */
300 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
301 #endif
302 	if (end_pfn > limit_pfn)
303 		end_pfn = limit_pfn;
304 	if (start_pfn < end_pfn) {
305 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
306 		pfn = end_pfn;
307 	}
308 
309 	/* big page (2M) range */
310 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
311 #ifdef CONFIG_X86_32
312 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
313 #else /* CONFIG_X86_64 */
314 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
315 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
316 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
317 #endif
318 
319 	if (start_pfn < end_pfn) {
320 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
321 				page_size_mask & (1<<PG_LEVEL_2M));
322 		pfn = end_pfn;
323 	}
324 
325 #ifdef CONFIG_X86_64
326 	/* big page (1G) range */
327 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
328 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
329 	if (start_pfn < end_pfn) {
330 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
331 				page_size_mask &
332 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
333 		pfn = end_pfn;
334 	}
335 
336 	/* tail is not big page (1G) alignment */
337 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
338 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
339 	if (start_pfn < end_pfn) {
340 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
341 				page_size_mask & (1<<PG_LEVEL_2M));
342 		pfn = end_pfn;
343 	}
344 #endif
345 
346 	/* tail is not big page (2M) alignment */
347 	start_pfn = pfn;
348 	end_pfn = limit_pfn;
349 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
350 
351 	if (!after_bootmem)
352 		adjust_range_page_size_mask(mr, nr_range);
353 
354 	/* try to merge same page size and continuous */
355 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
356 		unsigned long old_start;
357 		if (mr[i].end != mr[i+1].start ||
358 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
359 			continue;
360 		/* move it */
361 		old_start = mr[i].start;
362 		memmove(&mr[i], &mr[i+1],
363 			(nr_range - 1 - i) * sizeof(struct map_range));
364 		mr[i--].start = old_start;
365 		nr_range--;
366 	}
367 
368 	for (i = 0; i < nr_range; i++)
369 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
370 				mr[i].start, mr[i].end - 1,
371 				page_size_string(&mr[i]));
372 
373 	return nr_range;
374 }
375 
376 struct range pfn_mapped[E820_MAX_ENTRIES];
377 int nr_pfn_mapped;
378 
379 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
380 {
381 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
382 					     nr_pfn_mapped, start_pfn, end_pfn);
383 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
384 
385 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
386 
387 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
388 		max_low_pfn_mapped = max(max_low_pfn_mapped,
389 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
390 }
391 
392 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
393 {
394 	int i;
395 
396 	for (i = 0; i < nr_pfn_mapped; i++)
397 		if ((start_pfn >= pfn_mapped[i].start) &&
398 		    (end_pfn <= pfn_mapped[i].end))
399 			return true;
400 
401 	return false;
402 }
403 
404 /*
405  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
406  * This runs before bootmem is initialized and gets pages directly from
407  * the physical memory. To access them they are temporarily mapped.
408  */
409 unsigned long __ref init_memory_mapping(unsigned long start,
410 					       unsigned long end)
411 {
412 	struct map_range mr[NR_RANGE_MR];
413 	unsigned long ret = 0;
414 	int nr_range, i;
415 
416 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
417 	       start, end - 1);
418 
419 	memset(mr, 0, sizeof(mr));
420 	nr_range = split_mem_range(mr, 0, start, end);
421 
422 	for (i = 0; i < nr_range; i++)
423 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
424 						   mr[i].page_size_mask);
425 
426 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
427 
428 	return ret >> PAGE_SHIFT;
429 }
430 
431 /*
432  * We need to iterate through the E820 memory map and create direct mappings
433  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
434  * create direct mappings for all pfns from [0 to max_low_pfn) and
435  * [4GB to max_pfn) because of possible memory holes in high addresses
436  * that cannot be marked as UC by fixed/variable range MTRRs.
437  * Depending on the alignment of E820 ranges, this may possibly result
438  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
439  *
440  * init_mem_mapping() calls init_range_memory_mapping() with big range.
441  * That range would have hole in the middle or ends, and only ram parts
442  * will be mapped in init_range_memory_mapping().
443  */
444 static unsigned long __init init_range_memory_mapping(
445 					   unsigned long r_start,
446 					   unsigned long r_end)
447 {
448 	unsigned long start_pfn, end_pfn;
449 	unsigned long mapped_ram_size = 0;
450 	int i;
451 
452 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
453 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
454 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
455 		if (start >= end)
456 			continue;
457 
458 		/*
459 		 * if it is overlapping with brk pgt, we need to
460 		 * alloc pgt buf from memblock instead.
461 		 */
462 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
463 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
464 		init_memory_mapping(start, end);
465 		mapped_ram_size += end - start;
466 		can_use_brk_pgt = true;
467 	}
468 
469 	return mapped_ram_size;
470 }
471 
472 static unsigned long __init get_new_step_size(unsigned long step_size)
473 {
474 	/*
475 	 * Initial mapped size is PMD_SIZE (2M).
476 	 * We can not set step_size to be PUD_SIZE (1G) yet.
477 	 * In worse case, when we cross the 1G boundary, and
478 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
479 	 * to map 1G range with PTE. Hence we use one less than the
480 	 * difference of page table level shifts.
481 	 *
482 	 * Don't need to worry about overflow in the top-down case, on 32bit,
483 	 * when step_size is 0, round_down() returns 0 for start, and that
484 	 * turns it into 0x100000000ULL.
485 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
486 	 * needs to be taken into consideration by the code below.
487 	 */
488 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
489 }
490 
491 /**
492  * memory_map_top_down - Map [map_start, map_end) top down
493  * @map_start: start address of the target memory range
494  * @map_end: end address of the target memory range
495  *
496  * This function will setup direct mapping for memory range
497  * [map_start, map_end) in top-down. That said, the page tables
498  * will be allocated at the end of the memory, and we map the
499  * memory in top-down.
500  */
501 static void __init memory_map_top_down(unsigned long map_start,
502 				       unsigned long map_end)
503 {
504 	unsigned long real_end, start, last_start;
505 	unsigned long step_size;
506 	unsigned long addr;
507 	unsigned long mapped_ram_size = 0;
508 
509 	/* xen has big range in reserved near end of ram, skip it at first.*/
510 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
511 	real_end = addr + PMD_SIZE;
512 
513 	/* step_size need to be small so pgt_buf from BRK could cover it */
514 	step_size = PMD_SIZE;
515 	max_pfn_mapped = 0; /* will get exact value next */
516 	min_pfn_mapped = real_end >> PAGE_SHIFT;
517 	last_start = start = real_end;
518 
519 	/*
520 	 * We start from the top (end of memory) and go to the bottom.
521 	 * The memblock_find_in_range() gets us a block of RAM from the
522 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
523 	 * for page table.
524 	 */
525 	while (last_start > map_start) {
526 		if (last_start > step_size) {
527 			start = round_down(last_start - 1, step_size);
528 			if (start < map_start)
529 				start = map_start;
530 		} else
531 			start = map_start;
532 		mapped_ram_size += init_range_memory_mapping(start,
533 							last_start);
534 		last_start = start;
535 		min_pfn_mapped = last_start >> PAGE_SHIFT;
536 		if (mapped_ram_size >= step_size)
537 			step_size = get_new_step_size(step_size);
538 	}
539 
540 	if (real_end < map_end)
541 		init_range_memory_mapping(real_end, map_end);
542 }
543 
544 /**
545  * memory_map_bottom_up - Map [map_start, map_end) bottom up
546  * @map_start: start address of the target memory range
547  * @map_end: end address of the target memory range
548  *
549  * This function will setup direct mapping for memory range
550  * [map_start, map_end) in bottom-up. Since we have limited the
551  * bottom-up allocation above the kernel, the page tables will
552  * be allocated just above the kernel and we map the memory
553  * in [map_start, map_end) in bottom-up.
554  */
555 static void __init memory_map_bottom_up(unsigned long map_start,
556 					unsigned long map_end)
557 {
558 	unsigned long next, start;
559 	unsigned long mapped_ram_size = 0;
560 	/* step_size need to be small so pgt_buf from BRK could cover it */
561 	unsigned long step_size = PMD_SIZE;
562 
563 	start = map_start;
564 	min_pfn_mapped = start >> PAGE_SHIFT;
565 
566 	/*
567 	 * We start from the bottom (@map_start) and go to the top (@map_end).
568 	 * The memblock_find_in_range() gets us a block of RAM from the
569 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
570 	 * for page table.
571 	 */
572 	while (start < map_end) {
573 		if (step_size && map_end - start > step_size) {
574 			next = round_up(start + 1, step_size);
575 			if (next > map_end)
576 				next = map_end;
577 		} else {
578 			next = map_end;
579 		}
580 
581 		mapped_ram_size += init_range_memory_mapping(start, next);
582 		start = next;
583 
584 		if (mapped_ram_size >= step_size)
585 			step_size = get_new_step_size(step_size);
586 	}
587 }
588 
589 void __init init_mem_mapping(void)
590 {
591 	unsigned long end;
592 
593 	probe_page_size_mask();
594 
595 #ifdef CONFIG_X86_64
596 	end = max_pfn << PAGE_SHIFT;
597 #else
598 	end = max_low_pfn << PAGE_SHIFT;
599 #endif
600 
601 	/* the ISA range is always mapped regardless of memory holes */
602 	init_memory_mapping(0, ISA_END_ADDRESS);
603 
604 	/* Init the trampoline, possibly with KASLR memory offset */
605 	init_trampoline();
606 
607 	/*
608 	 * If the allocation is in bottom-up direction, we setup direct mapping
609 	 * in bottom-up, otherwise we setup direct mapping in top-down.
610 	 */
611 	if (memblock_bottom_up()) {
612 		unsigned long kernel_end = __pa_symbol(_end);
613 
614 		/*
615 		 * we need two separate calls here. This is because we want to
616 		 * allocate page tables above the kernel. So we first map
617 		 * [kernel_end, end) to make memory above the kernel be mapped
618 		 * as soon as possible. And then use page tables allocated above
619 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
620 		 */
621 		memory_map_bottom_up(kernel_end, end);
622 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
623 	} else {
624 		memory_map_top_down(ISA_END_ADDRESS, end);
625 	}
626 
627 #ifdef CONFIG_X86_64
628 	if (max_pfn > max_low_pfn) {
629 		/* can we preseve max_low_pfn ?*/
630 		max_low_pfn = max_pfn;
631 	}
632 #else
633 	early_ioremap_page_table_range_init();
634 #endif
635 
636 	load_cr3(swapper_pg_dir);
637 	__flush_tlb_all();
638 
639 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
640 }
641 
642 /*
643  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
644  * is valid. The argument is a physical page number.
645  *
646  * On x86, access has to be given to the first megabyte of RAM because that
647  * area traditionally contains BIOS code and data regions used by X, dosemu,
648  * and similar apps. Since they map the entire memory range, the whole range
649  * must be allowed (for mapping), but any areas that would otherwise be
650  * disallowed are flagged as being "zero filled" instead of rejected.
651  * Access has to be given to non-kernel-ram areas as well, these contain the
652  * PCI mmio resources as well as potential bios/acpi data regions.
653  */
654 int devmem_is_allowed(unsigned long pagenr)
655 {
656 	if (page_is_ram(pagenr)) {
657 		/*
658 		 * For disallowed memory regions in the low 1MB range,
659 		 * request that the page be shown as all zeros.
660 		 */
661 		if (pagenr < 256)
662 			return 2;
663 
664 		return 0;
665 	}
666 
667 	/*
668 	 * This must follow RAM test, since System RAM is considered a
669 	 * restricted resource under CONFIG_STRICT_IOMEM.
670 	 */
671 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
672 		/* Low 1MB bypasses iomem restrictions. */
673 		if (pagenr < 256)
674 			return 1;
675 
676 		return 0;
677 	}
678 
679 	return 1;
680 }
681 
682 void free_init_pages(char *what, unsigned long begin, unsigned long end)
683 {
684 	unsigned long begin_aligned, end_aligned;
685 
686 	/* Make sure boundaries are page aligned */
687 	begin_aligned = PAGE_ALIGN(begin);
688 	end_aligned   = end & PAGE_MASK;
689 
690 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
691 		begin = begin_aligned;
692 		end   = end_aligned;
693 	}
694 
695 	if (begin >= end)
696 		return;
697 
698 	/*
699 	 * If debugging page accesses then do not free this memory but
700 	 * mark them not present - any buggy init-section access will
701 	 * create a kernel page fault:
702 	 */
703 	if (debug_pagealloc_enabled()) {
704 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
705 			begin, end - 1);
706 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
707 	} else {
708 		/*
709 		 * We just marked the kernel text read only above, now that
710 		 * we are going to free part of that, we need to make that
711 		 * writeable and non-executable first.
712 		 */
713 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
714 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
715 
716 		free_reserved_area((void *)begin, (void *)end,
717 				   POISON_FREE_INITMEM, what);
718 	}
719 }
720 
721 void __ref free_initmem(void)
722 {
723 	e820__reallocate_tables();
724 
725 	free_init_pages("unused kernel",
726 			(unsigned long)(&__init_begin),
727 			(unsigned long)(&__init_end));
728 }
729 
730 #ifdef CONFIG_BLK_DEV_INITRD
731 void __init free_initrd_mem(unsigned long start, unsigned long end)
732 {
733 	/*
734 	 * end could be not aligned, and We can not align that,
735 	 * decompresser could be confused by aligned initrd_end
736 	 * We already reserve the end partial page before in
737 	 *   - i386_start_kernel()
738 	 *   - x86_64_start_kernel()
739 	 *   - relocate_initrd()
740 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
741 	 */
742 	free_init_pages("initrd", start, PAGE_ALIGN(end));
743 }
744 #endif
745 
746 /*
747  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
748  * and pass it to the MM layer - to help it set zone watermarks more
749  * accurately.
750  *
751  * Done on 64-bit systems only for the time being, although 32-bit systems
752  * might benefit from this as well.
753  */
754 void __init memblock_find_dma_reserve(void)
755 {
756 #ifdef CONFIG_X86_64
757 	u64 nr_pages = 0, nr_free_pages = 0;
758 	unsigned long start_pfn, end_pfn;
759 	phys_addr_t start_addr, end_addr;
760 	int i;
761 	u64 u;
762 
763 	/*
764 	 * Iterate over all memory ranges (free and reserved ones alike),
765 	 * to calculate the total number of pages in the first 16 MB of RAM:
766 	 */
767 	nr_pages = 0;
768 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
769 		start_pfn = min(start_pfn, MAX_DMA_PFN);
770 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
771 
772 		nr_pages += end_pfn - start_pfn;
773 	}
774 
775 	/*
776 	 * Iterate over free memory ranges to calculate the number of free
777 	 * pages in the DMA zone, while not counting potential partial
778 	 * pages at the beginning or the end of the range:
779 	 */
780 	nr_free_pages = 0;
781 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
782 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
783 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
784 
785 		if (start_pfn < end_pfn)
786 			nr_free_pages += end_pfn - start_pfn;
787 	}
788 
789 	set_dma_reserve(nr_pages - nr_free_pages);
790 #endif
791 }
792 
793 void __init zone_sizes_init(void)
794 {
795 	unsigned long max_zone_pfns[MAX_NR_ZONES];
796 
797 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
798 
799 #ifdef CONFIG_ZONE_DMA
800 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
801 #endif
802 #ifdef CONFIG_ZONE_DMA32
803 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
804 #endif
805 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
806 #ifdef CONFIG_HIGHMEM
807 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
808 #endif
809 
810 	free_area_init_nodes(max_zone_pfns);
811 }
812 
813 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
814 	.loaded_mm = &init_mm,
815 	.state = 0,
816 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
817 };
818 EXPORT_SYMBOL_GPL(cpu_tlbstate);
819 
820 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
821 {
822 	/* entry 0 MUST be WB (hardwired to speed up translations) */
823 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
824 
825 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
826 	__pte2cachemode_tbl[entry] = cache;
827 }
828