xref: /openbmc/linux/arch/x86/mm/init.c (revision 3d9b448b)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>		/* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 
21 /*
22  * We need to define the tracepoints somewhere, and tlb.c
23  * is only compied when SMP=y.
24  */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27 
28 #include "mm_internal.h"
29 
30 /*
31  * Tables translating between page_cache_type_t and pte encoding.
32  * Minimal supported modes are defined statically, modified if more supported
33  * cache modes are available.
34  * Index into __cachemode2pte_tbl is the cachemode.
35  * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
37  */
38 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
39 	[_PAGE_CACHE_MODE_WB]		= 0,
40 	[_PAGE_CACHE_MODE_WC]		= _PAGE_PWT,
41 	[_PAGE_CACHE_MODE_UC_MINUS]	= _PAGE_PCD,
42 	[_PAGE_CACHE_MODE_UC]		= _PAGE_PCD | _PAGE_PWT,
43 	[_PAGE_CACHE_MODE_WT]		= _PAGE_PCD,
44 	[_PAGE_CACHE_MODE_WP]		= _PAGE_PCD,
45 };
46 EXPORT_SYMBOL(__cachemode2pte_tbl);
47 uint8_t __pte2cachemode_tbl[8] = {
48 	[__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
49 	[__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
50 	[__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
51 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
52 	[__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
53 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
54 	[__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
55 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
56 };
57 EXPORT_SYMBOL(__pte2cachemode_tbl);
58 
59 static unsigned long __initdata pgt_buf_start;
60 static unsigned long __initdata pgt_buf_end;
61 static unsigned long __initdata pgt_buf_top;
62 
63 static unsigned long min_pfn_mapped;
64 
65 static bool __initdata can_use_brk_pgt = true;
66 
67 /*
68  * Pages returned are already directly mapped.
69  *
70  * Changing that is likely to break Xen, see commit:
71  *
72  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
73  *
74  * for detailed information.
75  */
76 __ref void *alloc_low_pages(unsigned int num)
77 {
78 	unsigned long pfn;
79 	int i;
80 
81 	if (after_bootmem) {
82 		unsigned int order;
83 
84 		order = get_order((unsigned long)num << PAGE_SHIFT);
85 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
86 						__GFP_ZERO, order);
87 	}
88 
89 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
90 		unsigned long ret;
91 		if (min_pfn_mapped >= max_pfn_mapped)
92 			panic("alloc_low_pages: ran out of memory");
93 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
94 					max_pfn_mapped << PAGE_SHIFT,
95 					PAGE_SIZE * num , PAGE_SIZE);
96 		if (!ret)
97 			panic("alloc_low_pages: can not alloc memory");
98 		memblock_reserve(ret, PAGE_SIZE * num);
99 		pfn = ret >> PAGE_SHIFT;
100 	} else {
101 		pfn = pgt_buf_end;
102 		pgt_buf_end += num;
103 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
104 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
105 	}
106 
107 	for (i = 0; i < num; i++) {
108 		void *adr;
109 
110 		adr = __va((pfn + i) << PAGE_SHIFT);
111 		clear_page(adr);
112 	}
113 
114 	return __va(pfn << PAGE_SHIFT);
115 }
116 
117 /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
118 #define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
119 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
120 void  __init early_alloc_pgt_buf(void)
121 {
122 	unsigned long tables = INIT_PGT_BUF_SIZE;
123 	phys_addr_t base;
124 
125 	base = __pa(extend_brk(tables, PAGE_SIZE));
126 
127 	pgt_buf_start = base >> PAGE_SHIFT;
128 	pgt_buf_end = pgt_buf_start;
129 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
130 }
131 
132 int after_bootmem;
133 
134 int direct_gbpages
135 #ifdef CONFIG_DIRECT_GBPAGES
136 				= 1
137 #endif
138 ;
139 
140 static void __init init_gbpages(void)
141 {
142 #ifdef CONFIG_X86_64
143 	if (direct_gbpages && cpu_has_gbpages)
144 		printk(KERN_INFO "Using GB pages for direct mapping\n");
145 	else
146 		direct_gbpages = 0;
147 #endif
148 }
149 
150 struct map_range {
151 	unsigned long start;
152 	unsigned long end;
153 	unsigned page_size_mask;
154 };
155 
156 static int page_size_mask;
157 
158 static void __init probe_page_size_mask(void)
159 {
160 	init_gbpages();
161 
162 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
163 	/*
164 	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
165 	 * This will simplify cpa(), which otherwise needs to support splitting
166 	 * large pages into small in interrupt context, etc.
167 	 */
168 	if (direct_gbpages)
169 		page_size_mask |= 1 << PG_LEVEL_1G;
170 	if (cpu_has_pse)
171 		page_size_mask |= 1 << PG_LEVEL_2M;
172 #endif
173 
174 	/* Enable PSE if available */
175 	if (cpu_has_pse)
176 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
177 
178 	/* Enable PGE if available */
179 	if (cpu_has_pge) {
180 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
181 		__supported_pte_mask |= _PAGE_GLOBAL;
182 	}
183 }
184 
185 #ifdef CONFIG_X86_32
186 #define NR_RANGE_MR 3
187 #else /* CONFIG_X86_64 */
188 #define NR_RANGE_MR 5
189 #endif
190 
191 static int __meminit save_mr(struct map_range *mr, int nr_range,
192 			     unsigned long start_pfn, unsigned long end_pfn,
193 			     unsigned long page_size_mask)
194 {
195 	if (start_pfn < end_pfn) {
196 		if (nr_range >= NR_RANGE_MR)
197 			panic("run out of range for init_memory_mapping\n");
198 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
199 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
200 		mr[nr_range].page_size_mask = page_size_mask;
201 		nr_range++;
202 	}
203 
204 	return nr_range;
205 }
206 
207 /*
208  * adjust the page_size_mask for small range to go with
209  *	big page size instead small one if nearby are ram too.
210  */
211 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
212 							 int nr_range)
213 {
214 	int i;
215 
216 	for (i = 0; i < nr_range; i++) {
217 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
218 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
219 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
220 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
221 
222 #ifdef CONFIG_X86_32
223 			if ((end >> PAGE_SHIFT) > max_low_pfn)
224 				continue;
225 #endif
226 
227 			if (memblock_is_region_memory(start, end - start))
228 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
229 		}
230 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
231 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
232 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
233 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
234 
235 			if (memblock_is_region_memory(start, end - start))
236 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
237 		}
238 	}
239 }
240 
241 static const char *page_size_string(struct map_range *mr)
242 {
243 	static const char str_1g[] = "1G";
244 	static const char str_2m[] = "2M";
245 	static const char str_4m[] = "4M";
246 	static const char str_4k[] = "4k";
247 
248 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
249 		return str_1g;
250 	/*
251 	 * 32-bit without PAE has a 4M large page size.
252 	 * PG_LEVEL_2M is misnamed, but we can at least
253 	 * print out the right size in the string.
254 	 */
255 	if (IS_ENABLED(CONFIG_X86_32) &&
256 	    !IS_ENABLED(CONFIG_X86_PAE) &&
257 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
258 		return str_4m;
259 
260 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
261 		return str_2m;
262 
263 	return str_4k;
264 }
265 
266 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
267 				     unsigned long start,
268 				     unsigned long end)
269 {
270 	unsigned long start_pfn, end_pfn, limit_pfn;
271 	unsigned long pfn;
272 	int i;
273 
274 	limit_pfn = PFN_DOWN(end);
275 
276 	/* head if not big page alignment ? */
277 	pfn = start_pfn = PFN_DOWN(start);
278 #ifdef CONFIG_X86_32
279 	/*
280 	 * Don't use a large page for the first 2/4MB of memory
281 	 * because there are often fixed size MTRRs in there
282 	 * and overlapping MTRRs into large pages can cause
283 	 * slowdowns.
284 	 */
285 	if (pfn == 0)
286 		end_pfn = PFN_DOWN(PMD_SIZE);
287 	else
288 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
289 #else /* CONFIG_X86_64 */
290 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
291 #endif
292 	if (end_pfn > limit_pfn)
293 		end_pfn = limit_pfn;
294 	if (start_pfn < end_pfn) {
295 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
296 		pfn = end_pfn;
297 	}
298 
299 	/* big page (2M) range */
300 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
301 #ifdef CONFIG_X86_32
302 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
303 #else /* CONFIG_X86_64 */
304 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
305 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
306 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
307 #endif
308 
309 	if (start_pfn < end_pfn) {
310 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
311 				page_size_mask & (1<<PG_LEVEL_2M));
312 		pfn = end_pfn;
313 	}
314 
315 #ifdef CONFIG_X86_64
316 	/* big page (1G) range */
317 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
318 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
319 	if (start_pfn < end_pfn) {
320 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
321 				page_size_mask &
322 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
323 		pfn = end_pfn;
324 	}
325 
326 	/* tail is not big page (1G) alignment */
327 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
328 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
329 	if (start_pfn < end_pfn) {
330 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
331 				page_size_mask & (1<<PG_LEVEL_2M));
332 		pfn = end_pfn;
333 	}
334 #endif
335 
336 	/* tail is not big page (2M) alignment */
337 	start_pfn = pfn;
338 	end_pfn = limit_pfn;
339 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
340 
341 	if (!after_bootmem)
342 		adjust_range_page_size_mask(mr, nr_range);
343 
344 	/* try to merge same page size and continuous */
345 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
346 		unsigned long old_start;
347 		if (mr[i].end != mr[i+1].start ||
348 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
349 			continue;
350 		/* move it */
351 		old_start = mr[i].start;
352 		memmove(&mr[i], &mr[i+1],
353 			(nr_range - 1 - i) * sizeof(struct map_range));
354 		mr[i--].start = old_start;
355 		nr_range--;
356 	}
357 
358 	for (i = 0; i < nr_range; i++)
359 		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
360 				mr[i].start, mr[i].end - 1,
361 				page_size_string(&mr[i]));
362 
363 	return nr_range;
364 }
365 
366 struct range pfn_mapped[E820_X_MAX];
367 int nr_pfn_mapped;
368 
369 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
370 {
371 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
372 					     nr_pfn_mapped, start_pfn, end_pfn);
373 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
374 
375 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
376 
377 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
378 		max_low_pfn_mapped = max(max_low_pfn_mapped,
379 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
380 }
381 
382 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
383 {
384 	int i;
385 
386 	for (i = 0; i < nr_pfn_mapped; i++)
387 		if ((start_pfn >= pfn_mapped[i].start) &&
388 		    (end_pfn <= pfn_mapped[i].end))
389 			return true;
390 
391 	return false;
392 }
393 
394 /*
395  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
396  * This runs before bootmem is initialized and gets pages directly from
397  * the physical memory. To access them they are temporarily mapped.
398  */
399 unsigned long __init_refok init_memory_mapping(unsigned long start,
400 					       unsigned long end)
401 {
402 	struct map_range mr[NR_RANGE_MR];
403 	unsigned long ret = 0;
404 	int nr_range, i;
405 
406 	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
407 	       start, end - 1);
408 
409 	memset(mr, 0, sizeof(mr));
410 	nr_range = split_mem_range(mr, 0, start, end);
411 
412 	for (i = 0; i < nr_range; i++)
413 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
414 						   mr[i].page_size_mask);
415 
416 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
417 
418 	return ret >> PAGE_SHIFT;
419 }
420 
421 /*
422  * We need to iterate through the E820 memory map and create direct mappings
423  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
424  * create direct mappings for all pfns from [0 to max_low_pfn) and
425  * [4GB to max_pfn) because of possible memory holes in high addresses
426  * that cannot be marked as UC by fixed/variable range MTRRs.
427  * Depending on the alignment of E820 ranges, this may possibly result
428  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
429  *
430  * init_mem_mapping() calls init_range_memory_mapping() with big range.
431  * That range would have hole in the middle or ends, and only ram parts
432  * will be mapped in init_range_memory_mapping().
433  */
434 static unsigned long __init init_range_memory_mapping(
435 					   unsigned long r_start,
436 					   unsigned long r_end)
437 {
438 	unsigned long start_pfn, end_pfn;
439 	unsigned long mapped_ram_size = 0;
440 	int i;
441 
442 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
443 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
444 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
445 		if (start >= end)
446 			continue;
447 
448 		/*
449 		 * if it is overlapping with brk pgt, we need to
450 		 * alloc pgt buf from memblock instead.
451 		 */
452 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
453 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
454 		init_memory_mapping(start, end);
455 		mapped_ram_size += end - start;
456 		can_use_brk_pgt = true;
457 	}
458 
459 	return mapped_ram_size;
460 }
461 
462 static unsigned long __init get_new_step_size(unsigned long step_size)
463 {
464 	/*
465 	 * Initial mapped size is PMD_SIZE (2M).
466 	 * We can not set step_size to be PUD_SIZE (1G) yet.
467 	 * In worse case, when we cross the 1G boundary, and
468 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
469 	 * to map 1G range with PTE. Hence we use one less than the
470 	 * difference of page table level shifts.
471 	 *
472 	 * Don't need to worry about overflow in the top-down case, on 32bit,
473 	 * when step_size is 0, round_down() returns 0 for start, and that
474 	 * turns it into 0x100000000ULL.
475 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
476 	 * needs to be taken into consideration by the code below.
477 	 */
478 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
479 }
480 
481 /**
482  * memory_map_top_down - Map [map_start, map_end) top down
483  * @map_start: start address of the target memory range
484  * @map_end: end address of the target memory range
485  *
486  * This function will setup direct mapping for memory range
487  * [map_start, map_end) in top-down. That said, the page tables
488  * will be allocated at the end of the memory, and we map the
489  * memory in top-down.
490  */
491 static void __init memory_map_top_down(unsigned long map_start,
492 				       unsigned long map_end)
493 {
494 	unsigned long real_end, start, last_start;
495 	unsigned long step_size;
496 	unsigned long addr;
497 	unsigned long mapped_ram_size = 0;
498 
499 	/* xen has big range in reserved near end of ram, skip it at first.*/
500 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
501 	real_end = addr + PMD_SIZE;
502 
503 	/* step_size need to be small so pgt_buf from BRK could cover it */
504 	step_size = PMD_SIZE;
505 	max_pfn_mapped = 0; /* will get exact value next */
506 	min_pfn_mapped = real_end >> PAGE_SHIFT;
507 	last_start = start = real_end;
508 
509 	/*
510 	 * We start from the top (end of memory) and go to the bottom.
511 	 * The memblock_find_in_range() gets us a block of RAM from the
512 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
513 	 * for page table.
514 	 */
515 	while (last_start > map_start) {
516 		if (last_start > step_size) {
517 			start = round_down(last_start - 1, step_size);
518 			if (start < map_start)
519 				start = map_start;
520 		} else
521 			start = map_start;
522 		mapped_ram_size += init_range_memory_mapping(start,
523 							last_start);
524 		last_start = start;
525 		min_pfn_mapped = last_start >> PAGE_SHIFT;
526 		if (mapped_ram_size >= step_size)
527 			step_size = get_new_step_size(step_size);
528 	}
529 
530 	if (real_end < map_end)
531 		init_range_memory_mapping(real_end, map_end);
532 }
533 
534 /**
535  * memory_map_bottom_up - Map [map_start, map_end) bottom up
536  * @map_start: start address of the target memory range
537  * @map_end: end address of the target memory range
538  *
539  * This function will setup direct mapping for memory range
540  * [map_start, map_end) in bottom-up. Since we have limited the
541  * bottom-up allocation above the kernel, the page tables will
542  * be allocated just above the kernel and we map the memory
543  * in [map_start, map_end) in bottom-up.
544  */
545 static void __init memory_map_bottom_up(unsigned long map_start,
546 					unsigned long map_end)
547 {
548 	unsigned long next, start;
549 	unsigned long mapped_ram_size = 0;
550 	/* step_size need to be small so pgt_buf from BRK could cover it */
551 	unsigned long step_size = PMD_SIZE;
552 
553 	start = map_start;
554 	min_pfn_mapped = start >> PAGE_SHIFT;
555 
556 	/*
557 	 * We start from the bottom (@map_start) and go to the top (@map_end).
558 	 * The memblock_find_in_range() gets us a block of RAM from the
559 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
560 	 * for page table.
561 	 */
562 	while (start < map_end) {
563 		if (step_size && map_end - start > step_size) {
564 			next = round_up(start + 1, step_size);
565 			if (next > map_end)
566 				next = map_end;
567 		} else {
568 			next = map_end;
569 		}
570 
571 		mapped_ram_size += init_range_memory_mapping(start, next);
572 		start = next;
573 
574 		if (mapped_ram_size >= step_size)
575 			step_size = get_new_step_size(step_size);
576 	}
577 }
578 
579 void __init init_mem_mapping(void)
580 {
581 	unsigned long end;
582 
583 	probe_page_size_mask();
584 
585 #ifdef CONFIG_X86_64
586 	end = max_pfn << PAGE_SHIFT;
587 #else
588 	end = max_low_pfn << PAGE_SHIFT;
589 #endif
590 
591 	/* the ISA range is always mapped regardless of memory holes */
592 	init_memory_mapping(0, ISA_END_ADDRESS);
593 
594 	/*
595 	 * If the allocation is in bottom-up direction, we setup direct mapping
596 	 * in bottom-up, otherwise we setup direct mapping in top-down.
597 	 */
598 	if (memblock_bottom_up()) {
599 		unsigned long kernel_end = __pa_symbol(_end);
600 
601 		/*
602 		 * we need two separate calls here. This is because we want to
603 		 * allocate page tables above the kernel. So we first map
604 		 * [kernel_end, end) to make memory above the kernel be mapped
605 		 * as soon as possible. And then use page tables allocated above
606 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
607 		 */
608 		memory_map_bottom_up(kernel_end, end);
609 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
610 	} else {
611 		memory_map_top_down(ISA_END_ADDRESS, end);
612 	}
613 
614 #ifdef CONFIG_X86_64
615 	if (max_pfn > max_low_pfn) {
616 		/* can we preseve max_low_pfn ?*/
617 		max_low_pfn = max_pfn;
618 	}
619 #else
620 	early_ioremap_page_table_range_init();
621 #endif
622 
623 	load_cr3(swapper_pg_dir);
624 	__flush_tlb_all();
625 
626 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
627 }
628 
629 /*
630  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
631  * is valid. The argument is a physical page number.
632  *
633  *
634  * On x86, access has to be given to the first megabyte of ram because that area
635  * contains BIOS code and data regions used by X and dosemu and similar apps.
636  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
637  * mmio resources as well as potential bios/acpi data regions.
638  */
639 int devmem_is_allowed(unsigned long pagenr)
640 {
641 	if (pagenr < 256)
642 		return 1;
643 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
644 		return 0;
645 	if (!page_is_ram(pagenr))
646 		return 1;
647 	return 0;
648 }
649 
650 void free_init_pages(char *what, unsigned long begin, unsigned long end)
651 {
652 	unsigned long begin_aligned, end_aligned;
653 
654 	/* Make sure boundaries are page aligned */
655 	begin_aligned = PAGE_ALIGN(begin);
656 	end_aligned   = end & PAGE_MASK;
657 
658 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
659 		begin = begin_aligned;
660 		end   = end_aligned;
661 	}
662 
663 	if (begin >= end)
664 		return;
665 
666 	/*
667 	 * If debugging page accesses then do not free this memory but
668 	 * mark them not present - any buggy init-section access will
669 	 * create a kernel page fault:
670 	 */
671 #ifdef CONFIG_DEBUG_PAGEALLOC
672 	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
673 		begin, end - 1);
674 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
675 #else
676 	/*
677 	 * We just marked the kernel text read only above, now that
678 	 * we are going to free part of that, we need to make that
679 	 * writeable and non-executable first.
680 	 */
681 	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
682 	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
683 
684 	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
685 #endif
686 }
687 
688 void free_initmem(void)
689 {
690 	free_init_pages("unused kernel",
691 			(unsigned long)(&__init_begin),
692 			(unsigned long)(&__init_end));
693 }
694 
695 #ifdef CONFIG_BLK_DEV_INITRD
696 void __init free_initrd_mem(unsigned long start, unsigned long end)
697 {
698 #ifdef CONFIG_MICROCODE_EARLY
699 	/*
700 	 * Remember, initrd memory may contain microcode or other useful things.
701 	 * Before we lose initrd mem, we need to find a place to hold them
702 	 * now that normal virtual memory is enabled.
703 	 */
704 	save_microcode_in_initrd();
705 #endif
706 
707 	/*
708 	 * end could be not aligned, and We can not align that,
709 	 * decompresser could be confused by aligned initrd_end
710 	 * We already reserve the end partial page before in
711 	 *   - i386_start_kernel()
712 	 *   - x86_64_start_kernel()
713 	 *   - relocate_initrd()
714 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
715 	 */
716 	free_init_pages("initrd", start, PAGE_ALIGN(end));
717 }
718 #endif
719 
720 void __init zone_sizes_init(void)
721 {
722 	unsigned long max_zone_pfns[MAX_NR_ZONES];
723 
724 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
725 
726 #ifdef CONFIG_ZONE_DMA
727 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
728 #endif
729 #ifdef CONFIG_ZONE_DMA32
730 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
731 #endif
732 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
733 #ifdef CONFIG_HIGHMEM
734 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
735 #endif
736 
737 	free_area_init_nodes(max_zone_pfns);
738 }
739 
740 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
741 #ifdef CONFIG_SMP
742 	.active_mm = &init_mm,
743 	.state = 0,
744 #endif
745 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
746 };
747 EXPORT_SYMBOL_GPL(cpu_tlbstate);
748 
749 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
750 {
751 	/* entry 0 MUST be WB (hardwired to speed up translations) */
752 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
753 
754 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
755 	__pte2cachemode_tbl[entry] = cache;
756 }
757