xref: /openbmc/linux/arch/x86/mm/init.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>	/* for max_low_pfn */
7 #include <linux/swapfile.h>
8 #include <linux/swapops.h>
9 
10 #include <asm/set_memory.h>
11 #include <asm/e820/api.h>
12 #include <asm/init.h>
13 #include <asm/page.h>
14 #include <asm/page_types.h>
15 #include <asm/sections.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/tlb.h>
19 #include <asm/proto.h>
20 #include <asm/dma.h>		/* for MAX_DMA_PFN */
21 #include <asm/microcode.h>
22 #include <asm/kaslr.h>
23 #include <asm/hypervisor.h>
24 #include <asm/cpufeature.h>
25 #include <asm/pti.h>
26 
27 /*
28  * We need to define the tracepoints somewhere, and tlb.c
29  * is only compied when SMP=y.
30  */
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tlb.h>
33 
34 #include "mm_internal.h"
35 
36 /*
37  * Tables translating between page_cache_type_t and pte encoding.
38  *
39  * The default values are defined statically as minimal supported mode;
40  * WC and WT fall back to UC-.  pat_init() updates these values to support
41  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
42  * for the details.  Note, __early_ioremap() used during early boot-time
43  * takes pgprot_t (pte encoding) and does not use these tables.
44  *
45  *   Index into __cachemode2pte_tbl[] is the cachemode.
46  *
47  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
48  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
49  */
50 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
51 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
52 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
53 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
54 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
55 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
57 };
58 EXPORT_SYMBOL(__cachemode2pte_tbl);
59 
60 uint8_t __pte2cachemode_tbl[8] = {
61 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
62 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
63 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
64 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
65 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
66 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
67 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
68 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
69 };
70 EXPORT_SYMBOL(__pte2cachemode_tbl);
71 
72 static unsigned long __initdata pgt_buf_start;
73 static unsigned long __initdata pgt_buf_end;
74 static unsigned long __initdata pgt_buf_top;
75 
76 static unsigned long min_pfn_mapped;
77 
78 static bool __initdata can_use_brk_pgt = true;
79 
80 /*
81  * Pages returned are already directly mapped.
82  *
83  * Changing that is likely to break Xen, see commit:
84  *
85  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
86  *
87  * for detailed information.
88  */
89 __ref void *alloc_low_pages(unsigned int num)
90 {
91 	unsigned long pfn;
92 	int i;
93 
94 	if (after_bootmem) {
95 		unsigned int order;
96 
97 		order = get_order((unsigned long)num << PAGE_SHIFT);
98 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
99 	}
100 
101 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
102 		unsigned long ret = 0;
103 
104 		if (min_pfn_mapped < max_pfn_mapped) {
105 			ret = memblock_find_in_range(
106 					min_pfn_mapped << PAGE_SHIFT,
107 					max_pfn_mapped << PAGE_SHIFT,
108 					PAGE_SIZE * num , PAGE_SIZE);
109 		}
110 		if (ret)
111 			memblock_reserve(ret, PAGE_SIZE * num);
112 		else if (can_use_brk_pgt)
113 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
114 
115 		if (!ret)
116 			panic("alloc_low_pages: can not alloc memory");
117 
118 		pfn = ret >> PAGE_SHIFT;
119 	} else {
120 		pfn = pgt_buf_end;
121 		pgt_buf_end += num;
122 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
123 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
124 	}
125 
126 	for (i = 0; i < num; i++) {
127 		void *adr;
128 
129 		adr = __va((pfn + i) << PAGE_SHIFT);
130 		clear_page(adr);
131 	}
132 
133 	return __va(pfn << PAGE_SHIFT);
134 }
135 
136 /*
137  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
138  * With KASLR memory randomization, depending on the machine e820 memory
139  * and the PUD alignment. We may need twice more pages when KASLR memory
140  * randomization is enabled.
141  */
142 #ifndef CONFIG_RANDOMIZE_MEMORY
143 #define INIT_PGD_PAGE_COUNT      6
144 #else
145 #define INIT_PGD_PAGE_COUNT      12
146 #endif
147 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
148 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
149 void  __init early_alloc_pgt_buf(void)
150 {
151 	unsigned long tables = INIT_PGT_BUF_SIZE;
152 	phys_addr_t base;
153 
154 	base = __pa(extend_brk(tables, PAGE_SIZE));
155 
156 	pgt_buf_start = base >> PAGE_SHIFT;
157 	pgt_buf_end = pgt_buf_start;
158 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
159 }
160 
161 int after_bootmem;
162 
163 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
164 
165 struct map_range {
166 	unsigned long start;
167 	unsigned long end;
168 	unsigned page_size_mask;
169 };
170 
171 static int page_size_mask;
172 
173 static void __init probe_page_size_mask(void)
174 {
175 	/*
176 	 * For pagealloc debugging, identity mapping will use small pages.
177 	 * This will simplify cpa(), which otherwise needs to support splitting
178 	 * large pages into small in interrupt context, etc.
179 	 */
180 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
181 		page_size_mask |= 1 << PG_LEVEL_2M;
182 	else
183 		direct_gbpages = 0;
184 
185 	/* Enable PSE if available */
186 	if (boot_cpu_has(X86_FEATURE_PSE))
187 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
188 
189 	/* Enable PGE if available */
190 	__supported_pte_mask &= ~_PAGE_GLOBAL;
191 	if (boot_cpu_has(X86_FEATURE_PGE)) {
192 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
193 		__supported_pte_mask |= _PAGE_GLOBAL;
194 	}
195 
196 	/* By the default is everything supported: */
197 	__default_kernel_pte_mask = __supported_pte_mask;
198 	/* Except when with PTI where the kernel is mostly non-Global: */
199 	if (cpu_feature_enabled(X86_FEATURE_PTI))
200 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
201 
202 	/* Enable 1 GB linear kernel mappings if available: */
203 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
204 		printk(KERN_INFO "Using GB pages for direct mapping\n");
205 		page_size_mask |= 1 << PG_LEVEL_1G;
206 	} else {
207 		direct_gbpages = 0;
208 	}
209 }
210 
211 static void setup_pcid(void)
212 {
213 	if (!IS_ENABLED(CONFIG_X86_64))
214 		return;
215 
216 	if (!boot_cpu_has(X86_FEATURE_PCID))
217 		return;
218 
219 	if (boot_cpu_has(X86_FEATURE_PGE)) {
220 		/*
221 		 * This can't be cr4_set_bits_and_update_boot() -- the
222 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
223 		 * do any good anyway.  Despite the name,
224 		 * cr4_set_bits_and_update_boot() doesn't actually cause
225 		 * the bits in question to remain set all the way through
226 		 * the secondary boot asm.
227 		 *
228 		 * Instead, we brute-force it and set CR4.PCIDE manually in
229 		 * start_secondary().
230 		 */
231 		cr4_set_bits(X86_CR4_PCIDE);
232 
233 		/*
234 		 * INVPCID's single-context modes (2/3) only work if we set
235 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
236 		 * on systems that have X86_CR4_PCIDE clear, or that have
237 		 * no INVPCID support at all.
238 		 */
239 		if (boot_cpu_has(X86_FEATURE_INVPCID))
240 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
241 	} else {
242 		/*
243 		 * flush_tlb_all(), as currently implemented, won't work if
244 		 * PCID is on but PGE is not.  Since that combination
245 		 * doesn't exist on real hardware, there's no reason to try
246 		 * to fully support it, but it's polite to avoid corrupting
247 		 * data if we're on an improperly configured VM.
248 		 */
249 		setup_clear_cpu_cap(X86_FEATURE_PCID);
250 	}
251 }
252 
253 #ifdef CONFIG_X86_32
254 #define NR_RANGE_MR 3
255 #else /* CONFIG_X86_64 */
256 #define NR_RANGE_MR 5
257 #endif
258 
259 static int __meminit save_mr(struct map_range *mr, int nr_range,
260 			     unsigned long start_pfn, unsigned long end_pfn,
261 			     unsigned long page_size_mask)
262 {
263 	if (start_pfn < end_pfn) {
264 		if (nr_range >= NR_RANGE_MR)
265 			panic("run out of range for init_memory_mapping\n");
266 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
267 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
268 		mr[nr_range].page_size_mask = page_size_mask;
269 		nr_range++;
270 	}
271 
272 	return nr_range;
273 }
274 
275 /*
276  * adjust the page_size_mask for small range to go with
277  *	big page size instead small one if nearby are ram too.
278  */
279 static void __ref adjust_range_page_size_mask(struct map_range *mr,
280 							 int nr_range)
281 {
282 	int i;
283 
284 	for (i = 0; i < nr_range; i++) {
285 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
286 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
287 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
288 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
289 
290 #ifdef CONFIG_X86_32
291 			if ((end >> PAGE_SHIFT) > max_low_pfn)
292 				continue;
293 #endif
294 
295 			if (memblock_is_region_memory(start, end - start))
296 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
297 		}
298 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
299 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
300 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
301 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
302 
303 			if (memblock_is_region_memory(start, end - start))
304 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
305 		}
306 	}
307 }
308 
309 static const char *page_size_string(struct map_range *mr)
310 {
311 	static const char str_1g[] = "1G";
312 	static const char str_2m[] = "2M";
313 	static const char str_4m[] = "4M";
314 	static const char str_4k[] = "4k";
315 
316 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
317 		return str_1g;
318 	/*
319 	 * 32-bit without PAE has a 4M large page size.
320 	 * PG_LEVEL_2M is misnamed, but we can at least
321 	 * print out the right size in the string.
322 	 */
323 	if (IS_ENABLED(CONFIG_X86_32) &&
324 	    !IS_ENABLED(CONFIG_X86_PAE) &&
325 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
326 		return str_4m;
327 
328 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
329 		return str_2m;
330 
331 	return str_4k;
332 }
333 
334 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
335 				     unsigned long start,
336 				     unsigned long end)
337 {
338 	unsigned long start_pfn, end_pfn, limit_pfn;
339 	unsigned long pfn;
340 	int i;
341 
342 	limit_pfn = PFN_DOWN(end);
343 
344 	/* head if not big page alignment ? */
345 	pfn = start_pfn = PFN_DOWN(start);
346 #ifdef CONFIG_X86_32
347 	/*
348 	 * Don't use a large page for the first 2/4MB of memory
349 	 * because there are often fixed size MTRRs in there
350 	 * and overlapping MTRRs into large pages can cause
351 	 * slowdowns.
352 	 */
353 	if (pfn == 0)
354 		end_pfn = PFN_DOWN(PMD_SIZE);
355 	else
356 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
357 #else /* CONFIG_X86_64 */
358 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359 #endif
360 	if (end_pfn > limit_pfn)
361 		end_pfn = limit_pfn;
362 	if (start_pfn < end_pfn) {
363 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
364 		pfn = end_pfn;
365 	}
366 
367 	/* big page (2M) range */
368 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
369 #ifdef CONFIG_X86_32
370 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
371 #else /* CONFIG_X86_64 */
372 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
373 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
374 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
375 #endif
376 
377 	if (start_pfn < end_pfn) {
378 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
379 				page_size_mask & (1<<PG_LEVEL_2M));
380 		pfn = end_pfn;
381 	}
382 
383 #ifdef CONFIG_X86_64
384 	/* big page (1G) range */
385 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
386 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
387 	if (start_pfn < end_pfn) {
388 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
389 				page_size_mask &
390 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
391 		pfn = end_pfn;
392 	}
393 
394 	/* tail is not big page (1G) alignment */
395 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
396 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
397 	if (start_pfn < end_pfn) {
398 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
399 				page_size_mask & (1<<PG_LEVEL_2M));
400 		pfn = end_pfn;
401 	}
402 #endif
403 
404 	/* tail is not big page (2M) alignment */
405 	start_pfn = pfn;
406 	end_pfn = limit_pfn;
407 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
408 
409 	if (!after_bootmem)
410 		adjust_range_page_size_mask(mr, nr_range);
411 
412 	/* try to merge same page size and continuous */
413 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
414 		unsigned long old_start;
415 		if (mr[i].end != mr[i+1].start ||
416 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
417 			continue;
418 		/* move it */
419 		old_start = mr[i].start;
420 		memmove(&mr[i], &mr[i+1],
421 			(nr_range - 1 - i) * sizeof(struct map_range));
422 		mr[i--].start = old_start;
423 		nr_range--;
424 	}
425 
426 	for (i = 0; i < nr_range; i++)
427 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
428 				mr[i].start, mr[i].end - 1,
429 				page_size_string(&mr[i]));
430 
431 	return nr_range;
432 }
433 
434 struct range pfn_mapped[E820_MAX_ENTRIES];
435 int nr_pfn_mapped;
436 
437 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
438 {
439 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
440 					     nr_pfn_mapped, start_pfn, end_pfn);
441 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
442 
443 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
444 
445 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
446 		max_low_pfn_mapped = max(max_low_pfn_mapped,
447 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
448 }
449 
450 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
451 {
452 	int i;
453 
454 	for (i = 0; i < nr_pfn_mapped; i++)
455 		if ((start_pfn >= pfn_mapped[i].start) &&
456 		    (end_pfn <= pfn_mapped[i].end))
457 			return true;
458 
459 	return false;
460 }
461 
462 /*
463  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
464  * This runs before bootmem is initialized and gets pages directly from
465  * the physical memory. To access them they are temporarily mapped.
466  */
467 unsigned long __ref init_memory_mapping(unsigned long start,
468 					       unsigned long end)
469 {
470 	struct map_range mr[NR_RANGE_MR];
471 	unsigned long ret = 0;
472 	int nr_range, i;
473 
474 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
475 	       start, end - 1);
476 
477 	memset(mr, 0, sizeof(mr));
478 	nr_range = split_mem_range(mr, 0, start, end);
479 
480 	for (i = 0; i < nr_range; i++)
481 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
482 						   mr[i].page_size_mask);
483 
484 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
485 
486 	return ret >> PAGE_SHIFT;
487 }
488 
489 /*
490  * We need to iterate through the E820 memory map and create direct mappings
491  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
492  * create direct mappings for all pfns from [0 to max_low_pfn) and
493  * [4GB to max_pfn) because of possible memory holes in high addresses
494  * that cannot be marked as UC by fixed/variable range MTRRs.
495  * Depending on the alignment of E820 ranges, this may possibly result
496  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
497  *
498  * init_mem_mapping() calls init_range_memory_mapping() with big range.
499  * That range would have hole in the middle or ends, and only ram parts
500  * will be mapped in init_range_memory_mapping().
501  */
502 static unsigned long __init init_range_memory_mapping(
503 					   unsigned long r_start,
504 					   unsigned long r_end)
505 {
506 	unsigned long start_pfn, end_pfn;
507 	unsigned long mapped_ram_size = 0;
508 	int i;
509 
510 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
511 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
512 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
513 		if (start >= end)
514 			continue;
515 
516 		/*
517 		 * if it is overlapping with brk pgt, we need to
518 		 * alloc pgt buf from memblock instead.
519 		 */
520 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
521 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
522 		init_memory_mapping(start, end);
523 		mapped_ram_size += end - start;
524 		can_use_brk_pgt = true;
525 	}
526 
527 	return mapped_ram_size;
528 }
529 
530 static unsigned long __init get_new_step_size(unsigned long step_size)
531 {
532 	/*
533 	 * Initial mapped size is PMD_SIZE (2M).
534 	 * We can not set step_size to be PUD_SIZE (1G) yet.
535 	 * In worse case, when we cross the 1G boundary, and
536 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
537 	 * to map 1G range with PTE. Hence we use one less than the
538 	 * difference of page table level shifts.
539 	 *
540 	 * Don't need to worry about overflow in the top-down case, on 32bit,
541 	 * when step_size is 0, round_down() returns 0 for start, and that
542 	 * turns it into 0x100000000ULL.
543 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
544 	 * needs to be taken into consideration by the code below.
545 	 */
546 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
547 }
548 
549 /**
550  * memory_map_top_down - Map [map_start, map_end) top down
551  * @map_start: start address of the target memory range
552  * @map_end: end address of the target memory range
553  *
554  * This function will setup direct mapping for memory range
555  * [map_start, map_end) in top-down. That said, the page tables
556  * will be allocated at the end of the memory, and we map the
557  * memory in top-down.
558  */
559 static void __init memory_map_top_down(unsigned long map_start,
560 				       unsigned long map_end)
561 {
562 	unsigned long real_end, start, last_start;
563 	unsigned long step_size;
564 	unsigned long addr;
565 	unsigned long mapped_ram_size = 0;
566 
567 	/* xen has big range in reserved near end of ram, skip it at first.*/
568 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
569 	real_end = addr + PMD_SIZE;
570 
571 	/* step_size need to be small so pgt_buf from BRK could cover it */
572 	step_size = PMD_SIZE;
573 	max_pfn_mapped = 0; /* will get exact value next */
574 	min_pfn_mapped = real_end >> PAGE_SHIFT;
575 	last_start = start = real_end;
576 
577 	/*
578 	 * We start from the top (end of memory) and go to the bottom.
579 	 * The memblock_find_in_range() gets us a block of RAM from the
580 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
581 	 * for page table.
582 	 */
583 	while (last_start > map_start) {
584 		if (last_start > step_size) {
585 			start = round_down(last_start - 1, step_size);
586 			if (start < map_start)
587 				start = map_start;
588 		} else
589 			start = map_start;
590 		mapped_ram_size += init_range_memory_mapping(start,
591 							last_start);
592 		last_start = start;
593 		min_pfn_mapped = last_start >> PAGE_SHIFT;
594 		if (mapped_ram_size >= step_size)
595 			step_size = get_new_step_size(step_size);
596 	}
597 
598 	if (real_end < map_end)
599 		init_range_memory_mapping(real_end, map_end);
600 }
601 
602 /**
603  * memory_map_bottom_up - Map [map_start, map_end) bottom up
604  * @map_start: start address of the target memory range
605  * @map_end: end address of the target memory range
606  *
607  * This function will setup direct mapping for memory range
608  * [map_start, map_end) in bottom-up. Since we have limited the
609  * bottom-up allocation above the kernel, the page tables will
610  * be allocated just above the kernel and we map the memory
611  * in [map_start, map_end) in bottom-up.
612  */
613 static void __init memory_map_bottom_up(unsigned long map_start,
614 					unsigned long map_end)
615 {
616 	unsigned long next, start;
617 	unsigned long mapped_ram_size = 0;
618 	/* step_size need to be small so pgt_buf from BRK could cover it */
619 	unsigned long step_size = PMD_SIZE;
620 
621 	start = map_start;
622 	min_pfn_mapped = start >> PAGE_SHIFT;
623 
624 	/*
625 	 * We start from the bottom (@map_start) and go to the top (@map_end).
626 	 * The memblock_find_in_range() gets us a block of RAM from the
627 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
628 	 * for page table.
629 	 */
630 	while (start < map_end) {
631 		if (step_size && map_end - start > step_size) {
632 			next = round_up(start + 1, step_size);
633 			if (next > map_end)
634 				next = map_end;
635 		} else {
636 			next = map_end;
637 		}
638 
639 		mapped_ram_size += init_range_memory_mapping(start, next);
640 		start = next;
641 
642 		if (mapped_ram_size >= step_size)
643 			step_size = get_new_step_size(step_size);
644 	}
645 }
646 
647 void __init init_mem_mapping(void)
648 {
649 	unsigned long end;
650 
651 	pti_check_boottime_disable();
652 	probe_page_size_mask();
653 	setup_pcid();
654 
655 #ifdef CONFIG_X86_64
656 	end = max_pfn << PAGE_SHIFT;
657 #else
658 	end = max_low_pfn << PAGE_SHIFT;
659 #endif
660 
661 	/* the ISA range is always mapped regardless of memory holes */
662 	init_memory_mapping(0, ISA_END_ADDRESS);
663 
664 	/* Init the trampoline, possibly with KASLR memory offset */
665 	init_trampoline();
666 
667 	/*
668 	 * If the allocation is in bottom-up direction, we setup direct mapping
669 	 * in bottom-up, otherwise we setup direct mapping in top-down.
670 	 */
671 	if (memblock_bottom_up()) {
672 		unsigned long kernel_end = __pa_symbol(_end);
673 
674 		/*
675 		 * we need two separate calls here. This is because we want to
676 		 * allocate page tables above the kernel. So we first map
677 		 * [kernel_end, end) to make memory above the kernel be mapped
678 		 * as soon as possible. And then use page tables allocated above
679 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
680 		 */
681 		memory_map_bottom_up(kernel_end, end);
682 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
683 	} else {
684 		memory_map_top_down(ISA_END_ADDRESS, end);
685 	}
686 
687 #ifdef CONFIG_X86_64
688 	if (max_pfn > max_low_pfn) {
689 		/* can we preseve max_low_pfn ?*/
690 		max_low_pfn = max_pfn;
691 	}
692 #else
693 	early_ioremap_page_table_range_init();
694 #endif
695 
696 	load_cr3(swapper_pg_dir);
697 	__flush_tlb_all();
698 
699 	x86_init.hyper.init_mem_mapping();
700 
701 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
702 }
703 
704 /*
705  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
706  * is valid. The argument is a physical page number.
707  *
708  * On x86, access has to be given to the first megabyte of RAM because that
709  * area traditionally contains BIOS code and data regions used by X, dosemu,
710  * and similar apps. Since they map the entire memory range, the whole range
711  * must be allowed (for mapping), but any areas that would otherwise be
712  * disallowed are flagged as being "zero filled" instead of rejected.
713  * Access has to be given to non-kernel-ram areas as well, these contain the
714  * PCI mmio resources as well as potential bios/acpi data regions.
715  */
716 int devmem_is_allowed(unsigned long pagenr)
717 {
718 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
719 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
720 			!= REGION_DISJOINT) {
721 		/*
722 		 * For disallowed memory regions in the low 1MB range,
723 		 * request that the page be shown as all zeros.
724 		 */
725 		if (pagenr < 256)
726 			return 2;
727 
728 		return 0;
729 	}
730 
731 	/*
732 	 * This must follow RAM test, since System RAM is considered a
733 	 * restricted resource under CONFIG_STRICT_IOMEM.
734 	 */
735 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
736 		/* Low 1MB bypasses iomem restrictions. */
737 		if (pagenr < 256)
738 			return 1;
739 
740 		return 0;
741 	}
742 
743 	return 1;
744 }
745 
746 void free_init_pages(char *what, unsigned long begin, unsigned long end)
747 {
748 	unsigned long begin_aligned, end_aligned;
749 
750 	/* Make sure boundaries are page aligned */
751 	begin_aligned = PAGE_ALIGN(begin);
752 	end_aligned   = end & PAGE_MASK;
753 
754 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
755 		begin = begin_aligned;
756 		end   = end_aligned;
757 	}
758 
759 	if (begin >= end)
760 		return;
761 
762 	/*
763 	 * If debugging page accesses then do not free this memory but
764 	 * mark them not present - any buggy init-section access will
765 	 * create a kernel page fault:
766 	 */
767 	if (debug_pagealloc_enabled()) {
768 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
769 			begin, end - 1);
770 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
771 	} else {
772 		/*
773 		 * We just marked the kernel text read only above, now that
774 		 * we are going to free part of that, we need to make that
775 		 * writeable and non-executable first.
776 		 */
777 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
778 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
779 
780 		free_reserved_area((void *)begin, (void *)end,
781 				   POISON_FREE_INITMEM, what);
782 	}
783 }
784 
785 /*
786  * begin/end can be in the direct map or the "high kernel mapping"
787  * used for the kernel image only.  free_init_pages() will do the
788  * right thing for either kind of address.
789  */
790 void free_kernel_image_pages(void *begin, void *end)
791 {
792 	unsigned long begin_ul = (unsigned long)begin;
793 	unsigned long end_ul = (unsigned long)end;
794 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
795 
796 
797 	free_init_pages("unused kernel image", begin_ul, end_ul);
798 
799 	/*
800 	 * PTI maps some of the kernel into userspace.  For performance,
801 	 * this includes some kernel areas that do not contain secrets.
802 	 * Those areas might be adjacent to the parts of the kernel image
803 	 * being freed, which may contain secrets.  Remove the "high kernel
804 	 * image mapping" for these freed areas, ensuring they are not even
805 	 * potentially vulnerable to Meltdown regardless of the specific
806 	 * optimizations PTI is currently using.
807 	 *
808 	 * The "noalias" prevents unmapping the direct map alias which is
809 	 * needed to access the freed pages.
810 	 *
811 	 * This is only valid for 64bit kernels. 32bit has only one mapping
812 	 * which can't be treated in this way for obvious reasons.
813 	 */
814 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
815 		set_memory_np_noalias(begin_ul, len_pages);
816 }
817 
818 void __ref free_initmem(void)
819 {
820 	e820__reallocate_tables();
821 
822 	free_kernel_image_pages(&__init_begin, &__init_end);
823 }
824 
825 #ifdef CONFIG_BLK_DEV_INITRD
826 void __init free_initrd_mem(unsigned long start, unsigned long end)
827 {
828 	/*
829 	 * end could be not aligned, and We can not align that,
830 	 * decompresser could be confused by aligned initrd_end
831 	 * We already reserve the end partial page before in
832 	 *   - i386_start_kernel()
833 	 *   - x86_64_start_kernel()
834 	 *   - relocate_initrd()
835 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
836 	 */
837 	free_init_pages("initrd", start, PAGE_ALIGN(end));
838 }
839 #endif
840 
841 /*
842  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
843  * and pass it to the MM layer - to help it set zone watermarks more
844  * accurately.
845  *
846  * Done on 64-bit systems only for the time being, although 32-bit systems
847  * might benefit from this as well.
848  */
849 void __init memblock_find_dma_reserve(void)
850 {
851 #ifdef CONFIG_X86_64
852 	u64 nr_pages = 0, nr_free_pages = 0;
853 	unsigned long start_pfn, end_pfn;
854 	phys_addr_t start_addr, end_addr;
855 	int i;
856 	u64 u;
857 
858 	/*
859 	 * Iterate over all memory ranges (free and reserved ones alike),
860 	 * to calculate the total number of pages in the first 16 MB of RAM:
861 	 */
862 	nr_pages = 0;
863 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
864 		start_pfn = min(start_pfn, MAX_DMA_PFN);
865 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
866 
867 		nr_pages += end_pfn - start_pfn;
868 	}
869 
870 	/*
871 	 * Iterate over free memory ranges to calculate the number of free
872 	 * pages in the DMA zone, while not counting potential partial
873 	 * pages at the beginning or the end of the range:
874 	 */
875 	nr_free_pages = 0;
876 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
877 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
878 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
879 
880 		if (start_pfn < end_pfn)
881 			nr_free_pages += end_pfn - start_pfn;
882 	}
883 
884 	set_dma_reserve(nr_pages - nr_free_pages);
885 #endif
886 }
887 
888 void __init zone_sizes_init(void)
889 {
890 	unsigned long max_zone_pfns[MAX_NR_ZONES];
891 
892 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
893 
894 #ifdef CONFIG_ZONE_DMA
895 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
896 #endif
897 #ifdef CONFIG_ZONE_DMA32
898 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
899 #endif
900 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
901 #ifdef CONFIG_HIGHMEM
902 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
903 #endif
904 
905 	free_area_init_nodes(max_zone_pfns);
906 }
907 
908 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
909 	.loaded_mm = &init_mm,
910 	.next_asid = 1,
911 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
912 };
913 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
914 
915 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
916 {
917 	/* entry 0 MUST be WB (hardwired to speed up translations) */
918 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
919 
920 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
921 	__pte2cachemode_tbl[entry] = cache;
922 }
923 
924 #ifdef CONFIG_SWAP
925 unsigned long max_swapfile_size(void)
926 {
927 	unsigned long pages;
928 
929 	pages = generic_max_swapfile_size();
930 
931 	if (boot_cpu_has_bug(X86_BUG_L1TF)) {
932 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
933 		unsigned long long l1tf_limit = l1tf_pfn_limit();
934 		/*
935 		 * We encode swap offsets also with 3 bits below those for pfn
936 		 * which makes the usable limit higher.
937 		 */
938 #if CONFIG_PGTABLE_LEVELS > 2
939 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
940 #endif
941 		pages = min_t(unsigned long long, l1tf_limit, pages);
942 	}
943 	return pages;
944 }
945 #endif
946