1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/bootmem.h> /* for max_low_pfn */ 7 #include <linux/swapfile.h> 8 #include <linux/swapops.h> 9 10 #include <asm/set_memory.h> 11 #include <asm/e820/api.h> 12 #include <asm/init.h> 13 #include <asm/page.h> 14 #include <asm/page_types.h> 15 #include <asm/sections.h> 16 #include <asm/setup.h> 17 #include <asm/tlbflush.h> 18 #include <asm/tlb.h> 19 #include <asm/proto.h> 20 #include <asm/dma.h> /* for MAX_DMA_PFN */ 21 #include <asm/microcode.h> 22 #include <asm/kaslr.h> 23 #include <asm/hypervisor.h> 24 #include <asm/cpufeature.h> 25 #include <asm/pti.h> 26 27 /* 28 * We need to define the tracepoints somewhere, and tlb.c 29 * is only compied when SMP=y. 30 */ 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/tlb.h> 33 34 #include "mm_internal.h" 35 36 /* 37 * Tables translating between page_cache_type_t and pte encoding. 38 * 39 * The default values are defined statically as minimal supported mode; 40 * WC and WT fall back to UC-. pat_init() updates these values to support 41 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 42 * for the details. Note, __early_ioremap() used during early boot-time 43 * takes pgprot_t (pte encoding) and does not use these tables. 44 * 45 * Index into __cachemode2pte_tbl[] is the cachemode. 46 * 47 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 48 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 49 */ 50 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 51 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 52 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 53 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 54 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 55 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 56 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 57 }; 58 EXPORT_SYMBOL(__cachemode2pte_tbl); 59 60 uint8_t __pte2cachemode_tbl[8] = { 61 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 62 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 63 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 64 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 65 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 66 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 67 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 68 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 69 }; 70 EXPORT_SYMBOL(__pte2cachemode_tbl); 71 72 static unsigned long __initdata pgt_buf_start; 73 static unsigned long __initdata pgt_buf_end; 74 static unsigned long __initdata pgt_buf_top; 75 76 static unsigned long min_pfn_mapped; 77 78 static bool __initdata can_use_brk_pgt = true; 79 80 /* 81 * Pages returned are already directly mapped. 82 * 83 * Changing that is likely to break Xen, see commit: 84 * 85 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 86 * 87 * for detailed information. 88 */ 89 __ref void *alloc_low_pages(unsigned int num) 90 { 91 unsigned long pfn; 92 int i; 93 94 if (after_bootmem) { 95 unsigned int order; 96 97 order = get_order((unsigned long)num << PAGE_SHIFT); 98 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 99 } 100 101 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 102 unsigned long ret = 0; 103 104 if (min_pfn_mapped < max_pfn_mapped) { 105 ret = memblock_find_in_range( 106 min_pfn_mapped << PAGE_SHIFT, 107 max_pfn_mapped << PAGE_SHIFT, 108 PAGE_SIZE * num , PAGE_SIZE); 109 } 110 if (ret) 111 memblock_reserve(ret, PAGE_SIZE * num); 112 else if (can_use_brk_pgt) 113 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); 114 115 if (!ret) 116 panic("alloc_low_pages: can not alloc memory"); 117 118 pfn = ret >> PAGE_SHIFT; 119 } else { 120 pfn = pgt_buf_end; 121 pgt_buf_end += num; 122 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n", 123 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1); 124 } 125 126 for (i = 0; i < num; i++) { 127 void *adr; 128 129 adr = __va((pfn + i) << PAGE_SHIFT); 130 clear_page(adr); 131 } 132 133 return __va(pfn << PAGE_SHIFT); 134 } 135 136 /* 137 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS. 138 * With KASLR memory randomization, depending on the machine e820 memory 139 * and the PUD alignment. We may need twice more pages when KASLR memory 140 * randomization is enabled. 141 */ 142 #ifndef CONFIG_RANDOMIZE_MEMORY 143 #define INIT_PGD_PAGE_COUNT 6 144 #else 145 #define INIT_PGD_PAGE_COUNT 12 146 #endif 147 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 148 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 149 void __init early_alloc_pgt_buf(void) 150 { 151 unsigned long tables = INIT_PGT_BUF_SIZE; 152 phys_addr_t base; 153 154 base = __pa(extend_brk(tables, PAGE_SIZE)); 155 156 pgt_buf_start = base >> PAGE_SHIFT; 157 pgt_buf_end = pgt_buf_start; 158 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 159 } 160 161 int after_bootmem; 162 163 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 164 165 struct map_range { 166 unsigned long start; 167 unsigned long end; 168 unsigned page_size_mask; 169 }; 170 171 static int page_size_mask; 172 173 static void __init probe_page_size_mask(void) 174 { 175 /* 176 * For pagealloc debugging, identity mapping will use small pages. 177 * This will simplify cpa(), which otherwise needs to support splitting 178 * large pages into small in interrupt context, etc. 179 */ 180 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 181 page_size_mask |= 1 << PG_LEVEL_2M; 182 else 183 direct_gbpages = 0; 184 185 /* Enable PSE if available */ 186 if (boot_cpu_has(X86_FEATURE_PSE)) 187 cr4_set_bits_and_update_boot(X86_CR4_PSE); 188 189 /* Enable PGE if available */ 190 __supported_pte_mask &= ~_PAGE_GLOBAL; 191 if (boot_cpu_has(X86_FEATURE_PGE)) { 192 cr4_set_bits_and_update_boot(X86_CR4_PGE); 193 __supported_pte_mask |= _PAGE_GLOBAL; 194 } 195 196 /* By the default is everything supported: */ 197 __default_kernel_pte_mask = __supported_pte_mask; 198 /* Except when with PTI where the kernel is mostly non-Global: */ 199 if (cpu_feature_enabled(X86_FEATURE_PTI)) 200 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 201 202 /* Enable 1 GB linear kernel mappings if available: */ 203 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 204 printk(KERN_INFO "Using GB pages for direct mapping\n"); 205 page_size_mask |= 1 << PG_LEVEL_1G; 206 } else { 207 direct_gbpages = 0; 208 } 209 } 210 211 static void setup_pcid(void) 212 { 213 if (!IS_ENABLED(CONFIG_X86_64)) 214 return; 215 216 if (!boot_cpu_has(X86_FEATURE_PCID)) 217 return; 218 219 if (boot_cpu_has(X86_FEATURE_PGE)) { 220 /* 221 * This can't be cr4_set_bits_and_update_boot() -- the 222 * trampoline code can't handle CR4.PCIDE and it wouldn't 223 * do any good anyway. Despite the name, 224 * cr4_set_bits_and_update_boot() doesn't actually cause 225 * the bits in question to remain set all the way through 226 * the secondary boot asm. 227 * 228 * Instead, we brute-force it and set CR4.PCIDE manually in 229 * start_secondary(). 230 */ 231 cr4_set_bits(X86_CR4_PCIDE); 232 233 /* 234 * INVPCID's single-context modes (2/3) only work if we set 235 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable 236 * on systems that have X86_CR4_PCIDE clear, or that have 237 * no INVPCID support at all. 238 */ 239 if (boot_cpu_has(X86_FEATURE_INVPCID)) 240 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); 241 } else { 242 /* 243 * flush_tlb_all(), as currently implemented, won't work if 244 * PCID is on but PGE is not. Since that combination 245 * doesn't exist on real hardware, there's no reason to try 246 * to fully support it, but it's polite to avoid corrupting 247 * data if we're on an improperly configured VM. 248 */ 249 setup_clear_cpu_cap(X86_FEATURE_PCID); 250 } 251 } 252 253 #ifdef CONFIG_X86_32 254 #define NR_RANGE_MR 3 255 #else /* CONFIG_X86_64 */ 256 #define NR_RANGE_MR 5 257 #endif 258 259 static int __meminit save_mr(struct map_range *mr, int nr_range, 260 unsigned long start_pfn, unsigned long end_pfn, 261 unsigned long page_size_mask) 262 { 263 if (start_pfn < end_pfn) { 264 if (nr_range >= NR_RANGE_MR) 265 panic("run out of range for init_memory_mapping\n"); 266 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 267 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 268 mr[nr_range].page_size_mask = page_size_mask; 269 nr_range++; 270 } 271 272 return nr_range; 273 } 274 275 /* 276 * adjust the page_size_mask for small range to go with 277 * big page size instead small one if nearby are ram too. 278 */ 279 static void __ref adjust_range_page_size_mask(struct map_range *mr, 280 int nr_range) 281 { 282 int i; 283 284 for (i = 0; i < nr_range; i++) { 285 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 286 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 287 unsigned long start = round_down(mr[i].start, PMD_SIZE); 288 unsigned long end = round_up(mr[i].end, PMD_SIZE); 289 290 #ifdef CONFIG_X86_32 291 if ((end >> PAGE_SHIFT) > max_low_pfn) 292 continue; 293 #endif 294 295 if (memblock_is_region_memory(start, end - start)) 296 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 297 } 298 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 299 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 300 unsigned long start = round_down(mr[i].start, PUD_SIZE); 301 unsigned long end = round_up(mr[i].end, PUD_SIZE); 302 303 if (memblock_is_region_memory(start, end - start)) 304 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 305 } 306 } 307 } 308 309 static const char *page_size_string(struct map_range *mr) 310 { 311 static const char str_1g[] = "1G"; 312 static const char str_2m[] = "2M"; 313 static const char str_4m[] = "4M"; 314 static const char str_4k[] = "4k"; 315 316 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 317 return str_1g; 318 /* 319 * 32-bit without PAE has a 4M large page size. 320 * PG_LEVEL_2M is misnamed, but we can at least 321 * print out the right size in the string. 322 */ 323 if (IS_ENABLED(CONFIG_X86_32) && 324 !IS_ENABLED(CONFIG_X86_PAE) && 325 mr->page_size_mask & (1<<PG_LEVEL_2M)) 326 return str_4m; 327 328 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 329 return str_2m; 330 331 return str_4k; 332 } 333 334 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 335 unsigned long start, 336 unsigned long end) 337 { 338 unsigned long start_pfn, end_pfn, limit_pfn; 339 unsigned long pfn; 340 int i; 341 342 limit_pfn = PFN_DOWN(end); 343 344 /* head if not big page alignment ? */ 345 pfn = start_pfn = PFN_DOWN(start); 346 #ifdef CONFIG_X86_32 347 /* 348 * Don't use a large page for the first 2/4MB of memory 349 * because there are often fixed size MTRRs in there 350 * and overlapping MTRRs into large pages can cause 351 * slowdowns. 352 */ 353 if (pfn == 0) 354 end_pfn = PFN_DOWN(PMD_SIZE); 355 else 356 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 357 #else /* CONFIG_X86_64 */ 358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 359 #endif 360 if (end_pfn > limit_pfn) 361 end_pfn = limit_pfn; 362 if (start_pfn < end_pfn) { 363 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 364 pfn = end_pfn; 365 } 366 367 /* big page (2M) range */ 368 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 369 #ifdef CONFIG_X86_32 370 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 371 #else /* CONFIG_X86_64 */ 372 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 373 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 374 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 375 #endif 376 377 if (start_pfn < end_pfn) { 378 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 379 page_size_mask & (1<<PG_LEVEL_2M)); 380 pfn = end_pfn; 381 } 382 383 #ifdef CONFIG_X86_64 384 /* big page (1G) range */ 385 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 386 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 387 if (start_pfn < end_pfn) { 388 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 389 page_size_mask & 390 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 391 pfn = end_pfn; 392 } 393 394 /* tail is not big page (1G) alignment */ 395 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 396 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 397 if (start_pfn < end_pfn) { 398 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 399 page_size_mask & (1<<PG_LEVEL_2M)); 400 pfn = end_pfn; 401 } 402 #endif 403 404 /* tail is not big page (2M) alignment */ 405 start_pfn = pfn; 406 end_pfn = limit_pfn; 407 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 408 409 if (!after_bootmem) 410 adjust_range_page_size_mask(mr, nr_range); 411 412 /* try to merge same page size and continuous */ 413 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 414 unsigned long old_start; 415 if (mr[i].end != mr[i+1].start || 416 mr[i].page_size_mask != mr[i+1].page_size_mask) 417 continue; 418 /* move it */ 419 old_start = mr[i].start; 420 memmove(&mr[i], &mr[i+1], 421 (nr_range - 1 - i) * sizeof(struct map_range)); 422 mr[i--].start = old_start; 423 nr_range--; 424 } 425 426 for (i = 0; i < nr_range; i++) 427 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 428 mr[i].start, mr[i].end - 1, 429 page_size_string(&mr[i])); 430 431 return nr_range; 432 } 433 434 struct range pfn_mapped[E820_MAX_ENTRIES]; 435 int nr_pfn_mapped; 436 437 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 438 { 439 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 440 nr_pfn_mapped, start_pfn, end_pfn); 441 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 442 443 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 444 445 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 446 max_low_pfn_mapped = max(max_low_pfn_mapped, 447 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 448 } 449 450 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 451 { 452 int i; 453 454 for (i = 0; i < nr_pfn_mapped; i++) 455 if ((start_pfn >= pfn_mapped[i].start) && 456 (end_pfn <= pfn_mapped[i].end)) 457 return true; 458 459 return false; 460 } 461 462 /* 463 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 464 * This runs before bootmem is initialized and gets pages directly from 465 * the physical memory. To access them they are temporarily mapped. 466 */ 467 unsigned long __ref init_memory_mapping(unsigned long start, 468 unsigned long end) 469 { 470 struct map_range mr[NR_RANGE_MR]; 471 unsigned long ret = 0; 472 int nr_range, i; 473 474 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 475 start, end - 1); 476 477 memset(mr, 0, sizeof(mr)); 478 nr_range = split_mem_range(mr, 0, start, end); 479 480 for (i = 0; i < nr_range; i++) 481 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 482 mr[i].page_size_mask); 483 484 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 485 486 return ret >> PAGE_SHIFT; 487 } 488 489 /* 490 * We need to iterate through the E820 memory map and create direct mappings 491 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 492 * create direct mappings for all pfns from [0 to max_low_pfn) and 493 * [4GB to max_pfn) because of possible memory holes in high addresses 494 * that cannot be marked as UC by fixed/variable range MTRRs. 495 * Depending on the alignment of E820 ranges, this may possibly result 496 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 497 * 498 * init_mem_mapping() calls init_range_memory_mapping() with big range. 499 * That range would have hole in the middle or ends, and only ram parts 500 * will be mapped in init_range_memory_mapping(). 501 */ 502 static unsigned long __init init_range_memory_mapping( 503 unsigned long r_start, 504 unsigned long r_end) 505 { 506 unsigned long start_pfn, end_pfn; 507 unsigned long mapped_ram_size = 0; 508 int i; 509 510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 511 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 512 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 513 if (start >= end) 514 continue; 515 516 /* 517 * if it is overlapping with brk pgt, we need to 518 * alloc pgt buf from memblock instead. 519 */ 520 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 521 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 522 init_memory_mapping(start, end); 523 mapped_ram_size += end - start; 524 can_use_brk_pgt = true; 525 } 526 527 return mapped_ram_size; 528 } 529 530 static unsigned long __init get_new_step_size(unsigned long step_size) 531 { 532 /* 533 * Initial mapped size is PMD_SIZE (2M). 534 * We can not set step_size to be PUD_SIZE (1G) yet. 535 * In worse case, when we cross the 1G boundary, and 536 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 537 * to map 1G range with PTE. Hence we use one less than the 538 * difference of page table level shifts. 539 * 540 * Don't need to worry about overflow in the top-down case, on 32bit, 541 * when step_size is 0, round_down() returns 0 for start, and that 542 * turns it into 0x100000000ULL. 543 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 544 * needs to be taken into consideration by the code below. 545 */ 546 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 547 } 548 549 /** 550 * memory_map_top_down - Map [map_start, map_end) top down 551 * @map_start: start address of the target memory range 552 * @map_end: end address of the target memory range 553 * 554 * This function will setup direct mapping for memory range 555 * [map_start, map_end) in top-down. That said, the page tables 556 * will be allocated at the end of the memory, and we map the 557 * memory in top-down. 558 */ 559 static void __init memory_map_top_down(unsigned long map_start, 560 unsigned long map_end) 561 { 562 unsigned long real_end, start, last_start; 563 unsigned long step_size; 564 unsigned long addr; 565 unsigned long mapped_ram_size = 0; 566 567 /* xen has big range in reserved near end of ram, skip it at first.*/ 568 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE); 569 real_end = addr + PMD_SIZE; 570 571 /* step_size need to be small so pgt_buf from BRK could cover it */ 572 step_size = PMD_SIZE; 573 max_pfn_mapped = 0; /* will get exact value next */ 574 min_pfn_mapped = real_end >> PAGE_SHIFT; 575 last_start = start = real_end; 576 577 /* 578 * We start from the top (end of memory) and go to the bottom. 579 * The memblock_find_in_range() gets us a block of RAM from the 580 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 581 * for page table. 582 */ 583 while (last_start > map_start) { 584 if (last_start > step_size) { 585 start = round_down(last_start - 1, step_size); 586 if (start < map_start) 587 start = map_start; 588 } else 589 start = map_start; 590 mapped_ram_size += init_range_memory_mapping(start, 591 last_start); 592 last_start = start; 593 min_pfn_mapped = last_start >> PAGE_SHIFT; 594 if (mapped_ram_size >= step_size) 595 step_size = get_new_step_size(step_size); 596 } 597 598 if (real_end < map_end) 599 init_range_memory_mapping(real_end, map_end); 600 } 601 602 /** 603 * memory_map_bottom_up - Map [map_start, map_end) bottom up 604 * @map_start: start address of the target memory range 605 * @map_end: end address of the target memory range 606 * 607 * This function will setup direct mapping for memory range 608 * [map_start, map_end) in bottom-up. Since we have limited the 609 * bottom-up allocation above the kernel, the page tables will 610 * be allocated just above the kernel and we map the memory 611 * in [map_start, map_end) in bottom-up. 612 */ 613 static void __init memory_map_bottom_up(unsigned long map_start, 614 unsigned long map_end) 615 { 616 unsigned long next, start; 617 unsigned long mapped_ram_size = 0; 618 /* step_size need to be small so pgt_buf from BRK could cover it */ 619 unsigned long step_size = PMD_SIZE; 620 621 start = map_start; 622 min_pfn_mapped = start >> PAGE_SHIFT; 623 624 /* 625 * We start from the bottom (@map_start) and go to the top (@map_end). 626 * The memblock_find_in_range() gets us a block of RAM from the 627 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 628 * for page table. 629 */ 630 while (start < map_end) { 631 if (step_size && map_end - start > step_size) { 632 next = round_up(start + 1, step_size); 633 if (next > map_end) 634 next = map_end; 635 } else { 636 next = map_end; 637 } 638 639 mapped_ram_size += init_range_memory_mapping(start, next); 640 start = next; 641 642 if (mapped_ram_size >= step_size) 643 step_size = get_new_step_size(step_size); 644 } 645 } 646 647 void __init init_mem_mapping(void) 648 { 649 unsigned long end; 650 651 pti_check_boottime_disable(); 652 probe_page_size_mask(); 653 setup_pcid(); 654 655 #ifdef CONFIG_X86_64 656 end = max_pfn << PAGE_SHIFT; 657 #else 658 end = max_low_pfn << PAGE_SHIFT; 659 #endif 660 661 /* the ISA range is always mapped regardless of memory holes */ 662 init_memory_mapping(0, ISA_END_ADDRESS); 663 664 /* Init the trampoline, possibly with KASLR memory offset */ 665 init_trampoline(); 666 667 /* 668 * If the allocation is in bottom-up direction, we setup direct mapping 669 * in bottom-up, otherwise we setup direct mapping in top-down. 670 */ 671 if (memblock_bottom_up()) { 672 unsigned long kernel_end = __pa_symbol(_end); 673 674 /* 675 * we need two separate calls here. This is because we want to 676 * allocate page tables above the kernel. So we first map 677 * [kernel_end, end) to make memory above the kernel be mapped 678 * as soon as possible. And then use page tables allocated above 679 * the kernel to map [ISA_END_ADDRESS, kernel_end). 680 */ 681 memory_map_bottom_up(kernel_end, end); 682 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 683 } else { 684 memory_map_top_down(ISA_END_ADDRESS, end); 685 } 686 687 #ifdef CONFIG_X86_64 688 if (max_pfn > max_low_pfn) { 689 /* can we preseve max_low_pfn ?*/ 690 max_low_pfn = max_pfn; 691 } 692 #else 693 early_ioremap_page_table_range_init(); 694 #endif 695 696 load_cr3(swapper_pg_dir); 697 __flush_tlb_all(); 698 699 x86_init.hyper.init_mem_mapping(); 700 701 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 702 } 703 704 /* 705 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 706 * is valid. The argument is a physical page number. 707 * 708 * On x86, access has to be given to the first megabyte of RAM because that 709 * area traditionally contains BIOS code and data regions used by X, dosemu, 710 * and similar apps. Since they map the entire memory range, the whole range 711 * must be allowed (for mapping), but any areas that would otherwise be 712 * disallowed are flagged as being "zero filled" instead of rejected. 713 * Access has to be given to non-kernel-ram areas as well, these contain the 714 * PCI mmio resources as well as potential bios/acpi data regions. 715 */ 716 int devmem_is_allowed(unsigned long pagenr) 717 { 718 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, 719 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) 720 != REGION_DISJOINT) { 721 /* 722 * For disallowed memory regions in the low 1MB range, 723 * request that the page be shown as all zeros. 724 */ 725 if (pagenr < 256) 726 return 2; 727 728 return 0; 729 } 730 731 /* 732 * This must follow RAM test, since System RAM is considered a 733 * restricted resource under CONFIG_STRICT_IOMEM. 734 */ 735 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 736 /* Low 1MB bypasses iomem restrictions. */ 737 if (pagenr < 256) 738 return 1; 739 740 return 0; 741 } 742 743 return 1; 744 } 745 746 void free_init_pages(char *what, unsigned long begin, unsigned long end) 747 { 748 unsigned long begin_aligned, end_aligned; 749 750 /* Make sure boundaries are page aligned */ 751 begin_aligned = PAGE_ALIGN(begin); 752 end_aligned = end & PAGE_MASK; 753 754 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 755 begin = begin_aligned; 756 end = end_aligned; 757 } 758 759 if (begin >= end) 760 return; 761 762 /* 763 * If debugging page accesses then do not free this memory but 764 * mark them not present - any buggy init-section access will 765 * create a kernel page fault: 766 */ 767 if (debug_pagealloc_enabled()) { 768 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 769 begin, end - 1); 770 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 771 } else { 772 /* 773 * We just marked the kernel text read only above, now that 774 * we are going to free part of that, we need to make that 775 * writeable and non-executable first. 776 */ 777 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 778 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 779 780 free_reserved_area((void *)begin, (void *)end, 781 POISON_FREE_INITMEM, what); 782 } 783 } 784 785 /* 786 * begin/end can be in the direct map or the "high kernel mapping" 787 * used for the kernel image only. free_init_pages() will do the 788 * right thing for either kind of address. 789 */ 790 void free_kernel_image_pages(void *begin, void *end) 791 { 792 unsigned long begin_ul = (unsigned long)begin; 793 unsigned long end_ul = (unsigned long)end; 794 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; 795 796 797 free_init_pages("unused kernel image", begin_ul, end_ul); 798 799 /* 800 * PTI maps some of the kernel into userspace. For performance, 801 * this includes some kernel areas that do not contain secrets. 802 * Those areas might be adjacent to the parts of the kernel image 803 * being freed, which may contain secrets. Remove the "high kernel 804 * image mapping" for these freed areas, ensuring they are not even 805 * potentially vulnerable to Meltdown regardless of the specific 806 * optimizations PTI is currently using. 807 * 808 * The "noalias" prevents unmapping the direct map alias which is 809 * needed to access the freed pages. 810 * 811 * This is only valid for 64bit kernels. 32bit has only one mapping 812 * which can't be treated in this way for obvious reasons. 813 */ 814 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) 815 set_memory_np_noalias(begin_ul, len_pages); 816 } 817 818 void __weak mem_encrypt_free_decrypted_mem(void) { } 819 820 void __ref free_initmem(void) 821 { 822 e820__reallocate_tables(); 823 824 mem_encrypt_free_decrypted_mem(); 825 826 free_kernel_image_pages(&__init_begin, &__init_end); 827 } 828 829 #ifdef CONFIG_BLK_DEV_INITRD 830 void __init free_initrd_mem(unsigned long start, unsigned long end) 831 { 832 /* 833 * end could be not aligned, and We can not align that, 834 * decompresser could be confused by aligned initrd_end 835 * We already reserve the end partial page before in 836 * - i386_start_kernel() 837 * - x86_64_start_kernel() 838 * - relocate_initrd() 839 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 840 */ 841 free_init_pages("initrd", start, PAGE_ALIGN(end)); 842 } 843 #endif 844 845 /* 846 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 847 * and pass it to the MM layer - to help it set zone watermarks more 848 * accurately. 849 * 850 * Done on 64-bit systems only for the time being, although 32-bit systems 851 * might benefit from this as well. 852 */ 853 void __init memblock_find_dma_reserve(void) 854 { 855 #ifdef CONFIG_X86_64 856 u64 nr_pages = 0, nr_free_pages = 0; 857 unsigned long start_pfn, end_pfn; 858 phys_addr_t start_addr, end_addr; 859 int i; 860 u64 u; 861 862 /* 863 * Iterate over all memory ranges (free and reserved ones alike), 864 * to calculate the total number of pages in the first 16 MB of RAM: 865 */ 866 nr_pages = 0; 867 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 868 start_pfn = min(start_pfn, MAX_DMA_PFN); 869 end_pfn = min(end_pfn, MAX_DMA_PFN); 870 871 nr_pages += end_pfn - start_pfn; 872 } 873 874 /* 875 * Iterate over free memory ranges to calculate the number of free 876 * pages in the DMA zone, while not counting potential partial 877 * pages at the beginning or the end of the range: 878 */ 879 nr_free_pages = 0; 880 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 881 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 882 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 883 884 if (start_pfn < end_pfn) 885 nr_free_pages += end_pfn - start_pfn; 886 } 887 888 set_dma_reserve(nr_pages - nr_free_pages); 889 #endif 890 } 891 892 void __init zone_sizes_init(void) 893 { 894 unsigned long max_zone_pfns[MAX_NR_ZONES]; 895 896 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 897 898 #ifdef CONFIG_ZONE_DMA 899 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 900 #endif 901 #ifdef CONFIG_ZONE_DMA32 902 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 903 #endif 904 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 905 #ifdef CONFIG_HIGHMEM 906 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 907 #endif 908 909 free_area_init_nodes(max_zone_pfns); 910 } 911 912 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { 913 .loaded_mm = &init_mm, 914 .next_asid = 1, 915 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 916 }; 917 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate); 918 919 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 920 { 921 /* entry 0 MUST be WB (hardwired to speed up translations) */ 922 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 923 924 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 925 __pte2cachemode_tbl[entry] = cache; 926 } 927 928 #ifdef CONFIG_SWAP 929 unsigned long max_swapfile_size(void) 930 { 931 unsigned long pages; 932 933 pages = generic_max_swapfile_size(); 934 935 if (boot_cpu_has_bug(X86_BUG_L1TF)) { 936 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ 937 unsigned long long l1tf_limit = l1tf_pfn_limit(); 938 /* 939 * We encode swap offsets also with 3 bits below those for pfn 940 * which makes the usable limit higher. 941 */ 942 #if CONFIG_PGTABLE_LEVELS > 2 943 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; 944 #endif 945 pages = min_t(unsigned long long, l1tf_limit, pages); 946 } 947 return pages; 948 } 949 #endif 950