1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/swapfile.h> 7 #include <linux/swapops.h> 8 #include <linux/kmemleak.h> 9 #include <linux/sched/task.h> 10 11 #include <asm/set_memory.h> 12 #include <asm/e820/api.h> 13 #include <asm/init.h> 14 #include <asm/page.h> 15 #include <asm/page_types.h> 16 #include <asm/sections.h> 17 #include <asm/setup.h> 18 #include <asm/tlbflush.h> 19 #include <asm/tlb.h> 20 #include <asm/proto.h> 21 #include <asm/dma.h> /* for MAX_DMA_PFN */ 22 #include <asm/microcode.h> 23 #include <asm/kaslr.h> 24 #include <asm/hypervisor.h> 25 #include <asm/cpufeature.h> 26 #include <asm/pti.h> 27 #include <asm/text-patching.h> 28 #include <asm/memtype.h> 29 30 /* 31 * We need to define the tracepoints somewhere, and tlb.c 32 * is only compiled when SMP=y. 33 */ 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/tlb.h> 36 37 #include "mm_internal.h" 38 39 /* 40 * Tables translating between page_cache_type_t and pte encoding. 41 * 42 * The default values are defined statically as minimal supported mode; 43 * WC and WT fall back to UC-. pat_init() updates these values to support 44 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 45 * for the details. Note, __early_ioremap() used during early boot-time 46 * takes pgprot_t (pte encoding) and does not use these tables. 47 * 48 * Index into __cachemode2pte_tbl[] is the cachemode. 49 * 50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 52 */ 53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 60 }; 61 62 unsigned long cachemode2protval(enum page_cache_mode pcm) 63 { 64 if (likely(pcm == 0)) 65 return 0; 66 return __cachemode2pte_tbl[pcm]; 67 } 68 EXPORT_SYMBOL(cachemode2protval); 69 70 static uint8_t __pte2cachemode_tbl[8] = { 71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 79 }; 80 81 /* Check that the write-protect PAT entry is set for write-protect */ 82 bool x86_has_pat_wp(void) 83 { 84 return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP; 85 } 86 87 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) 88 { 89 unsigned long masked; 90 91 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; 92 if (likely(masked == 0)) 93 return 0; 94 return __pte2cachemode_tbl[__pte2cm_idx(masked)]; 95 } 96 97 static unsigned long __initdata pgt_buf_start; 98 static unsigned long __initdata pgt_buf_end; 99 static unsigned long __initdata pgt_buf_top; 100 101 static unsigned long min_pfn_mapped; 102 103 static bool __initdata can_use_brk_pgt = true; 104 105 /* 106 * Pages returned are already directly mapped. 107 * 108 * Changing that is likely to break Xen, see commit: 109 * 110 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 111 * 112 * for detailed information. 113 */ 114 __ref void *alloc_low_pages(unsigned int num) 115 { 116 unsigned long pfn; 117 int i; 118 119 if (after_bootmem) { 120 unsigned int order; 121 122 order = get_order((unsigned long)num << PAGE_SHIFT); 123 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 124 } 125 126 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 127 unsigned long ret = 0; 128 129 if (min_pfn_mapped < max_pfn_mapped) { 130 ret = memblock_phys_alloc_range( 131 PAGE_SIZE * num, PAGE_SIZE, 132 min_pfn_mapped << PAGE_SHIFT, 133 max_pfn_mapped << PAGE_SHIFT); 134 } 135 if (!ret && can_use_brk_pgt) 136 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); 137 138 if (!ret) 139 panic("alloc_low_pages: can not alloc memory"); 140 141 pfn = ret >> PAGE_SHIFT; 142 } else { 143 pfn = pgt_buf_end; 144 pgt_buf_end += num; 145 } 146 147 for (i = 0; i < num; i++) { 148 void *adr; 149 150 adr = __va((pfn + i) << PAGE_SHIFT); 151 clear_page(adr); 152 } 153 154 return __va(pfn << PAGE_SHIFT); 155 } 156 157 /* 158 * By default need to be able to allocate page tables below PGD firstly for 159 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. 160 * With KASLR memory randomization, depending on the machine e820 memory and the 161 * PUD alignment, twice that many pages may be needed when KASLR memory 162 * randomization is enabled. 163 */ 164 165 #ifndef CONFIG_X86_5LEVEL 166 #define INIT_PGD_PAGE_TABLES 3 167 #else 168 #define INIT_PGD_PAGE_TABLES 4 169 #endif 170 171 #ifndef CONFIG_RANDOMIZE_MEMORY 172 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) 173 #else 174 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) 175 #endif 176 177 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 178 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 179 void __init early_alloc_pgt_buf(void) 180 { 181 unsigned long tables = INIT_PGT_BUF_SIZE; 182 phys_addr_t base; 183 184 base = __pa(extend_brk(tables, PAGE_SIZE)); 185 186 pgt_buf_start = base >> PAGE_SHIFT; 187 pgt_buf_end = pgt_buf_start; 188 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 189 } 190 191 int after_bootmem; 192 193 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 194 195 struct map_range { 196 unsigned long start; 197 unsigned long end; 198 unsigned page_size_mask; 199 }; 200 201 static int page_size_mask; 202 203 /* 204 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 205 * enable and PPro Global page enable), so that any CPU's that boot 206 * up after us can get the correct flags. Invoked on the boot CPU. 207 */ 208 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 209 { 210 mmu_cr4_features |= mask; 211 if (trampoline_cr4_features) 212 *trampoline_cr4_features = mmu_cr4_features; 213 cr4_set_bits(mask); 214 } 215 216 static void __init probe_page_size_mask(void) 217 { 218 /* 219 * For pagealloc debugging, identity mapping will use small pages. 220 * This will simplify cpa(), which otherwise needs to support splitting 221 * large pages into small in interrupt context, etc. 222 */ 223 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 224 page_size_mask |= 1 << PG_LEVEL_2M; 225 else 226 direct_gbpages = 0; 227 228 /* Enable PSE if available */ 229 if (boot_cpu_has(X86_FEATURE_PSE)) 230 cr4_set_bits_and_update_boot(X86_CR4_PSE); 231 232 /* Enable PGE if available */ 233 __supported_pte_mask &= ~_PAGE_GLOBAL; 234 if (boot_cpu_has(X86_FEATURE_PGE)) { 235 cr4_set_bits_and_update_boot(X86_CR4_PGE); 236 __supported_pte_mask |= _PAGE_GLOBAL; 237 } 238 239 /* By the default is everything supported: */ 240 __default_kernel_pte_mask = __supported_pte_mask; 241 /* Except when with PTI where the kernel is mostly non-Global: */ 242 if (cpu_feature_enabled(X86_FEATURE_PTI)) 243 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 244 245 /* Enable 1 GB linear kernel mappings if available: */ 246 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 247 printk(KERN_INFO "Using GB pages for direct mapping\n"); 248 page_size_mask |= 1 << PG_LEVEL_1G; 249 } else { 250 direct_gbpages = 0; 251 } 252 } 253 254 static void setup_pcid(void) 255 { 256 if (!IS_ENABLED(CONFIG_X86_64)) 257 return; 258 259 if (!boot_cpu_has(X86_FEATURE_PCID)) 260 return; 261 262 if (boot_cpu_has(X86_FEATURE_PGE)) { 263 /* 264 * This can't be cr4_set_bits_and_update_boot() -- the 265 * trampoline code can't handle CR4.PCIDE and it wouldn't 266 * do any good anyway. Despite the name, 267 * cr4_set_bits_and_update_boot() doesn't actually cause 268 * the bits in question to remain set all the way through 269 * the secondary boot asm. 270 * 271 * Instead, we brute-force it and set CR4.PCIDE manually in 272 * start_secondary(). 273 */ 274 cr4_set_bits(X86_CR4_PCIDE); 275 276 /* 277 * INVPCID's single-context modes (2/3) only work if we set 278 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable 279 * on systems that have X86_CR4_PCIDE clear, or that have 280 * no INVPCID support at all. 281 */ 282 if (boot_cpu_has(X86_FEATURE_INVPCID)) 283 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); 284 } else { 285 /* 286 * flush_tlb_all(), as currently implemented, won't work if 287 * PCID is on but PGE is not. Since that combination 288 * doesn't exist on real hardware, there's no reason to try 289 * to fully support it, but it's polite to avoid corrupting 290 * data if we're on an improperly configured VM. 291 */ 292 setup_clear_cpu_cap(X86_FEATURE_PCID); 293 } 294 } 295 296 #ifdef CONFIG_X86_32 297 #define NR_RANGE_MR 3 298 #else /* CONFIG_X86_64 */ 299 #define NR_RANGE_MR 5 300 #endif 301 302 static int __meminit save_mr(struct map_range *mr, int nr_range, 303 unsigned long start_pfn, unsigned long end_pfn, 304 unsigned long page_size_mask) 305 { 306 if (start_pfn < end_pfn) { 307 if (nr_range >= NR_RANGE_MR) 308 panic("run out of range for init_memory_mapping\n"); 309 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 310 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 311 mr[nr_range].page_size_mask = page_size_mask; 312 nr_range++; 313 } 314 315 return nr_range; 316 } 317 318 /* 319 * adjust the page_size_mask for small range to go with 320 * big page size instead small one if nearby are ram too. 321 */ 322 static void __ref adjust_range_page_size_mask(struct map_range *mr, 323 int nr_range) 324 { 325 int i; 326 327 for (i = 0; i < nr_range; i++) { 328 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 329 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 330 unsigned long start = round_down(mr[i].start, PMD_SIZE); 331 unsigned long end = round_up(mr[i].end, PMD_SIZE); 332 333 #ifdef CONFIG_X86_32 334 if ((end >> PAGE_SHIFT) > max_low_pfn) 335 continue; 336 #endif 337 338 if (memblock_is_region_memory(start, end - start)) 339 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 340 } 341 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 342 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 343 unsigned long start = round_down(mr[i].start, PUD_SIZE); 344 unsigned long end = round_up(mr[i].end, PUD_SIZE); 345 346 if (memblock_is_region_memory(start, end - start)) 347 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 348 } 349 } 350 } 351 352 static const char *page_size_string(struct map_range *mr) 353 { 354 static const char str_1g[] = "1G"; 355 static const char str_2m[] = "2M"; 356 static const char str_4m[] = "4M"; 357 static const char str_4k[] = "4k"; 358 359 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 360 return str_1g; 361 /* 362 * 32-bit without PAE has a 4M large page size. 363 * PG_LEVEL_2M is misnamed, but we can at least 364 * print out the right size in the string. 365 */ 366 if (IS_ENABLED(CONFIG_X86_32) && 367 !IS_ENABLED(CONFIG_X86_PAE) && 368 mr->page_size_mask & (1<<PG_LEVEL_2M)) 369 return str_4m; 370 371 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 372 return str_2m; 373 374 return str_4k; 375 } 376 377 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 378 unsigned long start, 379 unsigned long end) 380 { 381 unsigned long start_pfn, end_pfn, limit_pfn; 382 unsigned long pfn; 383 int i; 384 385 limit_pfn = PFN_DOWN(end); 386 387 /* head if not big page alignment ? */ 388 pfn = start_pfn = PFN_DOWN(start); 389 #ifdef CONFIG_X86_32 390 /* 391 * Don't use a large page for the first 2/4MB of memory 392 * because there are often fixed size MTRRs in there 393 * and overlapping MTRRs into large pages can cause 394 * slowdowns. 395 */ 396 if (pfn == 0) 397 end_pfn = PFN_DOWN(PMD_SIZE); 398 else 399 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 400 #else /* CONFIG_X86_64 */ 401 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 402 #endif 403 if (end_pfn > limit_pfn) 404 end_pfn = limit_pfn; 405 if (start_pfn < end_pfn) { 406 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 407 pfn = end_pfn; 408 } 409 410 /* big page (2M) range */ 411 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 412 #ifdef CONFIG_X86_32 413 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 414 #else /* CONFIG_X86_64 */ 415 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 416 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 417 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 418 #endif 419 420 if (start_pfn < end_pfn) { 421 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 422 page_size_mask & (1<<PG_LEVEL_2M)); 423 pfn = end_pfn; 424 } 425 426 #ifdef CONFIG_X86_64 427 /* big page (1G) range */ 428 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 429 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 430 if (start_pfn < end_pfn) { 431 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 432 page_size_mask & 433 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 434 pfn = end_pfn; 435 } 436 437 /* tail is not big page (1G) alignment */ 438 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 439 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 440 if (start_pfn < end_pfn) { 441 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 442 page_size_mask & (1<<PG_LEVEL_2M)); 443 pfn = end_pfn; 444 } 445 #endif 446 447 /* tail is not big page (2M) alignment */ 448 start_pfn = pfn; 449 end_pfn = limit_pfn; 450 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 451 452 if (!after_bootmem) 453 adjust_range_page_size_mask(mr, nr_range); 454 455 /* try to merge same page size and continuous */ 456 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 457 unsigned long old_start; 458 if (mr[i].end != mr[i+1].start || 459 mr[i].page_size_mask != mr[i+1].page_size_mask) 460 continue; 461 /* move it */ 462 old_start = mr[i].start; 463 memmove(&mr[i], &mr[i+1], 464 (nr_range - 1 - i) * sizeof(struct map_range)); 465 mr[i--].start = old_start; 466 nr_range--; 467 } 468 469 for (i = 0; i < nr_range; i++) 470 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 471 mr[i].start, mr[i].end - 1, 472 page_size_string(&mr[i])); 473 474 return nr_range; 475 } 476 477 struct range pfn_mapped[E820_MAX_ENTRIES]; 478 int nr_pfn_mapped; 479 480 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 481 { 482 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 483 nr_pfn_mapped, start_pfn, end_pfn); 484 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 485 486 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 487 488 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 489 max_low_pfn_mapped = max(max_low_pfn_mapped, 490 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 491 } 492 493 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 494 { 495 int i; 496 497 for (i = 0; i < nr_pfn_mapped; i++) 498 if ((start_pfn >= pfn_mapped[i].start) && 499 (end_pfn <= pfn_mapped[i].end)) 500 return true; 501 502 return false; 503 } 504 505 /* 506 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 507 * This runs before bootmem is initialized and gets pages directly from 508 * the physical memory. To access them they are temporarily mapped. 509 */ 510 unsigned long __ref init_memory_mapping(unsigned long start, 511 unsigned long end, pgprot_t prot) 512 { 513 struct map_range mr[NR_RANGE_MR]; 514 unsigned long ret = 0; 515 int nr_range, i; 516 517 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 518 start, end - 1); 519 520 memset(mr, 0, sizeof(mr)); 521 nr_range = split_mem_range(mr, 0, start, end); 522 523 for (i = 0; i < nr_range; i++) 524 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 525 mr[i].page_size_mask, 526 prot); 527 528 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 529 530 return ret >> PAGE_SHIFT; 531 } 532 533 /* 534 * We need to iterate through the E820 memory map and create direct mappings 535 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 536 * create direct mappings for all pfns from [0 to max_low_pfn) and 537 * [4GB to max_pfn) because of possible memory holes in high addresses 538 * that cannot be marked as UC by fixed/variable range MTRRs. 539 * Depending on the alignment of E820 ranges, this may possibly result 540 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 541 * 542 * init_mem_mapping() calls init_range_memory_mapping() with big range. 543 * That range would have hole in the middle or ends, and only ram parts 544 * will be mapped in init_range_memory_mapping(). 545 */ 546 static unsigned long __init init_range_memory_mapping( 547 unsigned long r_start, 548 unsigned long r_end) 549 { 550 unsigned long start_pfn, end_pfn; 551 unsigned long mapped_ram_size = 0; 552 int i; 553 554 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 555 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 556 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 557 if (start >= end) 558 continue; 559 560 /* 561 * if it is overlapping with brk pgt, we need to 562 * alloc pgt buf from memblock instead. 563 */ 564 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 565 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 566 init_memory_mapping(start, end, PAGE_KERNEL); 567 mapped_ram_size += end - start; 568 can_use_brk_pgt = true; 569 } 570 571 return mapped_ram_size; 572 } 573 574 static unsigned long __init get_new_step_size(unsigned long step_size) 575 { 576 /* 577 * Initial mapped size is PMD_SIZE (2M). 578 * We can not set step_size to be PUD_SIZE (1G) yet. 579 * In worse case, when we cross the 1G boundary, and 580 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 581 * to map 1G range with PTE. Hence we use one less than the 582 * difference of page table level shifts. 583 * 584 * Don't need to worry about overflow in the top-down case, on 32bit, 585 * when step_size is 0, round_down() returns 0 for start, and that 586 * turns it into 0x100000000ULL. 587 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 588 * needs to be taken into consideration by the code below. 589 */ 590 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 591 } 592 593 /** 594 * memory_map_top_down - Map [map_start, map_end) top down 595 * @map_start: start address of the target memory range 596 * @map_end: end address of the target memory range 597 * 598 * This function will setup direct mapping for memory range 599 * [map_start, map_end) in top-down. That said, the page tables 600 * will be allocated at the end of the memory, and we map the 601 * memory in top-down. 602 */ 603 static void __init memory_map_top_down(unsigned long map_start, 604 unsigned long map_end) 605 { 606 unsigned long real_end, last_start; 607 unsigned long step_size; 608 unsigned long addr; 609 unsigned long mapped_ram_size = 0; 610 611 /* 612 * Systems that have many reserved areas near top of the memory, 613 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will 614 * require lots of 4K mappings which may exhaust pgt_buf. 615 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure 616 * there is enough mapped memory that can be allocated from 617 * memblock. 618 */ 619 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start, 620 map_end); 621 memblock_phys_free(addr, PMD_SIZE); 622 real_end = addr + PMD_SIZE; 623 624 /* step_size need to be small so pgt_buf from BRK could cover it */ 625 step_size = PMD_SIZE; 626 max_pfn_mapped = 0; /* will get exact value next */ 627 min_pfn_mapped = real_end >> PAGE_SHIFT; 628 last_start = real_end; 629 630 /* 631 * We start from the top (end of memory) and go to the bottom. 632 * The memblock_find_in_range() gets us a block of RAM from the 633 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 634 * for page table. 635 */ 636 while (last_start > map_start) { 637 unsigned long start; 638 639 if (last_start > step_size) { 640 start = round_down(last_start - 1, step_size); 641 if (start < map_start) 642 start = map_start; 643 } else 644 start = map_start; 645 mapped_ram_size += init_range_memory_mapping(start, 646 last_start); 647 last_start = start; 648 min_pfn_mapped = last_start >> PAGE_SHIFT; 649 if (mapped_ram_size >= step_size) 650 step_size = get_new_step_size(step_size); 651 } 652 653 if (real_end < map_end) 654 init_range_memory_mapping(real_end, map_end); 655 } 656 657 /** 658 * memory_map_bottom_up - Map [map_start, map_end) bottom up 659 * @map_start: start address of the target memory range 660 * @map_end: end address of the target memory range 661 * 662 * This function will setup direct mapping for memory range 663 * [map_start, map_end) in bottom-up. Since we have limited the 664 * bottom-up allocation above the kernel, the page tables will 665 * be allocated just above the kernel and we map the memory 666 * in [map_start, map_end) in bottom-up. 667 */ 668 static void __init memory_map_bottom_up(unsigned long map_start, 669 unsigned long map_end) 670 { 671 unsigned long next, start; 672 unsigned long mapped_ram_size = 0; 673 /* step_size need to be small so pgt_buf from BRK could cover it */ 674 unsigned long step_size = PMD_SIZE; 675 676 start = map_start; 677 min_pfn_mapped = start >> PAGE_SHIFT; 678 679 /* 680 * We start from the bottom (@map_start) and go to the top (@map_end). 681 * The memblock_find_in_range() gets us a block of RAM from the 682 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 683 * for page table. 684 */ 685 while (start < map_end) { 686 if (step_size && map_end - start > step_size) { 687 next = round_up(start + 1, step_size); 688 if (next > map_end) 689 next = map_end; 690 } else { 691 next = map_end; 692 } 693 694 mapped_ram_size += init_range_memory_mapping(start, next); 695 start = next; 696 697 if (mapped_ram_size >= step_size) 698 step_size = get_new_step_size(step_size); 699 } 700 } 701 702 /* 703 * The real mode trampoline, which is required for bootstrapping CPUs 704 * occupies only a small area under the low 1MB. See reserve_real_mode() 705 * for details. 706 * 707 * If KASLR is disabled the first PGD entry of the direct mapping is copied 708 * to map the real mode trampoline. 709 * 710 * If KASLR is enabled, copy only the PUD which covers the low 1MB 711 * area. This limits the randomization granularity to 1GB for both 4-level 712 * and 5-level paging. 713 */ 714 static void __init init_trampoline(void) 715 { 716 #ifdef CONFIG_X86_64 717 if (!kaslr_memory_enabled()) 718 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 719 else 720 init_trampoline_kaslr(); 721 #endif 722 } 723 724 void __init init_mem_mapping(void) 725 { 726 unsigned long end; 727 728 pti_check_boottime_disable(); 729 probe_page_size_mask(); 730 setup_pcid(); 731 732 #ifdef CONFIG_X86_64 733 end = max_pfn << PAGE_SHIFT; 734 #else 735 end = max_low_pfn << PAGE_SHIFT; 736 #endif 737 738 /* the ISA range is always mapped regardless of memory holes */ 739 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); 740 741 /* Init the trampoline, possibly with KASLR memory offset */ 742 init_trampoline(); 743 744 /* 745 * If the allocation is in bottom-up direction, we setup direct mapping 746 * in bottom-up, otherwise we setup direct mapping in top-down. 747 */ 748 if (memblock_bottom_up()) { 749 unsigned long kernel_end = __pa_symbol(_end); 750 751 /* 752 * we need two separate calls here. This is because we want to 753 * allocate page tables above the kernel. So we first map 754 * [kernel_end, end) to make memory above the kernel be mapped 755 * as soon as possible. And then use page tables allocated above 756 * the kernel to map [ISA_END_ADDRESS, kernel_end). 757 */ 758 memory_map_bottom_up(kernel_end, end); 759 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 760 } else { 761 memory_map_top_down(ISA_END_ADDRESS, end); 762 } 763 764 #ifdef CONFIG_X86_64 765 if (max_pfn > max_low_pfn) { 766 /* can we preserve max_low_pfn ?*/ 767 max_low_pfn = max_pfn; 768 } 769 #else 770 early_ioremap_page_table_range_init(); 771 #endif 772 773 load_cr3(swapper_pg_dir); 774 __flush_tlb_all(); 775 776 x86_init.hyper.init_mem_mapping(); 777 778 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 779 } 780 781 /* 782 * Initialize an mm_struct to be used during poking and a pointer to be used 783 * during patching. 784 */ 785 void __init poking_init(void) 786 { 787 spinlock_t *ptl; 788 pte_t *ptep; 789 790 poking_mm = copy_init_mm(); 791 BUG_ON(!poking_mm); 792 793 /* 794 * Randomize the poking address, but make sure that the following page 795 * will be mapped at the same PMD. We need 2 pages, so find space for 3, 796 * and adjust the address if the PMD ends after the first one. 797 */ 798 poking_addr = TASK_UNMAPPED_BASE; 799 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 800 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % 801 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); 802 803 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0) 804 poking_addr += PAGE_SIZE; 805 806 /* 807 * We need to trigger the allocation of the page-tables that will be 808 * needed for poking now. Later, poking may be performed in an atomic 809 * section, which might cause allocation to fail. 810 */ 811 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 812 BUG_ON(!ptep); 813 pte_unmap_unlock(ptep, ptl); 814 } 815 816 /* 817 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 818 * is valid. The argument is a physical page number. 819 * 820 * On x86, access has to be given to the first megabyte of RAM because that 821 * area traditionally contains BIOS code and data regions used by X, dosemu, 822 * and similar apps. Since they map the entire memory range, the whole range 823 * must be allowed (for mapping), but any areas that would otherwise be 824 * disallowed are flagged as being "zero filled" instead of rejected. 825 * Access has to be given to non-kernel-ram areas as well, these contain the 826 * PCI mmio resources as well as potential bios/acpi data regions. 827 */ 828 int devmem_is_allowed(unsigned long pagenr) 829 { 830 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, 831 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) 832 != REGION_DISJOINT) { 833 /* 834 * For disallowed memory regions in the low 1MB range, 835 * request that the page be shown as all zeros. 836 */ 837 if (pagenr < 256) 838 return 2; 839 840 return 0; 841 } 842 843 /* 844 * This must follow RAM test, since System RAM is considered a 845 * restricted resource under CONFIG_STRICT_IOMEM. 846 */ 847 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 848 /* Low 1MB bypasses iomem restrictions. */ 849 if (pagenr < 256) 850 return 1; 851 852 return 0; 853 } 854 855 return 1; 856 } 857 858 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 859 { 860 unsigned long begin_aligned, end_aligned; 861 862 /* Make sure boundaries are page aligned */ 863 begin_aligned = PAGE_ALIGN(begin); 864 end_aligned = end & PAGE_MASK; 865 866 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 867 begin = begin_aligned; 868 end = end_aligned; 869 } 870 871 if (begin >= end) 872 return; 873 874 /* 875 * If debugging page accesses then do not free this memory but 876 * mark them not present - any buggy init-section access will 877 * create a kernel page fault: 878 */ 879 if (debug_pagealloc_enabled()) { 880 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 881 begin, end - 1); 882 /* 883 * Inform kmemleak about the hole in the memory since the 884 * corresponding pages will be unmapped. 885 */ 886 kmemleak_free_part((void *)begin, end - begin); 887 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 888 } else { 889 /* 890 * We just marked the kernel text read only above, now that 891 * we are going to free part of that, we need to make that 892 * writeable and non-executable first. 893 */ 894 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 895 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 896 897 free_reserved_area((void *)begin, (void *)end, 898 POISON_FREE_INITMEM, what); 899 } 900 } 901 902 /* 903 * begin/end can be in the direct map or the "high kernel mapping" 904 * used for the kernel image only. free_init_pages() will do the 905 * right thing for either kind of address. 906 */ 907 void free_kernel_image_pages(const char *what, void *begin, void *end) 908 { 909 unsigned long begin_ul = (unsigned long)begin; 910 unsigned long end_ul = (unsigned long)end; 911 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; 912 913 free_init_pages(what, begin_ul, end_ul); 914 915 /* 916 * PTI maps some of the kernel into userspace. For performance, 917 * this includes some kernel areas that do not contain secrets. 918 * Those areas might be adjacent to the parts of the kernel image 919 * being freed, which may contain secrets. Remove the "high kernel 920 * image mapping" for these freed areas, ensuring they are not even 921 * potentially vulnerable to Meltdown regardless of the specific 922 * optimizations PTI is currently using. 923 * 924 * The "noalias" prevents unmapping the direct map alias which is 925 * needed to access the freed pages. 926 * 927 * This is only valid for 64bit kernels. 32bit has only one mapping 928 * which can't be treated in this way for obvious reasons. 929 */ 930 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) 931 set_memory_np_noalias(begin_ul, len_pages); 932 } 933 934 void __ref free_initmem(void) 935 { 936 e820__reallocate_tables(); 937 938 mem_encrypt_free_decrypted_mem(); 939 940 free_kernel_image_pages("unused kernel image (initmem)", 941 &__init_begin, &__init_end); 942 } 943 944 #ifdef CONFIG_BLK_DEV_INITRD 945 void __init free_initrd_mem(unsigned long start, unsigned long end) 946 { 947 /* 948 * end could be not aligned, and We can not align that, 949 * decompressor could be confused by aligned initrd_end 950 * We already reserve the end partial page before in 951 * - i386_start_kernel() 952 * - x86_64_start_kernel() 953 * - relocate_initrd() 954 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 955 */ 956 free_init_pages("initrd", start, PAGE_ALIGN(end)); 957 } 958 #endif 959 960 /* 961 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 962 * and pass it to the MM layer - to help it set zone watermarks more 963 * accurately. 964 * 965 * Done on 64-bit systems only for the time being, although 32-bit systems 966 * might benefit from this as well. 967 */ 968 void __init memblock_find_dma_reserve(void) 969 { 970 #ifdef CONFIG_X86_64 971 u64 nr_pages = 0, nr_free_pages = 0; 972 unsigned long start_pfn, end_pfn; 973 phys_addr_t start_addr, end_addr; 974 int i; 975 u64 u; 976 977 /* 978 * Iterate over all memory ranges (free and reserved ones alike), 979 * to calculate the total number of pages in the first 16 MB of RAM: 980 */ 981 nr_pages = 0; 982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 983 start_pfn = min(start_pfn, MAX_DMA_PFN); 984 end_pfn = min(end_pfn, MAX_DMA_PFN); 985 986 nr_pages += end_pfn - start_pfn; 987 } 988 989 /* 990 * Iterate over free memory ranges to calculate the number of free 991 * pages in the DMA zone, while not counting potential partial 992 * pages at the beginning or the end of the range: 993 */ 994 nr_free_pages = 0; 995 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 996 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 997 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 998 999 if (start_pfn < end_pfn) 1000 nr_free_pages += end_pfn - start_pfn; 1001 } 1002 1003 set_dma_reserve(nr_pages - nr_free_pages); 1004 #endif 1005 } 1006 1007 void __init zone_sizes_init(void) 1008 { 1009 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1010 1011 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1012 1013 #ifdef CONFIG_ZONE_DMA 1014 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 1015 #endif 1016 #ifdef CONFIG_ZONE_DMA32 1017 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 1018 #endif 1019 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 1020 #ifdef CONFIG_HIGHMEM 1021 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 1022 #endif 1023 1024 free_area_init(max_zone_pfns); 1025 } 1026 1027 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { 1028 .loaded_mm = &init_mm, 1029 .next_asid = 1, 1030 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 1031 }; 1032 1033 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 1034 { 1035 /* entry 0 MUST be WB (hardwired to speed up translations) */ 1036 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 1037 1038 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 1039 __pte2cachemode_tbl[entry] = cache; 1040 } 1041 1042 #ifdef CONFIG_SWAP 1043 unsigned long max_swapfile_size(void) 1044 { 1045 unsigned long pages; 1046 1047 pages = generic_max_swapfile_size(); 1048 1049 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { 1050 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ 1051 unsigned long long l1tf_limit = l1tf_pfn_limit(); 1052 /* 1053 * We encode swap offsets also with 3 bits below those for pfn 1054 * which makes the usable limit higher. 1055 */ 1056 #if CONFIG_PGTABLE_LEVELS > 2 1057 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; 1058 #endif 1059 pages = min_t(unsigned long long, l1tf_limit, pages); 1060 } 1061 return pages; 1062 } 1063 #endif 1064