xref: /openbmc/linux/arch/x86/mm/init.c (revision 151f4e2b)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h>		/* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27 #include <asm/text-patching.h>
28 
29 /*
30  * We need to define the tracepoints somewhere, and tlb.c
31  * is only compied when SMP=y.
32  */
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/tlb.h>
35 
36 #include "mm_internal.h"
37 
38 /*
39  * Tables translating between page_cache_type_t and pte encoding.
40  *
41  * The default values are defined statically as minimal supported mode;
42  * WC and WT fall back to UC-.  pat_init() updates these values to support
43  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
44  * for the details.  Note, __early_ioremap() used during early boot-time
45  * takes pgprot_t (pte encoding) and does not use these tables.
46  *
47  *   Index into __cachemode2pte_tbl[] is the cachemode.
48  *
49  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
50  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
51  */
52 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
53 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
54 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
55 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
56 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
59 };
60 EXPORT_SYMBOL(__cachemode2pte_tbl);
61 
62 uint8_t __pte2cachemode_tbl[8] = {
63 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
64 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
65 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
66 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
67 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
68 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
70 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
71 };
72 EXPORT_SYMBOL(__pte2cachemode_tbl);
73 
74 static unsigned long __initdata pgt_buf_start;
75 static unsigned long __initdata pgt_buf_end;
76 static unsigned long __initdata pgt_buf_top;
77 
78 static unsigned long min_pfn_mapped;
79 
80 static bool __initdata can_use_brk_pgt = true;
81 
82 /*
83  * Pages returned are already directly mapped.
84  *
85  * Changing that is likely to break Xen, see commit:
86  *
87  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
88  *
89  * for detailed information.
90  */
91 __ref void *alloc_low_pages(unsigned int num)
92 {
93 	unsigned long pfn;
94 	int i;
95 
96 	if (after_bootmem) {
97 		unsigned int order;
98 
99 		order = get_order((unsigned long)num << PAGE_SHIFT);
100 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
101 	}
102 
103 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104 		unsigned long ret = 0;
105 
106 		if (min_pfn_mapped < max_pfn_mapped) {
107 			ret = memblock_find_in_range(
108 					min_pfn_mapped << PAGE_SHIFT,
109 					max_pfn_mapped << PAGE_SHIFT,
110 					PAGE_SIZE * num , PAGE_SIZE);
111 		}
112 		if (ret)
113 			memblock_reserve(ret, PAGE_SIZE * num);
114 		else if (can_use_brk_pgt)
115 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
116 
117 		if (!ret)
118 			panic("alloc_low_pages: can not alloc memory");
119 
120 		pfn = ret >> PAGE_SHIFT;
121 	} else {
122 		pfn = pgt_buf_end;
123 		pgt_buf_end += num;
124 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
125 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
126 	}
127 
128 	for (i = 0; i < num; i++) {
129 		void *adr;
130 
131 		adr = __va((pfn + i) << PAGE_SHIFT);
132 		clear_page(adr);
133 	}
134 
135 	return __va(pfn << PAGE_SHIFT);
136 }
137 
138 /*
139  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
140  * With KASLR memory randomization, depending on the machine e820 memory
141  * and the PUD alignment. We may need twice more pages when KASLR memory
142  * randomization is enabled.
143  */
144 #ifndef CONFIG_RANDOMIZE_MEMORY
145 #define INIT_PGD_PAGE_COUNT      6
146 #else
147 #define INIT_PGD_PAGE_COUNT      12
148 #endif
149 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
150 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
151 void  __init early_alloc_pgt_buf(void)
152 {
153 	unsigned long tables = INIT_PGT_BUF_SIZE;
154 	phys_addr_t base;
155 
156 	base = __pa(extend_brk(tables, PAGE_SIZE));
157 
158 	pgt_buf_start = base >> PAGE_SHIFT;
159 	pgt_buf_end = pgt_buf_start;
160 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
161 }
162 
163 int after_bootmem;
164 
165 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
166 
167 struct map_range {
168 	unsigned long start;
169 	unsigned long end;
170 	unsigned page_size_mask;
171 };
172 
173 static int page_size_mask;
174 
175 static void __init probe_page_size_mask(void)
176 {
177 	/*
178 	 * For pagealloc debugging, identity mapping will use small pages.
179 	 * This will simplify cpa(), which otherwise needs to support splitting
180 	 * large pages into small in interrupt context, etc.
181 	 */
182 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
183 		page_size_mask |= 1 << PG_LEVEL_2M;
184 	else
185 		direct_gbpages = 0;
186 
187 	/* Enable PSE if available */
188 	if (boot_cpu_has(X86_FEATURE_PSE))
189 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
190 
191 	/* Enable PGE if available */
192 	__supported_pte_mask &= ~_PAGE_GLOBAL;
193 	if (boot_cpu_has(X86_FEATURE_PGE)) {
194 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
195 		__supported_pte_mask |= _PAGE_GLOBAL;
196 	}
197 
198 	/* By the default is everything supported: */
199 	__default_kernel_pte_mask = __supported_pte_mask;
200 	/* Except when with PTI where the kernel is mostly non-Global: */
201 	if (cpu_feature_enabled(X86_FEATURE_PTI))
202 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
203 
204 	/* Enable 1 GB linear kernel mappings if available: */
205 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
206 		printk(KERN_INFO "Using GB pages for direct mapping\n");
207 		page_size_mask |= 1 << PG_LEVEL_1G;
208 	} else {
209 		direct_gbpages = 0;
210 	}
211 }
212 
213 static void setup_pcid(void)
214 {
215 	if (!IS_ENABLED(CONFIG_X86_64))
216 		return;
217 
218 	if (!boot_cpu_has(X86_FEATURE_PCID))
219 		return;
220 
221 	if (boot_cpu_has(X86_FEATURE_PGE)) {
222 		/*
223 		 * This can't be cr4_set_bits_and_update_boot() -- the
224 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
225 		 * do any good anyway.  Despite the name,
226 		 * cr4_set_bits_and_update_boot() doesn't actually cause
227 		 * the bits in question to remain set all the way through
228 		 * the secondary boot asm.
229 		 *
230 		 * Instead, we brute-force it and set CR4.PCIDE manually in
231 		 * start_secondary().
232 		 */
233 		cr4_set_bits(X86_CR4_PCIDE);
234 
235 		/*
236 		 * INVPCID's single-context modes (2/3) only work if we set
237 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
238 		 * on systems that have X86_CR4_PCIDE clear, or that have
239 		 * no INVPCID support at all.
240 		 */
241 		if (boot_cpu_has(X86_FEATURE_INVPCID))
242 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
243 	} else {
244 		/*
245 		 * flush_tlb_all(), as currently implemented, won't work if
246 		 * PCID is on but PGE is not.  Since that combination
247 		 * doesn't exist on real hardware, there's no reason to try
248 		 * to fully support it, but it's polite to avoid corrupting
249 		 * data if we're on an improperly configured VM.
250 		 */
251 		setup_clear_cpu_cap(X86_FEATURE_PCID);
252 	}
253 }
254 
255 #ifdef CONFIG_X86_32
256 #define NR_RANGE_MR 3
257 #else /* CONFIG_X86_64 */
258 #define NR_RANGE_MR 5
259 #endif
260 
261 static int __meminit save_mr(struct map_range *mr, int nr_range,
262 			     unsigned long start_pfn, unsigned long end_pfn,
263 			     unsigned long page_size_mask)
264 {
265 	if (start_pfn < end_pfn) {
266 		if (nr_range >= NR_RANGE_MR)
267 			panic("run out of range for init_memory_mapping\n");
268 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
269 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
270 		mr[nr_range].page_size_mask = page_size_mask;
271 		nr_range++;
272 	}
273 
274 	return nr_range;
275 }
276 
277 /*
278  * adjust the page_size_mask for small range to go with
279  *	big page size instead small one if nearby are ram too.
280  */
281 static void __ref adjust_range_page_size_mask(struct map_range *mr,
282 							 int nr_range)
283 {
284 	int i;
285 
286 	for (i = 0; i < nr_range; i++) {
287 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
288 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
289 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
290 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
291 
292 #ifdef CONFIG_X86_32
293 			if ((end >> PAGE_SHIFT) > max_low_pfn)
294 				continue;
295 #endif
296 
297 			if (memblock_is_region_memory(start, end - start))
298 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
299 		}
300 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
301 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
302 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
303 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
304 
305 			if (memblock_is_region_memory(start, end - start))
306 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
307 		}
308 	}
309 }
310 
311 static const char *page_size_string(struct map_range *mr)
312 {
313 	static const char str_1g[] = "1G";
314 	static const char str_2m[] = "2M";
315 	static const char str_4m[] = "4M";
316 	static const char str_4k[] = "4k";
317 
318 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
319 		return str_1g;
320 	/*
321 	 * 32-bit without PAE has a 4M large page size.
322 	 * PG_LEVEL_2M is misnamed, but we can at least
323 	 * print out the right size in the string.
324 	 */
325 	if (IS_ENABLED(CONFIG_X86_32) &&
326 	    !IS_ENABLED(CONFIG_X86_PAE) &&
327 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
328 		return str_4m;
329 
330 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
331 		return str_2m;
332 
333 	return str_4k;
334 }
335 
336 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
337 				     unsigned long start,
338 				     unsigned long end)
339 {
340 	unsigned long start_pfn, end_pfn, limit_pfn;
341 	unsigned long pfn;
342 	int i;
343 
344 	limit_pfn = PFN_DOWN(end);
345 
346 	/* head if not big page alignment ? */
347 	pfn = start_pfn = PFN_DOWN(start);
348 #ifdef CONFIG_X86_32
349 	/*
350 	 * Don't use a large page for the first 2/4MB of memory
351 	 * because there are often fixed size MTRRs in there
352 	 * and overlapping MTRRs into large pages can cause
353 	 * slowdowns.
354 	 */
355 	if (pfn == 0)
356 		end_pfn = PFN_DOWN(PMD_SIZE);
357 	else
358 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359 #else /* CONFIG_X86_64 */
360 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
361 #endif
362 	if (end_pfn > limit_pfn)
363 		end_pfn = limit_pfn;
364 	if (start_pfn < end_pfn) {
365 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
366 		pfn = end_pfn;
367 	}
368 
369 	/* big page (2M) range */
370 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
371 #ifdef CONFIG_X86_32
372 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
373 #else /* CONFIG_X86_64 */
374 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
375 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
376 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
377 #endif
378 
379 	if (start_pfn < end_pfn) {
380 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
381 				page_size_mask & (1<<PG_LEVEL_2M));
382 		pfn = end_pfn;
383 	}
384 
385 #ifdef CONFIG_X86_64
386 	/* big page (1G) range */
387 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
388 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
389 	if (start_pfn < end_pfn) {
390 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
391 				page_size_mask &
392 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
393 		pfn = end_pfn;
394 	}
395 
396 	/* tail is not big page (1G) alignment */
397 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
398 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
399 	if (start_pfn < end_pfn) {
400 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
401 				page_size_mask & (1<<PG_LEVEL_2M));
402 		pfn = end_pfn;
403 	}
404 #endif
405 
406 	/* tail is not big page (2M) alignment */
407 	start_pfn = pfn;
408 	end_pfn = limit_pfn;
409 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
410 
411 	if (!after_bootmem)
412 		adjust_range_page_size_mask(mr, nr_range);
413 
414 	/* try to merge same page size and continuous */
415 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
416 		unsigned long old_start;
417 		if (mr[i].end != mr[i+1].start ||
418 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
419 			continue;
420 		/* move it */
421 		old_start = mr[i].start;
422 		memmove(&mr[i], &mr[i+1],
423 			(nr_range - 1 - i) * sizeof(struct map_range));
424 		mr[i--].start = old_start;
425 		nr_range--;
426 	}
427 
428 	for (i = 0; i < nr_range; i++)
429 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
430 				mr[i].start, mr[i].end - 1,
431 				page_size_string(&mr[i]));
432 
433 	return nr_range;
434 }
435 
436 struct range pfn_mapped[E820_MAX_ENTRIES];
437 int nr_pfn_mapped;
438 
439 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
440 {
441 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
442 					     nr_pfn_mapped, start_pfn, end_pfn);
443 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
444 
445 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
446 
447 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
448 		max_low_pfn_mapped = max(max_low_pfn_mapped,
449 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
450 }
451 
452 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
453 {
454 	int i;
455 
456 	for (i = 0; i < nr_pfn_mapped; i++)
457 		if ((start_pfn >= pfn_mapped[i].start) &&
458 		    (end_pfn <= pfn_mapped[i].end))
459 			return true;
460 
461 	return false;
462 }
463 
464 /*
465  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
466  * This runs before bootmem is initialized and gets pages directly from
467  * the physical memory. To access them they are temporarily mapped.
468  */
469 unsigned long __ref init_memory_mapping(unsigned long start,
470 					       unsigned long end)
471 {
472 	struct map_range mr[NR_RANGE_MR];
473 	unsigned long ret = 0;
474 	int nr_range, i;
475 
476 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
477 	       start, end - 1);
478 
479 	memset(mr, 0, sizeof(mr));
480 	nr_range = split_mem_range(mr, 0, start, end);
481 
482 	for (i = 0; i < nr_range; i++)
483 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
484 						   mr[i].page_size_mask);
485 
486 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
487 
488 	return ret >> PAGE_SHIFT;
489 }
490 
491 /*
492  * We need to iterate through the E820 memory map and create direct mappings
493  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
494  * create direct mappings for all pfns from [0 to max_low_pfn) and
495  * [4GB to max_pfn) because of possible memory holes in high addresses
496  * that cannot be marked as UC by fixed/variable range MTRRs.
497  * Depending on the alignment of E820 ranges, this may possibly result
498  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
499  *
500  * init_mem_mapping() calls init_range_memory_mapping() with big range.
501  * That range would have hole in the middle or ends, and only ram parts
502  * will be mapped in init_range_memory_mapping().
503  */
504 static unsigned long __init init_range_memory_mapping(
505 					   unsigned long r_start,
506 					   unsigned long r_end)
507 {
508 	unsigned long start_pfn, end_pfn;
509 	unsigned long mapped_ram_size = 0;
510 	int i;
511 
512 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
513 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
514 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
515 		if (start >= end)
516 			continue;
517 
518 		/*
519 		 * if it is overlapping with brk pgt, we need to
520 		 * alloc pgt buf from memblock instead.
521 		 */
522 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
523 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
524 		init_memory_mapping(start, end);
525 		mapped_ram_size += end - start;
526 		can_use_brk_pgt = true;
527 	}
528 
529 	return mapped_ram_size;
530 }
531 
532 static unsigned long __init get_new_step_size(unsigned long step_size)
533 {
534 	/*
535 	 * Initial mapped size is PMD_SIZE (2M).
536 	 * We can not set step_size to be PUD_SIZE (1G) yet.
537 	 * In worse case, when we cross the 1G boundary, and
538 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
539 	 * to map 1G range with PTE. Hence we use one less than the
540 	 * difference of page table level shifts.
541 	 *
542 	 * Don't need to worry about overflow in the top-down case, on 32bit,
543 	 * when step_size is 0, round_down() returns 0 for start, and that
544 	 * turns it into 0x100000000ULL.
545 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
546 	 * needs to be taken into consideration by the code below.
547 	 */
548 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
549 }
550 
551 /**
552  * memory_map_top_down - Map [map_start, map_end) top down
553  * @map_start: start address of the target memory range
554  * @map_end: end address of the target memory range
555  *
556  * This function will setup direct mapping for memory range
557  * [map_start, map_end) in top-down. That said, the page tables
558  * will be allocated at the end of the memory, and we map the
559  * memory in top-down.
560  */
561 static void __init memory_map_top_down(unsigned long map_start,
562 				       unsigned long map_end)
563 {
564 	unsigned long real_end, start, last_start;
565 	unsigned long step_size;
566 	unsigned long addr;
567 	unsigned long mapped_ram_size = 0;
568 
569 	/* xen has big range in reserved near end of ram, skip it at first.*/
570 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
571 	real_end = addr + PMD_SIZE;
572 
573 	/* step_size need to be small so pgt_buf from BRK could cover it */
574 	step_size = PMD_SIZE;
575 	max_pfn_mapped = 0; /* will get exact value next */
576 	min_pfn_mapped = real_end >> PAGE_SHIFT;
577 	last_start = start = real_end;
578 
579 	/*
580 	 * We start from the top (end of memory) and go to the bottom.
581 	 * The memblock_find_in_range() gets us a block of RAM from the
582 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
583 	 * for page table.
584 	 */
585 	while (last_start > map_start) {
586 		if (last_start > step_size) {
587 			start = round_down(last_start - 1, step_size);
588 			if (start < map_start)
589 				start = map_start;
590 		} else
591 			start = map_start;
592 		mapped_ram_size += init_range_memory_mapping(start,
593 							last_start);
594 		last_start = start;
595 		min_pfn_mapped = last_start >> PAGE_SHIFT;
596 		if (mapped_ram_size >= step_size)
597 			step_size = get_new_step_size(step_size);
598 	}
599 
600 	if (real_end < map_end)
601 		init_range_memory_mapping(real_end, map_end);
602 }
603 
604 /**
605  * memory_map_bottom_up - Map [map_start, map_end) bottom up
606  * @map_start: start address of the target memory range
607  * @map_end: end address of the target memory range
608  *
609  * This function will setup direct mapping for memory range
610  * [map_start, map_end) in bottom-up. Since we have limited the
611  * bottom-up allocation above the kernel, the page tables will
612  * be allocated just above the kernel and we map the memory
613  * in [map_start, map_end) in bottom-up.
614  */
615 static void __init memory_map_bottom_up(unsigned long map_start,
616 					unsigned long map_end)
617 {
618 	unsigned long next, start;
619 	unsigned long mapped_ram_size = 0;
620 	/* step_size need to be small so pgt_buf from BRK could cover it */
621 	unsigned long step_size = PMD_SIZE;
622 
623 	start = map_start;
624 	min_pfn_mapped = start >> PAGE_SHIFT;
625 
626 	/*
627 	 * We start from the bottom (@map_start) and go to the top (@map_end).
628 	 * The memblock_find_in_range() gets us a block of RAM from the
629 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
630 	 * for page table.
631 	 */
632 	while (start < map_end) {
633 		if (step_size && map_end - start > step_size) {
634 			next = round_up(start + 1, step_size);
635 			if (next > map_end)
636 				next = map_end;
637 		} else {
638 			next = map_end;
639 		}
640 
641 		mapped_ram_size += init_range_memory_mapping(start, next);
642 		start = next;
643 
644 		if (mapped_ram_size >= step_size)
645 			step_size = get_new_step_size(step_size);
646 	}
647 }
648 
649 void __init init_mem_mapping(void)
650 {
651 	unsigned long end;
652 
653 	pti_check_boottime_disable();
654 	probe_page_size_mask();
655 	setup_pcid();
656 
657 #ifdef CONFIG_X86_64
658 	end = max_pfn << PAGE_SHIFT;
659 #else
660 	end = max_low_pfn << PAGE_SHIFT;
661 #endif
662 
663 	/* the ISA range is always mapped regardless of memory holes */
664 	init_memory_mapping(0, ISA_END_ADDRESS);
665 
666 	/* Init the trampoline, possibly with KASLR memory offset */
667 	init_trampoline();
668 
669 	/*
670 	 * If the allocation is in bottom-up direction, we setup direct mapping
671 	 * in bottom-up, otherwise we setup direct mapping in top-down.
672 	 */
673 	if (memblock_bottom_up()) {
674 		unsigned long kernel_end = __pa_symbol(_end);
675 
676 		/*
677 		 * we need two separate calls here. This is because we want to
678 		 * allocate page tables above the kernel. So we first map
679 		 * [kernel_end, end) to make memory above the kernel be mapped
680 		 * as soon as possible. And then use page tables allocated above
681 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
682 		 */
683 		memory_map_bottom_up(kernel_end, end);
684 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
685 	} else {
686 		memory_map_top_down(ISA_END_ADDRESS, end);
687 	}
688 
689 #ifdef CONFIG_X86_64
690 	if (max_pfn > max_low_pfn) {
691 		/* can we preseve max_low_pfn ?*/
692 		max_low_pfn = max_pfn;
693 	}
694 #else
695 	early_ioremap_page_table_range_init();
696 #endif
697 
698 	load_cr3(swapper_pg_dir);
699 	__flush_tlb_all();
700 
701 	x86_init.hyper.init_mem_mapping();
702 
703 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
704 }
705 
706 /*
707  * Initialize an mm_struct to be used during poking and a pointer to be used
708  * during patching.
709  */
710 void __init poking_init(void)
711 {
712 	spinlock_t *ptl;
713 	pte_t *ptep;
714 
715 	poking_mm = copy_init_mm();
716 	BUG_ON(!poking_mm);
717 
718 	/*
719 	 * Randomize the poking address, but make sure that the following page
720 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
721 	 * and adjust the address if the PMD ends after the first one.
722 	 */
723 	poking_addr = TASK_UNMAPPED_BASE;
724 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
725 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
726 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
727 
728 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
729 		poking_addr += PAGE_SIZE;
730 
731 	/*
732 	 * We need to trigger the allocation of the page-tables that will be
733 	 * needed for poking now. Later, poking may be performed in an atomic
734 	 * section, which might cause allocation to fail.
735 	 */
736 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
737 	BUG_ON(!ptep);
738 	pte_unmap_unlock(ptep, ptl);
739 }
740 
741 /*
742  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743  * is valid. The argument is a physical page number.
744  *
745  * On x86, access has to be given to the first megabyte of RAM because that
746  * area traditionally contains BIOS code and data regions used by X, dosemu,
747  * and similar apps. Since they map the entire memory range, the whole range
748  * must be allowed (for mapping), but any areas that would otherwise be
749  * disallowed are flagged as being "zero filled" instead of rejected.
750  * Access has to be given to non-kernel-ram areas as well, these contain the
751  * PCI mmio resources as well as potential bios/acpi data regions.
752  */
753 int devmem_is_allowed(unsigned long pagenr)
754 {
755 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
756 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
757 			!= REGION_DISJOINT) {
758 		/*
759 		 * For disallowed memory regions in the low 1MB range,
760 		 * request that the page be shown as all zeros.
761 		 */
762 		if (pagenr < 256)
763 			return 2;
764 
765 		return 0;
766 	}
767 
768 	/*
769 	 * This must follow RAM test, since System RAM is considered a
770 	 * restricted resource under CONFIG_STRICT_IOMEM.
771 	 */
772 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
773 		/* Low 1MB bypasses iomem restrictions. */
774 		if (pagenr < 256)
775 			return 1;
776 
777 		return 0;
778 	}
779 
780 	return 1;
781 }
782 
783 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
784 {
785 	unsigned long begin_aligned, end_aligned;
786 
787 	/* Make sure boundaries are page aligned */
788 	begin_aligned = PAGE_ALIGN(begin);
789 	end_aligned   = end & PAGE_MASK;
790 
791 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
792 		begin = begin_aligned;
793 		end   = end_aligned;
794 	}
795 
796 	if (begin >= end)
797 		return;
798 
799 	/*
800 	 * If debugging page accesses then do not free this memory but
801 	 * mark them not present - any buggy init-section access will
802 	 * create a kernel page fault:
803 	 */
804 	if (debug_pagealloc_enabled()) {
805 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
806 			begin, end - 1);
807 		/*
808 		 * Inform kmemleak about the hole in the memory since the
809 		 * corresponding pages will be unmapped.
810 		 */
811 		kmemleak_free_part((void *)begin, end - begin);
812 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
813 	} else {
814 		/*
815 		 * We just marked the kernel text read only above, now that
816 		 * we are going to free part of that, we need to make that
817 		 * writeable and non-executable first.
818 		 */
819 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
820 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
821 
822 		free_reserved_area((void *)begin, (void *)end,
823 				   POISON_FREE_INITMEM, what);
824 	}
825 }
826 
827 /*
828  * begin/end can be in the direct map or the "high kernel mapping"
829  * used for the kernel image only.  free_init_pages() will do the
830  * right thing for either kind of address.
831  */
832 void free_kernel_image_pages(void *begin, void *end)
833 {
834 	unsigned long begin_ul = (unsigned long)begin;
835 	unsigned long end_ul = (unsigned long)end;
836 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
837 
838 
839 	free_init_pages("unused kernel image", begin_ul, end_ul);
840 
841 	/*
842 	 * PTI maps some of the kernel into userspace.  For performance,
843 	 * this includes some kernel areas that do not contain secrets.
844 	 * Those areas might be adjacent to the parts of the kernel image
845 	 * being freed, which may contain secrets.  Remove the "high kernel
846 	 * image mapping" for these freed areas, ensuring they are not even
847 	 * potentially vulnerable to Meltdown regardless of the specific
848 	 * optimizations PTI is currently using.
849 	 *
850 	 * The "noalias" prevents unmapping the direct map alias which is
851 	 * needed to access the freed pages.
852 	 *
853 	 * This is only valid for 64bit kernels. 32bit has only one mapping
854 	 * which can't be treated in this way for obvious reasons.
855 	 */
856 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
857 		set_memory_np_noalias(begin_ul, len_pages);
858 }
859 
860 void __weak mem_encrypt_free_decrypted_mem(void) { }
861 
862 void __ref free_initmem(void)
863 {
864 	e820__reallocate_tables();
865 
866 	mem_encrypt_free_decrypted_mem();
867 
868 	free_kernel_image_pages(&__init_begin, &__init_end);
869 }
870 
871 #ifdef CONFIG_BLK_DEV_INITRD
872 void __init free_initrd_mem(unsigned long start, unsigned long end)
873 {
874 	/*
875 	 * end could be not aligned, and We can not align that,
876 	 * decompresser could be confused by aligned initrd_end
877 	 * We already reserve the end partial page before in
878 	 *   - i386_start_kernel()
879 	 *   - x86_64_start_kernel()
880 	 *   - relocate_initrd()
881 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
882 	 */
883 	free_init_pages("initrd", start, PAGE_ALIGN(end));
884 }
885 #endif
886 
887 /*
888  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
889  * and pass it to the MM layer - to help it set zone watermarks more
890  * accurately.
891  *
892  * Done on 64-bit systems only for the time being, although 32-bit systems
893  * might benefit from this as well.
894  */
895 void __init memblock_find_dma_reserve(void)
896 {
897 #ifdef CONFIG_X86_64
898 	u64 nr_pages = 0, nr_free_pages = 0;
899 	unsigned long start_pfn, end_pfn;
900 	phys_addr_t start_addr, end_addr;
901 	int i;
902 	u64 u;
903 
904 	/*
905 	 * Iterate over all memory ranges (free and reserved ones alike),
906 	 * to calculate the total number of pages in the first 16 MB of RAM:
907 	 */
908 	nr_pages = 0;
909 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
910 		start_pfn = min(start_pfn, MAX_DMA_PFN);
911 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
912 
913 		nr_pages += end_pfn - start_pfn;
914 	}
915 
916 	/*
917 	 * Iterate over free memory ranges to calculate the number of free
918 	 * pages in the DMA zone, while not counting potential partial
919 	 * pages at the beginning or the end of the range:
920 	 */
921 	nr_free_pages = 0;
922 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
923 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
924 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
925 
926 		if (start_pfn < end_pfn)
927 			nr_free_pages += end_pfn - start_pfn;
928 	}
929 
930 	set_dma_reserve(nr_pages - nr_free_pages);
931 #endif
932 }
933 
934 void __init zone_sizes_init(void)
935 {
936 	unsigned long max_zone_pfns[MAX_NR_ZONES];
937 
938 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
939 
940 #ifdef CONFIG_ZONE_DMA
941 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
942 #endif
943 #ifdef CONFIG_ZONE_DMA32
944 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
945 #endif
946 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
947 #ifdef CONFIG_HIGHMEM
948 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
949 #endif
950 
951 	free_area_init_nodes(max_zone_pfns);
952 }
953 
954 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
955 	.loaded_mm = &init_mm,
956 	.next_asid = 1,
957 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
958 };
959 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
960 
961 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
962 {
963 	/* entry 0 MUST be WB (hardwired to speed up translations) */
964 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
965 
966 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
967 	__pte2cachemode_tbl[entry] = cache;
968 }
969 
970 #ifdef CONFIG_SWAP
971 unsigned long max_swapfile_size(void)
972 {
973 	unsigned long pages;
974 
975 	pages = generic_max_swapfile_size();
976 
977 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
978 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
979 		unsigned long long l1tf_limit = l1tf_pfn_limit();
980 		/*
981 		 * We encode swap offsets also with 3 bits below those for pfn
982 		 * which makes the usable limit higher.
983 		 */
984 #if CONFIG_PGTABLE_LEVELS > 2
985 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
986 #endif
987 		pages = min_t(unsigned long long, l1tf_limit, pages);
988 	}
989 	return pages;
990 }
991 #endif
992