1 #include <linux/gfp.h> 2 #include <linux/initrd.h> 3 #include <linux/ioport.h> 4 #include <linux/swap.h> 5 #include <linux/memblock.h> 6 #include <linux/swapfile.h> 7 #include <linux/swapops.h> 8 #include <linux/kmemleak.h> 9 #include <linux/sched/task.h> 10 11 #include <asm/set_memory.h> 12 #include <asm/e820/api.h> 13 #include <asm/init.h> 14 #include <asm/page.h> 15 #include <asm/page_types.h> 16 #include <asm/sections.h> 17 #include <asm/setup.h> 18 #include <asm/tlbflush.h> 19 #include <asm/tlb.h> 20 #include <asm/proto.h> 21 #include <asm/dma.h> /* for MAX_DMA_PFN */ 22 #include <asm/microcode.h> 23 #include <asm/kaslr.h> 24 #include <asm/hypervisor.h> 25 #include <asm/cpufeature.h> 26 #include <asm/pti.h> 27 #include <asm/text-patching.h> 28 #include <asm/memtype.h> 29 #include <asm/paravirt.h> 30 31 /* 32 * We need to define the tracepoints somewhere, and tlb.c 33 * is only compiled when SMP=y. 34 */ 35 #include <trace/events/tlb.h> 36 37 #include "mm_internal.h" 38 39 /* 40 * Tables translating between page_cache_type_t and pte encoding. 41 * 42 * The default values are defined statically as minimal supported mode; 43 * WC and WT fall back to UC-. pat_init() updates these values to support 44 * more cache modes, WC and WT, when it is safe to do so. See pat_init() 45 * for the details. Note, __early_ioremap() used during early boot-time 46 * takes pgprot_t (pte encoding) and does not use these tables. 47 * 48 * Index into __cachemode2pte_tbl[] is the cachemode. 49 * 50 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte 51 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. 52 */ 53 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { 54 [_PAGE_CACHE_MODE_WB ] = 0 | 0 , 55 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, 56 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, 57 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, 58 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, 59 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, 60 }; 61 62 unsigned long cachemode2protval(enum page_cache_mode pcm) 63 { 64 if (likely(pcm == 0)) 65 return 0; 66 return __cachemode2pte_tbl[pcm]; 67 } 68 EXPORT_SYMBOL(cachemode2protval); 69 70 static uint8_t __pte2cachemode_tbl[8] = { 71 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, 72 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 73 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, 74 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, 75 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, 76 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 77 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, 78 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, 79 }; 80 81 /* 82 * Check that the write-protect PAT entry is set for write-protect. 83 * To do this without making assumptions how PAT has been set up (Xen has 84 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache 85 * mode via the __cachemode2pte_tbl[] into protection bits (those protection 86 * bits will select a cache mode of WP or better), and then translate the 87 * protection bits back into the cache mode using __pte2cm_idx() and the 88 * __pte2cachemode_tbl[] array. This will return the really used cache mode. 89 */ 90 bool x86_has_pat_wp(void) 91 { 92 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP]; 93 94 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP; 95 } 96 97 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) 98 { 99 unsigned long masked; 100 101 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; 102 if (likely(masked == 0)) 103 return 0; 104 return __pte2cachemode_tbl[__pte2cm_idx(masked)]; 105 } 106 107 static unsigned long __initdata pgt_buf_start; 108 static unsigned long __initdata pgt_buf_end; 109 static unsigned long __initdata pgt_buf_top; 110 111 static unsigned long min_pfn_mapped; 112 113 static bool __initdata can_use_brk_pgt = true; 114 115 /* 116 * Pages returned are already directly mapped. 117 * 118 * Changing that is likely to break Xen, see commit: 119 * 120 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve 121 * 122 * for detailed information. 123 */ 124 __ref void *alloc_low_pages(unsigned int num) 125 { 126 unsigned long pfn; 127 int i; 128 129 if (after_bootmem) { 130 unsigned int order; 131 132 order = get_order((unsigned long)num << PAGE_SHIFT); 133 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 134 } 135 136 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { 137 unsigned long ret = 0; 138 139 if (min_pfn_mapped < max_pfn_mapped) { 140 ret = memblock_phys_alloc_range( 141 PAGE_SIZE * num, PAGE_SIZE, 142 min_pfn_mapped << PAGE_SHIFT, 143 max_pfn_mapped << PAGE_SHIFT); 144 } 145 if (!ret && can_use_brk_pgt) 146 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); 147 148 if (!ret) 149 panic("alloc_low_pages: can not alloc memory"); 150 151 pfn = ret >> PAGE_SHIFT; 152 } else { 153 pfn = pgt_buf_end; 154 pgt_buf_end += num; 155 } 156 157 for (i = 0; i < num; i++) { 158 void *adr; 159 160 adr = __va((pfn + i) << PAGE_SHIFT); 161 clear_page(adr); 162 } 163 164 return __va(pfn << PAGE_SHIFT); 165 } 166 167 /* 168 * By default need to be able to allocate page tables below PGD firstly for 169 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. 170 * With KASLR memory randomization, depending on the machine e820 memory and the 171 * PUD alignment, twice that many pages may be needed when KASLR memory 172 * randomization is enabled. 173 */ 174 175 #ifndef CONFIG_X86_5LEVEL 176 #define INIT_PGD_PAGE_TABLES 3 177 #else 178 #define INIT_PGD_PAGE_TABLES 4 179 #endif 180 181 #ifndef CONFIG_RANDOMIZE_MEMORY 182 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) 183 #else 184 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) 185 #endif 186 187 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) 188 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); 189 void __init early_alloc_pgt_buf(void) 190 { 191 unsigned long tables = INIT_PGT_BUF_SIZE; 192 phys_addr_t base; 193 194 base = __pa(extend_brk(tables, PAGE_SIZE)); 195 196 pgt_buf_start = base >> PAGE_SHIFT; 197 pgt_buf_end = pgt_buf_start; 198 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); 199 } 200 201 int after_bootmem; 202 203 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); 204 205 struct map_range { 206 unsigned long start; 207 unsigned long end; 208 unsigned page_size_mask; 209 }; 210 211 static int page_size_mask; 212 213 /* 214 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 215 * enable and PPro Global page enable), so that any CPU's that boot 216 * up after us can get the correct flags. Invoked on the boot CPU. 217 */ 218 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 219 { 220 mmu_cr4_features |= mask; 221 if (trampoline_cr4_features) 222 *trampoline_cr4_features = mmu_cr4_features; 223 cr4_set_bits(mask); 224 } 225 226 static void __init probe_page_size_mask(void) 227 { 228 /* 229 * For pagealloc debugging, identity mapping will use small pages. 230 * This will simplify cpa(), which otherwise needs to support splitting 231 * large pages into small in interrupt context, etc. 232 */ 233 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) 234 page_size_mask |= 1 << PG_LEVEL_2M; 235 else 236 direct_gbpages = 0; 237 238 /* Enable PSE if available */ 239 if (boot_cpu_has(X86_FEATURE_PSE)) 240 cr4_set_bits_and_update_boot(X86_CR4_PSE); 241 242 /* Enable PGE if available */ 243 __supported_pte_mask &= ~_PAGE_GLOBAL; 244 if (boot_cpu_has(X86_FEATURE_PGE)) { 245 cr4_set_bits_and_update_boot(X86_CR4_PGE); 246 __supported_pte_mask |= _PAGE_GLOBAL; 247 } 248 249 /* By the default is everything supported: */ 250 __default_kernel_pte_mask = __supported_pte_mask; 251 /* Except when with PTI where the kernel is mostly non-Global: */ 252 if (cpu_feature_enabled(X86_FEATURE_PTI)) 253 __default_kernel_pte_mask &= ~_PAGE_GLOBAL; 254 255 /* Enable 1 GB linear kernel mappings if available: */ 256 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { 257 printk(KERN_INFO "Using GB pages for direct mapping\n"); 258 page_size_mask |= 1 << PG_LEVEL_1G; 259 } else { 260 direct_gbpages = 0; 261 } 262 } 263 264 static void setup_pcid(void) 265 { 266 if (!IS_ENABLED(CONFIG_X86_64)) 267 return; 268 269 if (!boot_cpu_has(X86_FEATURE_PCID)) 270 return; 271 272 if (boot_cpu_has(X86_FEATURE_PGE)) { 273 /* 274 * This can't be cr4_set_bits_and_update_boot() -- the 275 * trampoline code can't handle CR4.PCIDE and it wouldn't 276 * do any good anyway. Despite the name, 277 * cr4_set_bits_and_update_boot() doesn't actually cause 278 * the bits in question to remain set all the way through 279 * the secondary boot asm. 280 * 281 * Instead, we brute-force it and set CR4.PCIDE manually in 282 * start_secondary(). 283 */ 284 cr4_set_bits(X86_CR4_PCIDE); 285 286 /* 287 * INVPCID's single-context modes (2/3) only work if we set 288 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable 289 * on systems that have X86_CR4_PCIDE clear, or that have 290 * no INVPCID support at all. 291 */ 292 if (boot_cpu_has(X86_FEATURE_INVPCID)) 293 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); 294 } else { 295 /* 296 * flush_tlb_all(), as currently implemented, won't work if 297 * PCID is on but PGE is not. Since that combination 298 * doesn't exist on real hardware, there's no reason to try 299 * to fully support it, but it's polite to avoid corrupting 300 * data if we're on an improperly configured VM. 301 */ 302 setup_clear_cpu_cap(X86_FEATURE_PCID); 303 } 304 } 305 306 #ifdef CONFIG_X86_32 307 #define NR_RANGE_MR 3 308 #else /* CONFIG_X86_64 */ 309 #define NR_RANGE_MR 5 310 #endif 311 312 static int __meminit save_mr(struct map_range *mr, int nr_range, 313 unsigned long start_pfn, unsigned long end_pfn, 314 unsigned long page_size_mask) 315 { 316 if (start_pfn < end_pfn) { 317 if (nr_range >= NR_RANGE_MR) 318 panic("run out of range for init_memory_mapping\n"); 319 mr[nr_range].start = start_pfn<<PAGE_SHIFT; 320 mr[nr_range].end = end_pfn<<PAGE_SHIFT; 321 mr[nr_range].page_size_mask = page_size_mask; 322 nr_range++; 323 } 324 325 return nr_range; 326 } 327 328 /* 329 * adjust the page_size_mask for small range to go with 330 * big page size instead small one if nearby are ram too. 331 */ 332 static void __ref adjust_range_page_size_mask(struct map_range *mr, 333 int nr_range) 334 { 335 int i; 336 337 for (i = 0; i < nr_range; i++) { 338 if ((page_size_mask & (1<<PG_LEVEL_2M)) && 339 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { 340 unsigned long start = round_down(mr[i].start, PMD_SIZE); 341 unsigned long end = round_up(mr[i].end, PMD_SIZE); 342 343 #ifdef CONFIG_X86_32 344 if ((end >> PAGE_SHIFT) > max_low_pfn) 345 continue; 346 #endif 347 348 if (memblock_is_region_memory(start, end - start)) 349 mr[i].page_size_mask |= 1<<PG_LEVEL_2M; 350 } 351 if ((page_size_mask & (1<<PG_LEVEL_1G)) && 352 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { 353 unsigned long start = round_down(mr[i].start, PUD_SIZE); 354 unsigned long end = round_up(mr[i].end, PUD_SIZE); 355 356 if (memblock_is_region_memory(start, end - start)) 357 mr[i].page_size_mask |= 1<<PG_LEVEL_1G; 358 } 359 } 360 } 361 362 static const char *page_size_string(struct map_range *mr) 363 { 364 static const char str_1g[] = "1G"; 365 static const char str_2m[] = "2M"; 366 static const char str_4m[] = "4M"; 367 static const char str_4k[] = "4k"; 368 369 if (mr->page_size_mask & (1<<PG_LEVEL_1G)) 370 return str_1g; 371 /* 372 * 32-bit without PAE has a 4M large page size. 373 * PG_LEVEL_2M is misnamed, but we can at least 374 * print out the right size in the string. 375 */ 376 if (IS_ENABLED(CONFIG_X86_32) && 377 !IS_ENABLED(CONFIG_X86_PAE) && 378 mr->page_size_mask & (1<<PG_LEVEL_2M)) 379 return str_4m; 380 381 if (mr->page_size_mask & (1<<PG_LEVEL_2M)) 382 return str_2m; 383 384 return str_4k; 385 } 386 387 static int __meminit split_mem_range(struct map_range *mr, int nr_range, 388 unsigned long start, 389 unsigned long end) 390 { 391 unsigned long start_pfn, end_pfn, limit_pfn; 392 unsigned long pfn; 393 int i; 394 395 limit_pfn = PFN_DOWN(end); 396 397 /* head if not big page alignment ? */ 398 pfn = start_pfn = PFN_DOWN(start); 399 #ifdef CONFIG_X86_32 400 /* 401 * Don't use a large page for the first 2/4MB of memory 402 * because there are often fixed size MTRRs in there 403 * and overlapping MTRRs into large pages can cause 404 * slowdowns. 405 */ 406 if (pfn == 0) 407 end_pfn = PFN_DOWN(PMD_SIZE); 408 else 409 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 410 #else /* CONFIG_X86_64 */ 411 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 412 #endif 413 if (end_pfn > limit_pfn) 414 end_pfn = limit_pfn; 415 if (start_pfn < end_pfn) { 416 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 417 pfn = end_pfn; 418 } 419 420 /* big page (2M) range */ 421 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 422 #ifdef CONFIG_X86_32 423 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 424 #else /* CONFIG_X86_64 */ 425 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 426 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) 427 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 428 #endif 429 430 if (start_pfn < end_pfn) { 431 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 432 page_size_mask & (1<<PG_LEVEL_2M)); 433 pfn = end_pfn; 434 } 435 436 #ifdef CONFIG_X86_64 437 /* big page (1G) range */ 438 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); 439 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); 440 if (start_pfn < end_pfn) { 441 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 442 page_size_mask & 443 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); 444 pfn = end_pfn; 445 } 446 447 /* tail is not big page (1G) alignment */ 448 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); 449 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); 450 if (start_pfn < end_pfn) { 451 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 452 page_size_mask & (1<<PG_LEVEL_2M)); 453 pfn = end_pfn; 454 } 455 #endif 456 457 /* tail is not big page (2M) alignment */ 458 start_pfn = pfn; 459 end_pfn = limit_pfn; 460 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); 461 462 if (!after_bootmem) 463 adjust_range_page_size_mask(mr, nr_range); 464 465 /* try to merge same page size and continuous */ 466 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { 467 unsigned long old_start; 468 if (mr[i].end != mr[i+1].start || 469 mr[i].page_size_mask != mr[i+1].page_size_mask) 470 continue; 471 /* move it */ 472 old_start = mr[i].start; 473 memmove(&mr[i], &mr[i+1], 474 (nr_range - 1 - i) * sizeof(struct map_range)); 475 mr[i--].start = old_start; 476 nr_range--; 477 } 478 479 for (i = 0; i < nr_range; i++) 480 pr_debug(" [mem %#010lx-%#010lx] page %s\n", 481 mr[i].start, mr[i].end - 1, 482 page_size_string(&mr[i])); 483 484 return nr_range; 485 } 486 487 struct range pfn_mapped[E820_MAX_ENTRIES]; 488 int nr_pfn_mapped; 489 490 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) 491 { 492 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, 493 nr_pfn_mapped, start_pfn, end_pfn); 494 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); 495 496 max_pfn_mapped = max(max_pfn_mapped, end_pfn); 497 498 if (start_pfn < (1UL<<(32-PAGE_SHIFT))) 499 max_low_pfn_mapped = max(max_low_pfn_mapped, 500 min(end_pfn, 1UL<<(32-PAGE_SHIFT))); 501 } 502 503 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) 504 { 505 int i; 506 507 for (i = 0; i < nr_pfn_mapped; i++) 508 if ((start_pfn >= pfn_mapped[i].start) && 509 (end_pfn <= pfn_mapped[i].end)) 510 return true; 511 512 return false; 513 } 514 515 /* 516 * Setup the direct mapping of the physical memory at PAGE_OFFSET. 517 * This runs before bootmem is initialized and gets pages directly from 518 * the physical memory. To access them they are temporarily mapped. 519 */ 520 unsigned long __ref init_memory_mapping(unsigned long start, 521 unsigned long end, pgprot_t prot) 522 { 523 struct map_range mr[NR_RANGE_MR]; 524 unsigned long ret = 0; 525 int nr_range, i; 526 527 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", 528 start, end - 1); 529 530 memset(mr, 0, sizeof(mr)); 531 nr_range = split_mem_range(mr, 0, start, end); 532 533 for (i = 0; i < nr_range; i++) 534 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, 535 mr[i].page_size_mask, 536 prot); 537 538 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); 539 540 return ret >> PAGE_SHIFT; 541 } 542 543 /* 544 * We need to iterate through the E820 memory map and create direct mappings 545 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply 546 * create direct mappings for all pfns from [0 to max_low_pfn) and 547 * [4GB to max_pfn) because of possible memory holes in high addresses 548 * that cannot be marked as UC by fixed/variable range MTRRs. 549 * Depending on the alignment of E820 ranges, this may possibly result 550 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. 551 * 552 * init_mem_mapping() calls init_range_memory_mapping() with big range. 553 * That range would have hole in the middle or ends, and only ram parts 554 * will be mapped in init_range_memory_mapping(). 555 */ 556 static unsigned long __init init_range_memory_mapping( 557 unsigned long r_start, 558 unsigned long r_end) 559 { 560 unsigned long start_pfn, end_pfn; 561 unsigned long mapped_ram_size = 0; 562 int i; 563 564 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 565 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); 566 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); 567 if (start >= end) 568 continue; 569 570 /* 571 * if it is overlapping with brk pgt, we need to 572 * alloc pgt buf from memblock instead. 573 */ 574 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= 575 min(end, (u64)pgt_buf_top<<PAGE_SHIFT); 576 init_memory_mapping(start, end, PAGE_KERNEL); 577 mapped_ram_size += end - start; 578 can_use_brk_pgt = true; 579 } 580 581 return mapped_ram_size; 582 } 583 584 static unsigned long __init get_new_step_size(unsigned long step_size) 585 { 586 /* 587 * Initial mapped size is PMD_SIZE (2M). 588 * We can not set step_size to be PUD_SIZE (1G) yet. 589 * In worse case, when we cross the 1G boundary, and 590 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) 591 * to map 1G range with PTE. Hence we use one less than the 592 * difference of page table level shifts. 593 * 594 * Don't need to worry about overflow in the top-down case, on 32bit, 595 * when step_size is 0, round_down() returns 0 for start, and that 596 * turns it into 0x100000000ULL. 597 * In the bottom-up case, round_up(x, 0) returns 0 though too, which 598 * needs to be taken into consideration by the code below. 599 */ 600 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); 601 } 602 603 /** 604 * memory_map_top_down - Map [map_start, map_end) top down 605 * @map_start: start address of the target memory range 606 * @map_end: end address of the target memory range 607 * 608 * This function will setup direct mapping for memory range 609 * [map_start, map_end) in top-down. That said, the page tables 610 * will be allocated at the end of the memory, and we map the 611 * memory in top-down. 612 */ 613 static void __init memory_map_top_down(unsigned long map_start, 614 unsigned long map_end) 615 { 616 unsigned long real_end, last_start; 617 unsigned long step_size; 618 unsigned long addr; 619 unsigned long mapped_ram_size = 0; 620 621 /* 622 * Systems that have many reserved areas near top of the memory, 623 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will 624 * require lots of 4K mappings which may exhaust pgt_buf. 625 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure 626 * there is enough mapped memory that can be allocated from 627 * memblock. 628 */ 629 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start, 630 map_end); 631 memblock_phys_free(addr, PMD_SIZE); 632 real_end = addr + PMD_SIZE; 633 634 /* step_size need to be small so pgt_buf from BRK could cover it */ 635 step_size = PMD_SIZE; 636 max_pfn_mapped = 0; /* will get exact value next */ 637 min_pfn_mapped = real_end >> PAGE_SHIFT; 638 last_start = real_end; 639 640 /* 641 * We start from the top (end of memory) and go to the bottom. 642 * The memblock_find_in_range() gets us a block of RAM from the 643 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 644 * for page table. 645 */ 646 while (last_start > map_start) { 647 unsigned long start; 648 649 if (last_start > step_size) { 650 start = round_down(last_start - 1, step_size); 651 if (start < map_start) 652 start = map_start; 653 } else 654 start = map_start; 655 mapped_ram_size += init_range_memory_mapping(start, 656 last_start); 657 last_start = start; 658 min_pfn_mapped = last_start >> PAGE_SHIFT; 659 if (mapped_ram_size >= step_size) 660 step_size = get_new_step_size(step_size); 661 } 662 663 if (real_end < map_end) 664 init_range_memory_mapping(real_end, map_end); 665 } 666 667 /** 668 * memory_map_bottom_up - Map [map_start, map_end) bottom up 669 * @map_start: start address of the target memory range 670 * @map_end: end address of the target memory range 671 * 672 * This function will setup direct mapping for memory range 673 * [map_start, map_end) in bottom-up. Since we have limited the 674 * bottom-up allocation above the kernel, the page tables will 675 * be allocated just above the kernel and we map the memory 676 * in [map_start, map_end) in bottom-up. 677 */ 678 static void __init memory_map_bottom_up(unsigned long map_start, 679 unsigned long map_end) 680 { 681 unsigned long next, start; 682 unsigned long mapped_ram_size = 0; 683 /* step_size need to be small so pgt_buf from BRK could cover it */ 684 unsigned long step_size = PMD_SIZE; 685 686 start = map_start; 687 min_pfn_mapped = start >> PAGE_SHIFT; 688 689 /* 690 * We start from the bottom (@map_start) and go to the top (@map_end). 691 * The memblock_find_in_range() gets us a block of RAM from the 692 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages 693 * for page table. 694 */ 695 while (start < map_end) { 696 if (step_size && map_end - start > step_size) { 697 next = round_up(start + 1, step_size); 698 if (next > map_end) 699 next = map_end; 700 } else { 701 next = map_end; 702 } 703 704 mapped_ram_size += init_range_memory_mapping(start, next); 705 start = next; 706 707 if (mapped_ram_size >= step_size) 708 step_size = get_new_step_size(step_size); 709 } 710 } 711 712 /* 713 * The real mode trampoline, which is required for bootstrapping CPUs 714 * occupies only a small area under the low 1MB. See reserve_real_mode() 715 * for details. 716 * 717 * If KASLR is disabled the first PGD entry of the direct mapping is copied 718 * to map the real mode trampoline. 719 * 720 * If KASLR is enabled, copy only the PUD which covers the low 1MB 721 * area. This limits the randomization granularity to 1GB for both 4-level 722 * and 5-level paging. 723 */ 724 static void __init init_trampoline(void) 725 { 726 #ifdef CONFIG_X86_64 727 /* 728 * The code below will alias kernel page-tables in the user-range of the 729 * address space, including the Global bit. So global TLB entries will 730 * be created when using the trampoline page-table. 731 */ 732 if (!kaslr_memory_enabled()) 733 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 734 else 735 init_trampoline_kaslr(); 736 #endif 737 } 738 739 void __init init_mem_mapping(void) 740 { 741 unsigned long end; 742 743 pti_check_boottime_disable(); 744 probe_page_size_mask(); 745 setup_pcid(); 746 747 #ifdef CONFIG_X86_64 748 end = max_pfn << PAGE_SHIFT; 749 #else 750 end = max_low_pfn << PAGE_SHIFT; 751 #endif 752 753 /* the ISA range is always mapped regardless of memory holes */ 754 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); 755 756 /* Init the trampoline, possibly with KASLR memory offset */ 757 init_trampoline(); 758 759 /* 760 * If the allocation is in bottom-up direction, we setup direct mapping 761 * in bottom-up, otherwise we setup direct mapping in top-down. 762 */ 763 if (memblock_bottom_up()) { 764 unsigned long kernel_end = __pa_symbol(_end); 765 766 /* 767 * we need two separate calls here. This is because we want to 768 * allocate page tables above the kernel. So we first map 769 * [kernel_end, end) to make memory above the kernel be mapped 770 * as soon as possible. And then use page tables allocated above 771 * the kernel to map [ISA_END_ADDRESS, kernel_end). 772 */ 773 memory_map_bottom_up(kernel_end, end); 774 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); 775 } else { 776 memory_map_top_down(ISA_END_ADDRESS, end); 777 } 778 779 #ifdef CONFIG_X86_64 780 if (max_pfn > max_low_pfn) { 781 /* can we preserve max_low_pfn ?*/ 782 max_low_pfn = max_pfn; 783 } 784 #else 785 early_ioremap_page_table_range_init(); 786 #endif 787 788 load_cr3(swapper_pg_dir); 789 __flush_tlb_all(); 790 791 x86_init.hyper.init_mem_mapping(); 792 793 early_memtest(0, max_pfn_mapped << PAGE_SHIFT); 794 } 795 796 /* 797 * Initialize an mm_struct to be used during poking and a pointer to be used 798 * during patching. 799 */ 800 void __init poking_init(void) 801 { 802 spinlock_t *ptl; 803 pte_t *ptep; 804 805 poking_mm = mm_alloc(); 806 BUG_ON(!poking_mm); 807 808 /* Xen PV guests need the PGD to be pinned. */ 809 paravirt_enter_mmap(poking_mm); 810 811 /* 812 * Randomize the poking address, but make sure that the following page 813 * will be mapped at the same PMD. We need 2 pages, so find space for 3, 814 * and adjust the address if the PMD ends after the first one. 815 */ 816 poking_addr = TASK_UNMAPPED_BASE; 817 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 818 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % 819 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); 820 821 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0) 822 poking_addr += PAGE_SIZE; 823 824 /* 825 * We need to trigger the allocation of the page-tables that will be 826 * needed for poking now. Later, poking may be performed in an atomic 827 * section, which might cause allocation to fail. 828 */ 829 ptep = get_locked_pte(poking_mm, poking_addr, &ptl); 830 BUG_ON(!ptep); 831 pte_unmap_unlock(ptep, ptl); 832 } 833 834 /* 835 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 836 * is valid. The argument is a physical page number. 837 * 838 * On x86, access has to be given to the first megabyte of RAM because that 839 * area traditionally contains BIOS code and data regions used by X, dosemu, 840 * and similar apps. Since they map the entire memory range, the whole range 841 * must be allowed (for mapping), but any areas that would otherwise be 842 * disallowed are flagged as being "zero filled" instead of rejected. 843 * Access has to be given to non-kernel-ram areas as well, these contain the 844 * PCI mmio resources as well as potential bios/acpi data regions. 845 */ 846 int devmem_is_allowed(unsigned long pagenr) 847 { 848 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, 849 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) 850 != REGION_DISJOINT) { 851 /* 852 * For disallowed memory regions in the low 1MB range, 853 * request that the page be shown as all zeros. 854 */ 855 if (pagenr < 256) 856 return 2; 857 858 return 0; 859 } 860 861 /* 862 * This must follow RAM test, since System RAM is considered a 863 * restricted resource under CONFIG_STRICT_DEVMEM. 864 */ 865 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { 866 /* Low 1MB bypasses iomem restrictions. */ 867 if (pagenr < 256) 868 return 1; 869 870 return 0; 871 } 872 873 return 1; 874 } 875 876 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 877 { 878 unsigned long begin_aligned, end_aligned; 879 880 /* Make sure boundaries are page aligned */ 881 begin_aligned = PAGE_ALIGN(begin); 882 end_aligned = end & PAGE_MASK; 883 884 if (WARN_ON(begin_aligned != begin || end_aligned != end)) { 885 begin = begin_aligned; 886 end = end_aligned; 887 } 888 889 if (begin >= end) 890 return; 891 892 /* 893 * If debugging page accesses then do not free this memory but 894 * mark them not present - any buggy init-section access will 895 * create a kernel page fault: 896 */ 897 if (debug_pagealloc_enabled()) { 898 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", 899 begin, end - 1); 900 /* 901 * Inform kmemleak about the hole in the memory since the 902 * corresponding pages will be unmapped. 903 */ 904 kmemleak_free_part((void *)begin, end - begin); 905 set_memory_np(begin, (end - begin) >> PAGE_SHIFT); 906 } else { 907 /* 908 * We just marked the kernel text read only above, now that 909 * we are going to free part of that, we need to make that 910 * writeable and non-executable first. 911 */ 912 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); 913 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); 914 915 free_reserved_area((void *)begin, (void *)end, 916 POISON_FREE_INITMEM, what); 917 } 918 } 919 920 /* 921 * begin/end can be in the direct map or the "high kernel mapping" 922 * used for the kernel image only. free_init_pages() will do the 923 * right thing for either kind of address. 924 */ 925 void free_kernel_image_pages(const char *what, void *begin, void *end) 926 { 927 unsigned long begin_ul = (unsigned long)begin; 928 unsigned long end_ul = (unsigned long)end; 929 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; 930 931 free_init_pages(what, begin_ul, end_ul); 932 933 /* 934 * PTI maps some of the kernel into userspace. For performance, 935 * this includes some kernel areas that do not contain secrets. 936 * Those areas might be adjacent to the parts of the kernel image 937 * being freed, which may contain secrets. Remove the "high kernel 938 * image mapping" for these freed areas, ensuring they are not even 939 * potentially vulnerable to Meltdown regardless of the specific 940 * optimizations PTI is currently using. 941 * 942 * The "noalias" prevents unmapping the direct map alias which is 943 * needed to access the freed pages. 944 * 945 * This is only valid for 64bit kernels. 32bit has only one mapping 946 * which can't be treated in this way for obvious reasons. 947 */ 948 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) 949 set_memory_np_noalias(begin_ul, len_pages); 950 } 951 952 void __ref free_initmem(void) 953 { 954 e820__reallocate_tables(); 955 956 mem_encrypt_free_decrypted_mem(); 957 958 free_kernel_image_pages("unused kernel image (initmem)", 959 &__init_begin, &__init_end); 960 } 961 962 #ifdef CONFIG_BLK_DEV_INITRD 963 void __init free_initrd_mem(unsigned long start, unsigned long end) 964 { 965 /* 966 * end could be not aligned, and We can not align that, 967 * decompressor could be confused by aligned initrd_end 968 * We already reserve the end partial page before in 969 * - i386_start_kernel() 970 * - x86_64_start_kernel() 971 * - relocate_initrd() 972 * So here We can do PAGE_ALIGN() safely to get partial page to be freed 973 */ 974 free_init_pages("initrd", start, PAGE_ALIGN(end)); 975 } 976 #endif 977 978 /* 979 * Calculate the precise size of the DMA zone (first 16 MB of RAM), 980 * and pass it to the MM layer - to help it set zone watermarks more 981 * accurately. 982 * 983 * Done on 64-bit systems only for the time being, although 32-bit systems 984 * might benefit from this as well. 985 */ 986 void __init memblock_find_dma_reserve(void) 987 { 988 #ifdef CONFIG_X86_64 989 u64 nr_pages = 0, nr_free_pages = 0; 990 unsigned long start_pfn, end_pfn; 991 phys_addr_t start_addr, end_addr; 992 int i; 993 u64 u; 994 995 /* 996 * Iterate over all memory ranges (free and reserved ones alike), 997 * to calculate the total number of pages in the first 16 MB of RAM: 998 */ 999 nr_pages = 0; 1000 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 1001 start_pfn = min(start_pfn, MAX_DMA_PFN); 1002 end_pfn = min(end_pfn, MAX_DMA_PFN); 1003 1004 nr_pages += end_pfn - start_pfn; 1005 } 1006 1007 /* 1008 * Iterate over free memory ranges to calculate the number of free 1009 * pages in the DMA zone, while not counting potential partial 1010 * pages at the beginning or the end of the range: 1011 */ 1012 nr_free_pages = 0; 1013 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { 1014 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); 1015 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); 1016 1017 if (start_pfn < end_pfn) 1018 nr_free_pages += end_pfn - start_pfn; 1019 } 1020 1021 set_dma_reserve(nr_pages - nr_free_pages); 1022 #endif 1023 } 1024 1025 void __init zone_sizes_init(void) 1026 { 1027 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1028 1029 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1030 1031 #ifdef CONFIG_ZONE_DMA 1032 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); 1033 #endif 1034 #ifdef CONFIG_ZONE_DMA32 1035 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); 1036 #endif 1037 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 1038 #ifdef CONFIG_HIGHMEM 1039 max_zone_pfns[ZONE_HIGHMEM] = max_pfn; 1040 #endif 1041 1042 free_area_init(max_zone_pfns); 1043 } 1044 1045 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { 1046 .loaded_mm = &init_mm, 1047 .next_asid = 1, 1048 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ 1049 }; 1050 1051 #ifdef CONFIG_ADDRESS_MASKING 1052 DEFINE_PER_CPU(u64, tlbstate_untag_mask); 1053 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask); 1054 #endif 1055 1056 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) 1057 { 1058 /* entry 0 MUST be WB (hardwired to speed up translations) */ 1059 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); 1060 1061 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); 1062 __pte2cachemode_tbl[entry] = cache; 1063 } 1064 1065 #ifdef CONFIG_SWAP 1066 unsigned long arch_max_swapfile_size(void) 1067 { 1068 unsigned long pages; 1069 1070 pages = generic_max_swapfile_size(); 1071 1072 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { 1073 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ 1074 unsigned long long l1tf_limit = l1tf_pfn_limit(); 1075 /* 1076 * We encode swap offsets also with 3 bits below those for pfn 1077 * which makes the usable limit higher. 1078 */ 1079 #if CONFIG_PGTABLE_LEVELS > 2 1080 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; 1081 #endif 1082 pages = min_t(unsigned long long, l1tf_limit, pages); 1083 } 1084 return pages; 1085 } 1086 #endif 1087