1 /* 2 * IA-32 Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 5 */ 6 7 #include <linux/init.h> 8 #include <linux/fs.h> 9 #include <linux/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/err.h> 14 #include <linux/sysctl.h> 15 #include <asm/mman.h> 16 #include <asm/tlb.h> 17 #include <asm/tlbflush.h> 18 #include <asm/pgalloc.h> 19 20 static unsigned long page_table_shareable(struct vm_area_struct *svma, 21 struct vm_area_struct *vma, 22 unsigned long addr, pgoff_t idx) 23 { 24 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 25 svma->vm_start; 26 unsigned long sbase = saddr & PUD_MASK; 27 unsigned long s_end = sbase + PUD_SIZE; 28 29 /* Allow segments to share if only one is marked locked */ 30 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 31 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 32 33 /* 34 * match the virtual addresses, permission and the alignment of the 35 * page table page. 36 */ 37 if (pmd_index(addr) != pmd_index(saddr) || 38 vm_flags != svm_flags || 39 sbase < svma->vm_start || svma->vm_end < s_end) 40 return 0; 41 42 return saddr; 43 } 44 45 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 46 { 47 unsigned long base = addr & PUD_MASK; 48 unsigned long end = base + PUD_SIZE; 49 50 /* 51 * check on proper vm_flags and page table alignment 52 */ 53 if (vma->vm_flags & VM_MAYSHARE && 54 vma->vm_start <= base && end <= vma->vm_end) 55 return 1; 56 return 0; 57 } 58 59 /* 60 * search for a shareable pmd page for hugetlb. 61 */ 62 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 63 { 64 struct vm_area_struct *vma = find_vma(mm, addr); 65 struct address_space *mapping = vma->vm_file->f_mapping; 66 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 67 vma->vm_pgoff; 68 struct prio_tree_iter iter; 69 struct vm_area_struct *svma; 70 unsigned long saddr; 71 pte_t *spte = NULL; 72 73 if (!vma_shareable(vma, addr)) 74 return; 75 76 spin_lock(&mapping->i_mmap_lock); 77 vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) { 78 if (svma == vma) 79 continue; 80 81 saddr = page_table_shareable(svma, vma, addr, idx); 82 if (saddr) { 83 spte = huge_pte_offset(svma->vm_mm, saddr); 84 if (spte) { 85 get_page(virt_to_page(spte)); 86 break; 87 } 88 } 89 } 90 91 if (!spte) 92 goto out; 93 94 spin_lock(&mm->page_table_lock); 95 if (pud_none(*pud)) 96 pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); 97 else 98 put_page(virt_to_page(spte)); 99 spin_unlock(&mm->page_table_lock); 100 out: 101 spin_unlock(&mapping->i_mmap_lock); 102 } 103 104 /* 105 * unmap huge page backed by shared pte. 106 * 107 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 108 * indicated by page_count > 1, unmap is achieved by clearing pud and 109 * decrementing the ref count. If count == 1, the pte page is not shared. 110 * 111 * called with vma->vm_mm->page_table_lock held. 112 * 113 * returns: 1 successfully unmapped a shared pte page 114 * 0 the underlying pte page is not shared, or it is the last user 115 */ 116 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 117 { 118 pgd_t *pgd = pgd_offset(mm, *addr); 119 pud_t *pud = pud_offset(pgd, *addr); 120 121 BUG_ON(page_count(virt_to_page(ptep)) == 0); 122 if (page_count(virt_to_page(ptep)) == 1) 123 return 0; 124 125 pud_clear(pud); 126 put_page(virt_to_page(ptep)); 127 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 128 return 1; 129 } 130 131 pte_t *huge_pte_alloc(struct mm_struct *mm, 132 unsigned long addr, unsigned long sz) 133 { 134 pgd_t *pgd; 135 pud_t *pud; 136 pte_t *pte = NULL; 137 138 pgd = pgd_offset(mm, addr); 139 pud = pud_alloc(mm, pgd, addr); 140 if (pud) { 141 if (sz == PUD_SIZE) { 142 pte = (pte_t *)pud; 143 } else { 144 BUG_ON(sz != PMD_SIZE); 145 if (pud_none(*pud)) 146 huge_pmd_share(mm, addr, pud); 147 pte = (pte_t *) pmd_alloc(mm, pud, addr); 148 } 149 } 150 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 151 152 return pte; 153 } 154 155 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 156 { 157 pgd_t *pgd; 158 pud_t *pud; 159 pmd_t *pmd = NULL; 160 161 pgd = pgd_offset(mm, addr); 162 if (pgd_present(*pgd)) { 163 pud = pud_offset(pgd, addr); 164 if (pud_present(*pud)) { 165 if (pud_large(*pud)) 166 return (pte_t *)pud; 167 pmd = pmd_offset(pud, addr); 168 } 169 } 170 return (pte_t *) pmd; 171 } 172 173 #if 0 /* This is just for testing */ 174 struct page * 175 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 176 { 177 unsigned long start = address; 178 int length = 1; 179 int nr; 180 struct page *page; 181 struct vm_area_struct *vma; 182 183 vma = find_vma(mm, addr); 184 if (!vma || !is_vm_hugetlb_page(vma)) 185 return ERR_PTR(-EINVAL); 186 187 pte = huge_pte_offset(mm, address); 188 189 /* hugetlb should be locked, and hence, prefaulted */ 190 WARN_ON(!pte || pte_none(*pte)); 191 192 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; 193 194 WARN_ON(!PageHead(page)); 195 196 return page; 197 } 198 199 int pmd_huge(pmd_t pmd) 200 { 201 return 0; 202 } 203 204 int pud_huge(pud_t pud) 205 { 206 return 0; 207 } 208 209 struct page * 210 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 211 pmd_t *pmd, int write) 212 { 213 return NULL; 214 } 215 216 #else 217 218 struct page * 219 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 220 { 221 return ERR_PTR(-EINVAL); 222 } 223 224 int pmd_huge(pmd_t pmd) 225 { 226 return !!(pmd_val(pmd) & _PAGE_PSE); 227 } 228 229 int pud_huge(pud_t pud) 230 { 231 return !!(pud_val(pud) & _PAGE_PSE); 232 } 233 234 struct page * 235 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 236 pmd_t *pmd, int write) 237 { 238 struct page *page; 239 240 page = pte_page(*(pte_t *)pmd); 241 if (page) 242 page += ((address & ~PMD_MASK) >> PAGE_SHIFT); 243 return page; 244 } 245 246 struct page * 247 follow_huge_pud(struct mm_struct *mm, unsigned long address, 248 pud_t *pud, int write) 249 { 250 struct page *page; 251 252 page = pte_page(*(pte_t *)pud); 253 if (page) 254 page += ((address & ~PUD_MASK) >> PAGE_SHIFT); 255 return page; 256 } 257 258 #endif 259 260 /* x86_64 also uses this file */ 261 262 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 263 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, 264 unsigned long addr, unsigned long len, 265 unsigned long pgoff, unsigned long flags) 266 { 267 struct hstate *h = hstate_file(file); 268 struct mm_struct *mm = current->mm; 269 struct vm_area_struct *vma; 270 unsigned long start_addr; 271 272 if (len > mm->cached_hole_size) { 273 start_addr = mm->free_area_cache; 274 } else { 275 start_addr = TASK_UNMAPPED_BASE; 276 mm->cached_hole_size = 0; 277 } 278 279 full_search: 280 addr = ALIGN(start_addr, huge_page_size(h)); 281 282 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 283 /* At this point: (!vma || addr < vma->vm_end). */ 284 if (TASK_SIZE - len < addr) { 285 /* 286 * Start a new search - just in case we missed 287 * some holes. 288 */ 289 if (start_addr != TASK_UNMAPPED_BASE) { 290 start_addr = TASK_UNMAPPED_BASE; 291 mm->cached_hole_size = 0; 292 goto full_search; 293 } 294 return -ENOMEM; 295 } 296 if (!vma || addr + len <= vma->vm_start) { 297 mm->free_area_cache = addr + len; 298 return addr; 299 } 300 if (addr + mm->cached_hole_size < vma->vm_start) 301 mm->cached_hole_size = vma->vm_start - addr; 302 addr = ALIGN(vma->vm_end, huge_page_size(h)); 303 } 304 } 305 306 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, 307 unsigned long addr0, unsigned long len, 308 unsigned long pgoff, unsigned long flags) 309 { 310 struct hstate *h = hstate_file(file); 311 struct mm_struct *mm = current->mm; 312 struct vm_area_struct *vma, *prev_vma; 313 unsigned long base = mm->mmap_base, addr = addr0; 314 unsigned long largest_hole = mm->cached_hole_size; 315 int first_time = 1; 316 317 /* don't allow allocations above current base */ 318 if (mm->free_area_cache > base) 319 mm->free_area_cache = base; 320 321 if (len <= largest_hole) { 322 largest_hole = 0; 323 mm->free_area_cache = base; 324 } 325 try_again: 326 /* make sure it can fit in the remaining address space */ 327 if (mm->free_area_cache < len) 328 goto fail; 329 330 /* either no address requested or cant fit in requested address hole */ 331 addr = (mm->free_area_cache - len) & huge_page_mask(h); 332 do { 333 /* 334 * Lookup failure means no vma is above this address, 335 * i.e. return with success: 336 */ 337 if (!(vma = find_vma_prev(mm, addr, &prev_vma))) 338 return addr; 339 340 /* 341 * new region fits between prev_vma->vm_end and 342 * vma->vm_start, use it: 343 */ 344 if (addr + len <= vma->vm_start && 345 (!prev_vma || (addr >= prev_vma->vm_end))) { 346 /* remember the address as a hint for next time */ 347 mm->cached_hole_size = largest_hole; 348 return (mm->free_area_cache = addr); 349 } else { 350 /* pull free_area_cache down to the first hole */ 351 if (mm->free_area_cache == vma->vm_end) { 352 mm->free_area_cache = vma->vm_start; 353 mm->cached_hole_size = largest_hole; 354 } 355 } 356 357 /* remember the largest hole we saw so far */ 358 if (addr + largest_hole < vma->vm_start) 359 largest_hole = vma->vm_start - addr; 360 361 /* try just below the current vma->vm_start */ 362 addr = (vma->vm_start - len) & huge_page_mask(h); 363 } while (len <= vma->vm_start); 364 365 fail: 366 /* 367 * if hint left us with no space for the requested 368 * mapping then try again: 369 */ 370 if (first_time) { 371 mm->free_area_cache = base; 372 largest_hole = 0; 373 first_time = 0; 374 goto try_again; 375 } 376 /* 377 * A failed mmap() very likely causes application failure, 378 * so fall back to the bottom-up function here. This scenario 379 * can happen with large stack limits and large mmap() 380 * allocations. 381 */ 382 mm->free_area_cache = TASK_UNMAPPED_BASE; 383 mm->cached_hole_size = ~0UL; 384 addr = hugetlb_get_unmapped_area_bottomup(file, addr0, 385 len, pgoff, flags); 386 387 /* 388 * Restore the topdown base: 389 */ 390 mm->free_area_cache = base; 391 mm->cached_hole_size = ~0UL; 392 393 return addr; 394 } 395 396 unsigned long 397 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 398 unsigned long len, unsigned long pgoff, unsigned long flags) 399 { 400 struct hstate *h = hstate_file(file); 401 struct mm_struct *mm = current->mm; 402 struct vm_area_struct *vma; 403 404 if (len & ~huge_page_mask(h)) 405 return -EINVAL; 406 if (len > TASK_SIZE) 407 return -ENOMEM; 408 409 if (flags & MAP_FIXED) { 410 if (prepare_hugepage_range(file, addr, len)) 411 return -EINVAL; 412 return addr; 413 } 414 415 if (addr) { 416 addr = ALIGN(addr, huge_page_size(h)); 417 vma = find_vma(mm, addr); 418 if (TASK_SIZE - len >= addr && 419 (!vma || addr + len <= vma->vm_start)) 420 return addr; 421 } 422 if (mm->get_unmapped_area == arch_get_unmapped_area) 423 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 424 pgoff, flags); 425 else 426 return hugetlb_get_unmapped_area_topdown(file, addr, len, 427 pgoff, flags); 428 } 429 430 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/ 431 432 #ifdef CONFIG_X86_64 433 static __init int setup_hugepagesz(char *opt) 434 { 435 unsigned long ps = memparse(opt, &opt); 436 if (ps == PMD_SIZE) { 437 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); 438 } else if (ps == PUD_SIZE && cpu_has_gbpages) { 439 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); 440 } else { 441 printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n", 442 ps >> 20); 443 return 0; 444 } 445 return 1; 446 } 447 __setup("hugepagesz=", setup_hugepagesz); 448 #endif 449