xref: /openbmc/linux/arch/x86/mm/hugetlbpage.c (revision 7dd65feb)
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5  */
6 
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/err.h>
14 #include <linux/sysctl.h>
15 #include <asm/mman.h>
16 #include <asm/tlb.h>
17 #include <asm/tlbflush.h>
18 #include <asm/pgalloc.h>
19 
20 static unsigned long page_table_shareable(struct vm_area_struct *svma,
21 				struct vm_area_struct *vma,
22 				unsigned long addr, pgoff_t idx)
23 {
24 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
25 				svma->vm_start;
26 	unsigned long sbase = saddr & PUD_MASK;
27 	unsigned long s_end = sbase + PUD_SIZE;
28 
29 	/* Allow segments to share if only one is marked locked */
30 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
31 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
32 
33 	/*
34 	 * match the virtual addresses, permission and the alignment of the
35 	 * page table page.
36 	 */
37 	if (pmd_index(addr) != pmd_index(saddr) ||
38 	    vm_flags != svm_flags ||
39 	    sbase < svma->vm_start || svma->vm_end < s_end)
40 		return 0;
41 
42 	return saddr;
43 }
44 
45 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
46 {
47 	unsigned long base = addr & PUD_MASK;
48 	unsigned long end = base + PUD_SIZE;
49 
50 	/*
51 	 * check on proper vm_flags and page table alignment
52 	 */
53 	if (vma->vm_flags & VM_MAYSHARE &&
54 	    vma->vm_start <= base && end <= vma->vm_end)
55 		return 1;
56 	return 0;
57 }
58 
59 /*
60  * search for a shareable pmd page for hugetlb.
61  */
62 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
63 {
64 	struct vm_area_struct *vma = find_vma(mm, addr);
65 	struct address_space *mapping = vma->vm_file->f_mapping;
66 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
67 			vma->vm_pgoff;
68 	struct prio_tree_iter iter;
69 	struct vm_area_struct *svma;
70 	unsigned long saddr;
71 	pte_t *spte = NULL;
72 
73 	if (!vma_shareable(vma, addr))
74 		return;
75 
76 	spin_lock(&mapping->i_mmap_lock);
77 	vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
78 		if (svma == vma)
79 			continue;
80 
81 		saddr = page_table_shareable(svma, vma, addr, idx);
82 		if (saddr) {
83 			spte = huge_pte_offset(svma->vm_mm, saddr);
84 			if (spte) {
85 				get_page(virt_to_page(spte));
86 				break;
87 			}
88 		}
89 	}
90 
91 	if (!spte)
92 		goto out;
93 
94 	spin_lock(&mm->page_table_lock);
95 	if (pud_none(*pud))
96 		pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
97 	else
98 		put_page(virt_to_page(spte));
99 	spin_unlock(&mm->page_table_lock);
100 out:
101 	spin_unlock(&mapping->i_mmap_lock);
102 }
103 
104 /*
105  * unmap huge page backed by shared pte.
106  *
107  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
108  * indicated by page_count > 1, unmap is achieved by clearing pud and
109  * decrementing the ref count. If count == 1, the pte page is not shared.
110  *
111  * called with vma->vm_mm->page_table_lock held.
112  *
113  * returns: 1 successfully unmapped a shared pte page
114  *	    0 the underlying pte page is not shared, or it is the last user
115  */
116 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
117 {
118 	pgd_t *pgd = pgd_offset(mm, *addr);
119 	pud_t *pud = pud_offset(pgd, *addr);
120 
121 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
122 	if (page_count(virt_to_page(ptep)) == 1)
123 		return 0;
124 
125 	pud_clear(pud);
126 	put_page(virt_to_page(ptep));
127 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
128 	return 1;
129 }
130 
131 pte_t *huge_pte_alloc(struct mm_struct *mm,
132 			unsigned long addr, unsigned long sz)
133 {
134 	pgd_t *pgd;
135 	pud_t *pud;
136 	pte_t *pte = NULL;
137 
138 	pgd = pgd_offset(mm, addr);
139 	pud = pud_alloc(mm, pgd, addr);
140 	if (pud) {
141 		if (sz == PUD_SIZE) {
142 			pte = (pte_t *)pud;
143 		} else {
144 			BUG_ON(sz != PMD_SIZE);
145 			if (pud_none(*pud))
146 				huge_pmd_share(mm, addr, pud);
147 			pte = (pte_t *) pmd_alloc(mm, pud, addr);
148 		}
149 	}
150 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
151 
152 	return pte;
153 }
154 
155 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
156 {
157 	pgd_t *pgd;
158 	pud_t *pud;
159 	pmd_t *pmd = NULL;
160 
161 	pgd = pgd_offset(mm, addr);
162 	if (pgd_present(*pgd)) {
163 		pud = pud_offset(pgd, addr);
164 		if (pud_present(*pud)) {
165 			if (pud_large(*pud))
166 				return (pte_t *)pud;
167 			pmd = pmd_offset(pud, addr);
168 		}
169 	}
170 	return (pte_t *) pmd;
171 }
172 
173 #if 0	/* This is just for testing */
174 struct page *
175 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
176 {
177 	unsigned long start = address;
178 	int length = 1;
179 	int nr;
180 	struct page *page;
181 	struct vm_area_struct *vma;
182 
183 	vma = find_vma(mm, addr);
184 	if (!vma || !is_vm_hugetlb_page(vma))
185 		return ERR_PTR(-EINVAL);
186 
187 	pte = huge_pte_offset(mm, address);
188 
189 	/* hugetlb should be locked, and hence, prefaulted */
190 	WARN_ON(!pte || pte_none(*pte));
191 
192 	page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
193 
194 	WARN_ON(!PageHead(page));
195 
196 	return page;
197 }
198 
199 int pmd_huge(pmd_t pmd)
200 {
201 	return 0;
202 }
203 
204 int pud_huge(pud_t pud)
205 {
206 	return 0;
207 }
208 
209 struct page *
210 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
211 		pmd_t *pmd, int write)
212 {
213 	return NULL;
214 }
215 
216 #else
217 
218 struct page *
219 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
220 {
221 	return ERR_PTR(-EINVAL);
222 }
223 
224 int pmd_huge(pmd_t pmd)
225 {
226 	return !!(pmd_val(pmd) & _PAGE_PSE);
227 }
228 
229 int pud_huge(pud_t pud)
230 {
231 	return !!(pud_val(pud) & _PAGE_PSE);
232 }
233 
234 struct page *
235 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
236 		pmd_t *pmd, int write)
237 {
238 	struct page *page;
239 
240 	page = pte_page(*(pte_t *)pmd);
241 	if (page)
242 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
243 	return page;
244 }
245 
246 struct page *
247 follow_huge_pud(struct mm_struct *mm, unsigned long address,
248 		pud_t *pud, int write)
249 {
250 	struct page *page;
251 
252 	page = pte_page(*(pte_t *)pud);
253 	if (page)
254 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
255 	return page;
256 }
257 
258 #endif
259 
260 /* x86_64 also uses this file */
261 
262 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
263 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
264 		unsigned long addr, unsigned long len,
265 		unsigned long pgoff, unsigned long flags)
266 {
267 	struct hstate *h = hstate_file(file);
268 	struct mm_struct *mm = current->mm;
269 	struct vm_area_struct *vma;
270 	unsigned long start_addr;
271 
272 	if (len > mm->cached_hole_size) {
273 	        start_addr = mm->free_area_cache;
274 	} else {
275 	        start_addr = TASK_UNMAPPED_BASE;
276 	        mm->cached_hole_size = 0;
277 	}
278 
279 full_search:
280 	addr = ALIGN(start_addr, huge_page_size(h));
281 
282 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
283 		/* At this point:  (!vma || addr < vma->vm_end). */
284 		if (TASK_SIZE - len < addr) {
285 			/*
286 			 * Start a new search - just in case we missed
287 			 * some holes.
288 			 */
289 			if (start_addr != TASK_UNMAPPED_BASE) {
290 				start_addr = TASK_UNMAPPED_BASE;
291 				mm->cached_hole_size = 0;
292 				goto full_search;
293 			}
294 			return -ENOMEM;
295 		}
296 		if (!vma || addr + len <= vma->vm_start) {
297 			mm->free_area_cache = addr + len;
298 			return addr;
299 		}
300 		if (addr + mm->cached_hole_size < vma->vm_start)
301 		        mm->cached_hole_size = vma->vm_start - addr;
302 		addr = ALIGN(vma->vm_end, huge_page_size(h));
303 	}
304 }
305 
306 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
307 		unsigned long addr0, unsigned long len,
308 		unsigned long pgoff, unsigned long flags)
309 {
310 	struct hstate *h = hstate_file(file);
311 	struct mm_struct *mm = current->mm;
312 	struct vm_area_struct *vma, *prev_vma;
313 	unsigned long base = mm->mmap_base, addr = addr0;
314 	unsigned long largest_hole = mm->cached_hole_size;
315 	int first_time = 1;
316 
317 	/* don't allow allocations above current base */
318 	if (mm->free_area_cache > base)
319 		mm->free_area_cache = base;
320 
321 	if (len <= largest_hole) {
322 	        largest_hole = 0;
323 		mm->free_area_cache  = base;
324 	}
325 try_again:
326 	/* make sure it can fit in the remaining address space */
327 	if (mm->free_area_cache < len)
328 		goto fail;
329 
330 	/* either no address requested or cant fit in requested address hole */
331 	addr = (mm->free_area_cache - len) & huge_page_mask(h);
332 	do {
333 		/*
334 		 * Lookup failure means no vma is above this address,
335 		 * i.e. return with success:
336 		 */
337 		if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
338 			return addr;
339 
340 		/*
341 		 * new region fits between prev_vma->vm_end and
342 		 * vma->vm_start, use it:
343 		 */
344 		if (addr + len <= vma->vm_start &&
345 		            (!prev_vma || (addr >= prev_vma->vm_end))) {
346 			/* remember the address as a hint for next time */
347 		        mm->cached_hole_size = largest_hole;
348 		        return (mm->free_area_cache = addr);
349 		} else {
350 			/* pull free_area_cache down to the first hole */
351 		        if (mm->free_area_cache == vma->vm_end) {
352 				mm->free_area_cache = vma->vm_start;
353 				mm->cached_hole_size = largest_hole;
354 			}
355 		}
356 
357 		/* remember the largest hole we saw so far */
358 		if (addr + largest_hole < vma->vm_start)
359 		        largest_hole = vma->vm_start - addr;
360 
361 		/* try just below the current vma->vm_start */
362 		addr = (vma->vm_start - len) & huge_page_mask(h);
363 	} while (len <= vma->vm_start);
364 
365 fail:
366 	/*
367 	 * if hint left us with no space for the requested
368 	 * mapping then try again:
369 	 */
370 	if (first_time) {
371 		mm->free_area_cache = base;
372 		largest_hole = 0;
373 		first_time = 0;
374 		goto try_again;
375 	}
376 	/*
377 	 * A failed mmap() very likely causes application failure,
378 	 * so fall back to the bottom-up function here. This scenario
379 	 * can happen with large stack limits and large mmap()
380 	 * allocations.
381 	 */
382 	mm->free_area_cache = TASK_UNMAPPED_BASE;
383 	mm->cached_hole_size = ~0UL;
384 	addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
385 			len, pgoff, flags);
386 
387 	/*
388 	 * Restore the topdown base:
389 	 */
390 	mm->free_area_cache = base;
391 	mm->cached_hole_size = ~0UL;
392 
393 	return addr;
394 }
395 
396 unsigned long
397 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
398 		unsigned long len, unsigned long pgoff, unsigned long flags)
399 {
400 	struct hstate *h = hstate_file(file);
401 	struct mm_struct *mm = current->mm;
402 	struct vm_area_struct *vma;
403 
404 	if (len & ~huge_page_mask(h))
405 		return -EINVAL;
406 	if (len > TASK_SIZE)
407 		return -ENOMEM;
408 
409 	if (flags & MAP_FIXED) {
410 		if (prepare_hugepage_range(file, addr, len))
411 			return -EINVAL;
412 		return addr;
413 	}
414 
415 	if (addr) {
416 		addr = ALIGN(addr, huge_page_size(h));
417 		vma = find_vma(mm, addr);
418 		if (TASK_SIZE - len >= addr &&
419 		    (!vma || addr + len <= vma->vm_start))
420 			return addr;
421 	}
422 	if (mm->get_unmapped_area == arch_get_unmapped_area)
423 		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
424 				pgoff, flags);
425 	else
426 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
427 				pgoff, flags);
428 }
429 
430 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
431 
432 #ifdef CONFIG_X86_64
433 static __init int setup_hugepagesz(char *opt)
434 {
435 	unsigned long ps = memparse(opt, &opt);
436 	if (ps == PMD_SIZE) {
437 		hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
438 	} else if (ps == PUD_SIZE && cpu_has_gbpages) {
439 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
440 	} else {
441 		printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
442 			ps >> 20);
443 		return 0;
444 	}
445 	return 1;
446 }
447 __setup("hugepagesz=", setup_hugepagesz);
448 #endif
449