xref: /openbmc/linux/arch/x86/mm/fault.c (revision ff56535d)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 
16 #include <asm/traps.h>			/* dotraplinkage, ...		*/
17 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
18 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
19 
20 /*
21  * Page fault error code bits:
22  *
23  *   bit 0 ==	 0: no page found	1: protection fault
24  *   bit 1 ==	 0: read access		1: write access
25  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
26  *   bit 3 ==				1: use of reserved bit detected
27  *   bit 4 ==				1: fault was an instruction fetch
28  */
29 enum x86_pf_error_code {
30 
31 	PF_PROT		=		1 << 0,
32 	PF_WRITE	=		1 << 1,
33 	PF_USER		=		1 << 2,
34 	PF_RSVD		=		1 << 3,
35 	PF_INSTR	=		1 << 4,
36 };
37 
38 /*
39  * Returns 0 if mmiotrace is disabled, or if the fault is not
40  * handled by mmiotrace:
41  */
42 static inline int __kprobes
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 	if (unlikely(is_kmmio_active()))
46 		if (kmmio_handler(regs, addr) == 1)
47 			return -1;
48 	return 0;
49 }
50 
51 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
52 {
53 	int ret = 0;
54 
55 	/* kprobe_running() needs smp_processor_id() */
56 	if (kprobes_built_in() && !user_mode_vm(regs)) {
57 		preempt_disable();
58 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
59 			ret = 1;
60 		preempt_enable();
61 	}
62 
63 	return ret;
64 }
65 
66 /*
67  * Prefetch quirks:
68  *
69  * 32-bit mode:
70  *
71  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
72  *   Check that here and ignore it.
73  *
74  * 64-bit mode:
75  *
76  *   Sometimes the CPU reports invalid exceptions on prefetch.
77  *   Check that here and ignore it.
78  *
79  * Opcode checker based on code by Richard Brunner.
80  */
81 static inline int
82 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
83 		      unsigned char opcode, int *prefetch)
84 {
85 	unsigned char instr_hi = opcode & 0xf0;
86 	unsigned char instr_lo = opcode & 0x0f;
87 
88 	switch (instr_hi) {
89 	case 0x20:
90 	case 0x30:
91 		/*
92 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
93 		 * In X86_64 long mode, the CPU will signal invalid
94 		 * opcode if some of these prefixes are present so
95 		 * X86_64 will never get here anyway
96 		 */
97 		return ((instr_lo & 7) == 0x6);
98 #ifdef CONFIG_X86_64
99 	case 0x40:
100 		/*
101 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
102 		 * Need to figure out under what instruction mode the
103 		 * instruction was issued. Could check the LDT for lm,
104 		 * but for now it's good enough to assume that long
105 		 * mode only uses well known segments or kernel.
106 		 */
107 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
108 #endif
109 	case 0x60:
110 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
111 		return (instr_lo & 0xC) == 0x4;
112 	case 0xF0:
113 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
114 		return !instr_lo || (instr_lo>>1) == 1;
115 	case 0x00:
116 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
117 		if (probe_kernel_address(instr, opcode))
118 			return 0;
119 
120 		*prefetch = (instr_lo == 0xF) &&
121 			(opcode == 0x0D || opcode == 0x18);
122 		return 0;
123 	default:
124 		return 0;
125 	}
126 }
127 
128 static int
129 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
130 {
131 	unsigned char *max_instr;
132 	unsigned char *instr;
133 	int prefetch = 0;
134 
135 	/*
136 	 * If it was a exec (instruction fetch) fault on NX page, then
137 	 * do not ignore the fault:
138 	 */
139 	if (error_code & PF_INSTR)
140 		return 0;
141 
142 	instr = (void *)convert_ip_to_linear(current, regs);
143 	max_instr = instr + 15;
144 
145 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
146 		return 0;
147 
148 	while (instr < max_instr) {
149 		unsigned char opcode;
150 
151 		if (probe_kernel_address(instr, opcode))
152 			break;
153 
154 		instr++;
155 
156 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
157 			break;
158 	}
159 	return prefetch;
160 }
161 
162 static void
163 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
164 		     struct task_struct *tsk, int fault)
165 {
166 	unsigned lsb = 0;
167 	siginfo_t info;
168 
169 	info.si_signo	= si_signo;
170 	info.si_errno	= 0;
171 	info.si_code	= si_code;
172 	info.si_addr	= (void __user *)address;
173 	if (fault & VM_FAULT_HWPOISON_LARGE)
174 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
175 	if (fault & VM_FAULT_HWPOISON)
176 		lsb = PAGE_SHIFT;
177 	info.si_addr_lsb = lsb;
178 
179 	force_sig_info(si_signo, &info, tsk);
180 }
181 
182 DEFINE_SPINLOCK(pgd_lock);
183 LIST_HEAD(pgd_list);
184 
185 #ifdef CONFIG_X86_32
186 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
187 {
188 	unsigned index = pgd_index(address);
189 	pgd_t *pgd_k;
190 	pud_t *pud, *pud_k;
191 	pmd_t *pmd, *pmd_k;
192 
193 	pgd += index;
194 	pgd_k = init_mm.pgd + index;
195 
196 	if (!pgd_present(*pgd_k))
197 		return NULL;
198 
199 	/*
200 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
201 	 * and redundant with the set_pmd() on non-PAE. As would
202 	 * set_pud.
203 	 */
204 	pud = pud_offset(pgd, address);
205 	pud_k = pud_offset(pgd_k, address);
206 	if (!pud_present(*pud_k))
207 		return NULL;
208 
209 	pmd = pmd_offset(pud, address);
210 	pmd_k = pmd_offset(pud_k, address);
211 	if (!pmd_present(*pmd_k))
212 		return NULL;
213 
214 	if (!pmd_present(*pmd))
215 		set_pmd(pmd, *pmd_k);
216 	else
217 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
218 
219 	return pmd_k;
220 }
221 
222 void vmalloc_sync_all(void)
223 {
224 	unsigned long address;
225 
226 	if (SHARED_KERNEL_PMD)
227 		return;
228 
229 	for (address = VMALLOC_START & PMD_MASK;
230 	     address >= TASK_SIZE && address < FIXADDR_TOP;
231 	     address += PMD_SIZE) {
232 		struct page *page;
233 
234 		spin_lock(&pgd_lock);
235 		list_for_each_entry(page, &pgd_list, lru) {
236 			spinlock_t *pgt_lock;
237 			pmd_t *ret;
238 
239 			/* the pgt_lock only for Xen */
240 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
241 
242 			spin_lock(pgt_lock);
243 			ret = vmalloc_sync_one(page_address(page), address);
244 			spin_unlock(pgt_lock);
245 
246 			if (!ret)
247 				break;
248 		}
249 		spin_unlock(&pgd_lock);
250 	}
251 }
252 
253 /*
254  * 32-bit:
255  *
256  *   Handle a fault on the vmalloc or module mapping area
257  */
258 static noinline __kprobes int vmalloc_fault(unsigned long address)
259 {
260 	unsigned long pgd_paddr;
261 	pmd_t *pmd_k;
262 	pte_t *pte_k;
263 
264 	/* Make sure we are in vmalloc area: */
265 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
266 		return -1;
267 
268 	WARN_ON_ONCE(in_nmi());
269 
270 	/*
271 	 * Synchronize this task's top level page-table
272 	 * with the 'reference' page table.
273 	 *
274 	 * Do _not_ use "current" here. We might be inside
275 	 * an interrupt in the middle of a task switch..
276 	 */
277 	pgd_paddr = read_cr3();
278 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
279 	if (!pmd_k)
280 		return -1;
281 
282 	pte_k = pte_offset_kernel(pmd_k, address);
283 	if (!pte_present(*pte_k))
284 		return -1;
285 
286 	return 0;
287 }
288 
289 /*
290  * Did it hit the DOS screen memory VA from vm86 mode?
291  */
292 static inline void
293 check_v8086_mode(struct pt_regs *regs, unsigned long address,
294 		 struct task_struct *tsk)
295 {
296 	unsigned long bit;
297 
298 	if (!v8086_mode(regs))
299 		return;
300 
301 	bit = (address - 0xA0000) >> PAGE_SHIFT;
302 	if (bit < 32)
303 		tsk->thread.screen_bitmap |= 1 << bit;
304 }
305 
306 static bool low_pfn(unsigned long pfn)
307 {
308 	return pfn < max_low_pfn;
309 }
310 
311 static void dump_pagetable(unsigned long address)
312 {
313 	pgd_t *base = __va(read_cr3());
314 	pgd_t *pgd = &base[pgd_index(address)];
315 	pmd_t *pmd;
316 	pte_t *pte;
317 
318 #ifdef CONFIG_X86_PAE
319 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
320 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
321 		goto out;
322 #endif
323 	pmd = pmd_offset(pud_offset(pgd, address), address);
324 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
325 
326 	/*
327 	 * We must not directly access the pte in the highpte
328 	 * case if the page table is located in highmem.
329 	 * And let's rather not kmap-atomic the pte, just in case
330 	 * it's allocated already:
331 	 */
332 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
333 		goto out;
334 
335 	pte = pte_offset_kernel(pmd, address);
336 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
337 out:
338 	printk("\n");
339 }
340 
341 #else /* CONFIG_X86_64: */
342 
343 void vmalloc_sync_all(void)
344 {
345 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
346 }
347 
348 /*
349  * 64-bit:
350  *
351  *   Handle a fault on the vmalloc area
352  *
353  * This assumes no large pages in there.
354  */
355 static noinline __kprobes int vmalloc_fault(unsigned long address)
356 {
357 	pgd_t *pgd, *pgd_ref;
358 	pud_t *pud, *pud_ref;
359 	pmd_t *pmd, *pmd_ref;
360 	pte_t *pte, *pte_ref;
361 
362 	/* Make sure we are in vmalloc area: */
363 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
364 		return -1;
365 
366 	WARN_ON_ONCE(in_nmi());
367 
368 	/*
369 	 * Copy kernel mappings over when needed. This can also
370 	 * happen within a race in page table update. In the later
371 	 * case just flush:
372 	 */
373 	pgd = pgd_offset(current->active_mm, address);
374 	pgd_ref = pgd_offset_k(address);
375 	if (pgd_none(*pgd_ref))
376 		return -1;
377 
378 	if (pgd_none(*pgd))
379 		set_pgd(pgd, *pgd_ref);
380 	else
381 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
382 
383 	/*
384 	 * Below here mismatches are bugs because these lower tables
385 	 * are shared:
386 	 */
387 
388 	pud = pud_offset(pgd, address);
389 	pud_ref = pud_offset(pgd_ref, address);
390 	if (pud_none(*pud_ref))
391 		return -1;
392 
393 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
394 		BUG();
395 
396 	pmd = pmd_offset(pud, address);
397 	pmd_ref = pmd_offset(pud_ref, address);
398 	if (pmd_none(*pmd_ref))
399 		return -1;
400 
401 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
402 		BUG();
403 
404 	pte_ref = pte_offset_kernel(pmd_ref, address);
405 	if (!pte_present(*pte_ref))
406 		return -1;
407 
408 	pte = pte_offset_kernel(pmd, address);
409 
410 	/*
411 	 * Don't use pte_page here, because the mappings can point
412 	 * outside mem_map, and the NUMA hash lookup cannot handle
413 	 * that:
414 	 */
415 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
416 		BUG();
417 
418 	return 0;
419 }
420 
421 static const char errata93_warning[] =
422 KERN_ERR
423 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
424 "******* Working around it, but it may cause SEGVs or burn power.\n"
425 "******* Please consider a BIOS update.\n"
426 "******* Disabling USB legacy in the BIOS may also help.\n";
427 
428 /*
429  * No vm86 mode in 64-bit mode:
430  */
431 static inline void
432 check_v8086_mode(struct pt_regs *regs, unsigned long address,
433 		 struct task_struct *tsk)
434 {
435 }
436 
437 static int bad_address(void *p)
438 {
439 	unsigned long dummy;
440 
441 	return probe_kernel_address((unsigned long *)p, dummy);
442 }
443 
444 static void dump_pagetable(unsigned long address)
445 {
446 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
447 	pgd_t *pgd = base + pgd_index(address);
448 	pud_t *pud;
449 	pmd_t *pmd;
450 	pte_t *pte;
451 
452 	if (bad_address(pgd))
453 		goto bad;
454 
455 	printk("PGD %lx ", pgd_val(*pgd));
456 
457 	if (!pgd_present(*pgd))
458 		goto out;
459 
460 	pud = pud_offset(pgd, address);
461 	if (bad_address(pud))
462 		goto bad;
463 
464 	printk("PUD %lx ", pud_val(*pud));
465 	if (!pud_present(*pud) || pud_large(*pud))
466 		goto out;
467 
468 	pmd = pmd_offset(pud, address);
469 	if (bad_address(pmd))
470 		goto bad;
471 
472 	printk("PMD %lx ", pmd_val(*pmd));
473 	if (!pmd_present(*pmd) || pmd_large(*pmd))
474 		goto out;
475 
476 	pte = pte_offset_kernel(pmd, address);
477 	if (bad_address(pte))
478 		goto bad;
479 
480 	printk("PTE %lx", pte_val(*pte));
481 out:
482 	printk("\n");
483 	return;
484 bad:
485 	printk("BAD\n");
486 }
487 
488 #endif /* CONFIG_X86_64 */
489 
490 /*
491  * Workaround for K8 erratum #93 & buggy BIOS.
492  *
493  * BIOS SMM functions are required to use a specific workaround
494  * to avoid corruption of the 64bit RIP register on C stepping K8.
495  *
496  * A lot of BIOS that didn't get tested properly miss this.
497  *
498  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
499  * Try to work around it here.
500  *
501  * Note we only handle faults in kernel here.
502  * Does nothing on 32-bit.
503  */
504 static int is_errata93(struct pt_regs *regs, unsigned long address)
505 {
506 #ifdef CONFIG_X86_64
507 	if (address != regs->ip)
508 		return 0;
509 
510 	if ((address >> 32) != 0)
511 		return 0;
512 
513 	address |= 0xffffffffUL << 32;
514 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
515 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
516 		printk_once(errata93_warning);
517 		regs->ip = address;
518 		return 1;
519 	}
520 #endif
521 	return 0;
522 }
523 
524 /*
525  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
526  * to illegal addresses >4GB.
527  *
528  * We catch this in the page fault handler because these addresses
529  * are not reachable. Just detect this case and return.  Any code
530  * segment in LDT is compatibility mode.
531  */
532 static int is_errata100(struct pt_regs *regs, unsigned long address)
533 {
534 #ifdef CONFIG_X86_64
535 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
536 		return 1;
537 #endif
538 	return 0;
539 }
540 
541 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
542 {
543 #ifdef CONFIG_X86_F00F_BUG
544 	unsigned long nr;
545 
546 	/*
547 	 * Pentium F0 0F C7 C8 bug workaround:
548 	 */
549 	if (boot_cpu_data.f00f_bug) {
550 		nr = (address - idt_descr.address) >> 3;
551 
552 		if (nr == 6) {
553 			do_invalid_op(regs, 0);
554 			return 1;
555 		}
556 	}
557 #endif
558 	return 0;
559 }
560 
561 static const char nx_warning[] = KERN_CRIT
562 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
563 
564 static void
565 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
566 		unsigned long address)
567 {
568 	if (!oops_may_print())
569 		return;
570 
571 	if (error_code & PF_INSTR) {
572 		unsigned int level;
573 
574 		pte_t *pte = lookup_address(address, &level);
575 
576 		if (pte && pte_present(*pte) && !pte_exec(*pte))
577 			printk(nx_warning, current_uid());
578 	}
579 
580 	printk(KERN_ALERT "BUG: unable to handle kernel ");
581 	if (address < PAGE_SIZE)
582 		printk(KERN_CONT "NULL pointer dereference");
583 	else
584 		printk(KERN_CONT "paging request");
585 
586 	printk(KERN_CONT " at %p\n", (void *) address);
587 	printk(KERN_ALERT "IP:");
588 	printk_address(regs->ip, 1);
589 
590 	dump_pagetable(address);
591 }
592 
593 static noinline void
594 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
595 	    unsigned long address)
596 {
597 	struct task_struct *tsk;
598 	unsigned long flags;
599 	int sig;
600 
601 	flags = oops_begin();
602 	tsk = current;
603 	sig = SIGKILL;
604 
605 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
606 	       tsk->comm, address);
607 	dump_pagetable(address);
608 
609 	tsk->thread.cr2		= address;
610 	tsk->thread.trap_no	= 14;
611 	tsk->thread.error_code	= error_code;
612 
613 	if (__die("Bad pagetable", regs, error_code))
614 		sig = 0;
615 
616 	oops_end(flags, regs, sig);
617 }
618 
619 static noinline void
620 no_context(struct pt_regs *regs, unsigned long error_code,
621 	   unsigned long address)
622 {
623 	struct task_struct *tsk = current;
624 	unsigned long *stackend;
625 	unsigned long flags;
626 	int sig;
627 
628 	/* Are we prepared to handle this kernel fault? */
629 	if (fixup_exception(regs))
630 		return;
631 
632 	/*
633 	 * 32-bit:
634 	 *
635 	 *   Valid to do another page fault here, because if this fault
636 	 *   had been triggered by is_prefetch fixup_exception would have
637 	 *   handled it.
638 	 *
639 	 * 64-bit:
640 	 *
641 	 *   Hall of shame of CPU/BIOS bugs.
642 	 */
643 	if (is_prefetch(regs, error_code, address))
644 		return;
645 
646 	if (is_errata93(regs, address))
647 		return;
648 
649 	/*
650 	 * Oops. The kernel tried to access some bad page. We'll have to
651 	 * terminate things with extreme prejudice:
652 	 */
653 	flags = oops_begin();
654 
655 	show_fault_oops(regs, error_code, address);
656 
657 	stackend = end_of_stack(tsk);
658 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
659 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
660 
661 	tsk->thread.cr2		= address;
662 	tsk->thread.trap_no	= 14;
663 	tsk->thread.error_code	= error_code;
664 
665 	sig = SIGKILL;
666 	if (__die("Oops", regs, error_code))
667 		sig = 0;
668 
669 	/* Executive summary in case the body of the oops scrolled away */
670 	printk(KERN_EMERG "CR2: %016lx\n", address);
671 
672 	oops_end(flags, regs, sig);
673 }
674 
675 /*
676  * Print out info about fatal segfaults, if the show_unhandled_signals
677  * sysctl is set:
678  */
679 static inline void
680 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
681 		unsigned long address, struct task_struct *tsk)
682 {
683 	if (!unhandled_signal(tsk, SIGSEGV))
684 		return;
685 
686 	if (!printk_ratelimit())
687 		return;
688 
689 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
690 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
691 		tsk->comm, task_pid_nr(tsk), address,
692 		(void *)regs->ip, (void *)regs->sp, error_code);
693 
694 	print_vma_addr(KERN_CONT " in ", regs->ip);
695 
696 	printk(KERN_CONT "\n");
697 }
698 
699 static void
700 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
701 		       unsigned long address, int si_code)
702 {
703 	struct task_struct *tsk = current;
704 
705 	/* User mode accesses just cause a SIGSEGV */
706 	if (error_code & PF_USER) {
707 		/*
708 		 * It's possible to have interrupts off here:
709 		 */
710 		local_irq_enable();
711 
712 		/*
713 		 * Valid to do another page fault here because this one came
714 		 * from user space:
715 		 */
716 		if (is_prefetch(regs, error_code, address))
717 			return;
718 
719 		if (is_errata100(regs, address))
720 			return;
721 
722 		if (unlikely(show_unhandled_signals))
723 			show_signal_msg(regs, error_code, address, tsk);
724 
725 		/* Kernel addresses are always protection faults: */
726 		tsk->thread.cr2		= address;
727 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
728 		tsk->thread.trap_no	= 14;
729 
730 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
731 
732 		return;
733 	}
734 
735 	if (is_f00f_bug(regs, address))
736 		return;
737 
738 	no_context(regs, error_code, address);
739 }
740 
741 static noinline void
742 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
743 		     unsigned long address)
744 {
745 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
746 }
747 
748 static void
749 __bad_area(struct pt_regs *regs, unsigned long error_code,
750 	   unsigned long address, int si_code)
751 {
752 	struct mm_struct *mm = current->mm;
753 
754 	/*
755 	 * Something tried to access memory that isn't in our memory map..
756 	 * Fix it, but check if it's kernel or user first..
757 	 */
758 	up_read(&mm->mmap_sem);
759 
760 	__bad_area_nosemaphore(regs, error_code, address, si_code);
761 }
762 
763 static noinline void
764 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
765 {
766 	__bad_area(regs, error_code, address, SEGV_MAPERR);
767 }
768 
769 static noinline void
770 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
771 		      unsigned long address)
772 {
773 	__bad_area(regs, error_code, address, SEGV_ACCERR);
774 }
775 
776 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
777 static void
778 out_of_memory(struct pt_regs *regs, unsigned long error_code,
779 	      unsigned long address)
780 {
781 	/*
782 	 * We ran out of memory, call the OOM killer, and return the userspace
783 	 * (which will retry the fault, or kill us if we got oom-killed):
784 	 */
785 	up_read(&current->mm->mmap_sem);
786 
787 	pagefault_out_of_memory();
788 }
789 
790 static void
791 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
792 	  unsigned int fault)
793 {
794 	struct task_struct *tsk = current;
795 	struct mm_struct *mm = tsk->mm;
796 	int code = BUS_ADRERR;
797 
798 	up_read(&mm->mmap_sem);
799 
800 	/* Kernel mode? Handle exceptions or die: */
801 	if (!(error_code & PF_USER)) {
802 		no_context(regs, error_code, address);
803 		return;
804 	}
805 
806 	/* User-space => ok to do another page fault: */
807 	if (is_prefetch(regs, error_code, address))
808 		return;
809 
810 	tsk->thread.cr2		= address;
811 	tsk->thread.error_code	= error_code;
812 	tsk->thread.trap_no	= 14;
813 
814 #ifdef CONFIG_MEMORY_FAILURE
815 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
816 		printk(KERN_ERR
817 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
818 			tsk->comm, tsk->pid, address);
819 		code = BUS_MCEERR_AR;
820 	}
821 #endif
822 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
823 }
824 
825 static noinline void
826 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
827 	       unsigned long address, unsigned int fault)
828 {
829 	if (fault & VM_FAULT_OOM) {
830 		/* Kernel mode? Handle exceptions or die: */
831 		if (!(error_code & PF_USER)) {
832 			up_read(&current->mm->mmap_sem);
833 			no_context(regs, error_code, address);
834 			return;
835 		}
836 
837 		out_of_memory(regs, error_code, address);
838 	} else {
839 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
840 			     VM_FAULT_HWPOISON_LARGE))
841 			do_sigbus(regs, error_code, address, fault);
842 		else
843 			BUG();
844 	}
845 }
846 
847 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
848 {
849 	if ((error_code & PF_WRITE) && !pte_write(*pte))
850 		return 0;
851 
852 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
853 		return 0;
854 
855 	return 1;
856 }
857 
858 /*
859  * Handle a spurious fault caused by a stale TLB entry.
860  *
861  * This allows us to lazily refresh the TLB when increasing the
862  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
863  * eagerly is very expensive since that implies doing a full
864  * cross-processor TLB flush, even if no stale TLB entries exist
865  * on other processors.
866  *
867  * There are no security implications to leaving a stale TLB when
868  * increasing the permissions on a page.
869  */
870 static noinline __kprobes int
871 spurious_fault(unsigned long error_code, unsigned long address)
872 {
873 	pgd_t *pgd;
874 	pud_t *pud;
875 	pmd_t *pmd;
876 	pte_t *pte;
877 	int ret;
878 
879 	/* Reserved-bit violation or user access to kernel space? */
880 	if (error_code & (PF_USER | PF_RSVD))
881 		return 0;
882 
883 	pgd = init_mm.pgd + pgd_index(address);
884 	if (!pgd_present(*pgd))
885 		return 0;
886 
887 	pud = pud_offset(pgd, address);
888 	if (!pud_present(*pud))
889 		return 0;
890 
891 	if (pud_large(*pud))
892 		return spurious_fault_check(error_code, (pte_t *) pud);
893 
894 	pmd = pmd_offset(pud, address);
895 	if (!pmd_present(*pmd))
896 		return 0;
897 
898 	if (pmd_large(*pmd))
899 		return spurious_fault_check(error_code, (pte_t *) pmd);
900 
901 	/*
902 	 * Note: don't use pte_present() here, since it returns true
903 	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
904 	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
905 	 * when CONFIG_DEBUG_PAGEALLOC is used.
906 	 */
907 	pte = pte_offset_kernel(pmd, address);
908 	if (!(pte_flags(*pte) & _PAGE_PRESENT))
909 		return 0;
910 
911 	ret = spurious_fault_check(error_code, pte);
912 	if (!ret)
913 		return 0;
914 
915 	/*
916 	 * Make sure we have permissions in PMD.
917 	 * If not, then there's a bug in the page tables:
918 	 */
919 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
920 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
921 
922 	return ret;
923 }
924 
925 int show_unhandled_signals = 1;
926 
927 static inline int
928 access_error(unsigned long error_code, struct vm_area_struct *vma)
929 {
930 	if (error_code & PF_WRITE) {
931 		/* write, present and write, not present: */
932 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
933 			return 1;
934 		return 0;
935 	}
936 
937 	/* read, present: */
938 	if (unlikely(error_code & PF_PROT))
939 		return 1;
940 
941 	/* read, not present: */
942 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
943 		return 1;
944 
945 	return 0;
946 }
947 
948 static int fault_in_kernel_space(unsigned long address)
949 {
950 	return address >= TASK_SIZE_MAX;
951 }
952 
953 /*
954  * This routine handles page faults.  It determines the address,
955  * and the problem, and then passes it off to one of the appropriate
956  * routines.
957  */
958 dotraplinkage void __kprobes
959 do_page_fault(struct pt_regs *regs, unsigned long error_code)
960 {
961 	struct vm_area_struct *vma;
962 	struct task_struct *tsk;
963 	unsigned long address;
964 	struct mm_struct *mm;
965 	int fault;
966 	int write = error_code & PF_WRITE;
967 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
968 					(write ? FAULT_FLAG_WRITE : 0);
969 
970 	tsk = current;
971 	mm = tsk->mm;
972 
973 	/* Get the faulting address: */
974 	address = read_cr2();
975 
976 	/*
977 	 * Detect and handle instructions that would cause a page fault for
978 	 * both a tracked kernel page and a userspace page.
979 	 */
980 	if (kmemcheck_active(regs))
981 		kmemcheck_hide(regs);
982 	prefetchw(&mm->mmap_sem);
983 
984 	if (unlikely(kmmio_fault(regs, address)))
985 		return;
986 
987 	/*
988 	 * We fault-in kernel-space virtual memory on-demand. The
989 	 * 'reference' page table is init_mm.pgd.
990 	 *
991 	 * NOTE! We MUST NOT take any locks for this case. We may
992 	 * be in an interrupt or a critical region, and should
993 	 * only copy the information from the master page table,
994 	 * nothing more.
995 	 *
996 	 * This verifies that the fault happens in kernel space
997 	 * (error_code & 4) == 0, and that the fault was not a
998 	 * protection error (error_code & 9) == 0.
999 	 */
1000 	if (unlikely(fault_in_kernel_space(address))) {
1001 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1002 			if (vmalloc_fault(address) >= 0)
1003 				return;
1004 
1005 			if (kmemcheck_fault(regs, address, error_code))
1006 				return;
1007 		}
1008 
1009 		/* Can handle a stale RO->RW TLB: */
1010 		if (spurious_fault(error_code, address))
1011 			return;
1012 
1013 		/* kprobes don't want to hook the spurious faults: */
1014 		if (notify_page_fault(regs))
1015 			return;
1016 		/*
1017 		 * Don't take the mm semaphore here. If we fixup a prefetch
1018 		 * fault we could otherwise deadlock:
1019 		 */
1020 		bad_area_nosemaphore(regs, error_code, address);
1021 
1022 		return;
1023 	}
1024 
1025 	/* kprobes don't want to hook the spurious faults: */
1026 	if (unlikely(notify_page_fault(regs)))
1027 		return;
1028 	/*
1029 	 * It's safe to allow irq's after cr2 has been saved and the
1030 	 * vmalloc fault has been handled.
1031 	 *
1032 	 * User-mode registers count as a user access even for any
1033 	 * potential system fault or CPU buglet:
1034 	 */
1035 	if (user_mode_vm(regs)) {
1036 		local_irq_enable();
1037 		error_code |= PF_USER;
1038 	} else {
1039 		if (regs->flags & X86_EFLAGS_IF)
1040 			local_irq_enable();
1041 	}
1042 
1043 	if (unlikely(error_code & PF_RSVD))
1044 		pgtable_bad(regs, error_code, address);
1045 
1046 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1047 
1048 	/*
1049 	 * If we're in an interrupt, have no user context or are running
1050 	 * in an atomic region then we must not take the fault:
1051 	 */
1052 	if (unlikely(in_atomic() || !mm)) {
1053 		bad_area_nosemaphore(regs, error_code, address);
1054 		return;
1055 	}
1056 
1057 	/*
1058 	 * When running in the kernel we expect faults to occur only to
1059 	 * addresses in user space.  All other faults represent errors in
1060 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1061 	 * case of an erroneous fault occurring in a code path which already
1062 	 * holds mmap_sem we will deadlock attempting to validate the fault
1063 	 * against the address space.  Luckily the kernel only validly
1064 	 * references user space from well defined areas of code, which are
1065 	 * listed in the exceptions table.
1066 	 *
1067 	 * As the vast majority of faults will be valid we will only perform
1068 	 * the source reference check when there is a possibility of a
1069 	 * deadlock. Attempt to lock the address space, if we cannot we then
1070 	 * validate the source. If this is invalid we can skip the address
1071 	 * space check, thus avoiding the deadlock:
1072 	 */
1073 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1074 		if ((error_code & PF_USER) == 0 &&
1075 		    !search_exception_tables(regs->ip)) {
1076 			bad_area_nosemaphore(regs, error_code, address);
1077 			return;
1078 		}
1079 retry:
1080 		down_read(&mm->mmap_sem);
1081 	} else {
1082 		/*
1083 		 * The above down_read_trylock() might have succeeded in
1084 		 * which case we'll have missed the might_sleep() from
1085 		 * down_read():
1086 		 */
1087 		might_sleep();
1088 	}
1089 
1090 	vma = find_vma(mm, address);
1091 	if (unlikely(!vma)) {
1092 		bad_area(regs, error_code, address);
1093 		return;
1094 	}
1095 	if (likely(vma->vm_start <= address))
1096 		goto good_area;
1097 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1098 		bad_area(regs, error_code, address);
1099 		return;
1100 	}
1101 	if (error_code & PF_USER) {
1102 		/*
1103 		 * Accessing the stack below %sp is always a bug.
1104 		 * The large cushion allows instructions like enter
1105 		 * and pusha to work. ("enter $65535, $31" pushes
1106 		 * 32 pointers and then decrements %sp by 65535.)
1107 		 */
1108 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1109 			bad_area(regs, error_code, address);
1110 			return;
1111 		}
1112 	}
1113 	if (unlikely(expand_stack(vma, address))) {
1114 		bad_area(regs, error_code, address);
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * Ok, we have a good vm_area for this memory access, so
1120 	 * we can handle it..
1121 	 */
1122 good_area:
1123 	if (unlikely(access_error(error_code, vma))) {
1124 		bad_area_access_error(regs, error_code, address);
1125 		return;
1126 	}
1127 
1128 	/*
1129 	 * If for any reason at all we couldn't handle the fault,
1130 	 * make sure we exit gracefully rather than endlessly redo
1131 	 * the fault:
1132 	 */
1133 	fault = handle_mm_fault(mm, vma, address, flags);
1134 
1135 	if (unlikely(fault & VM_FAULT_ERROR)) {
1136 		mm_fault_error(regs, error_code, address, fault);
1137 		return;
1138 	}
1139 
1140 	/*
1141 	 * Major/minor page fault accounting is only done on the
1142 	 * initial attempt. If we go through a retry, it is extremely
1143 	 * likely that the page will be found in page cache at that point.
1144 	 */
1145 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1146 		if (fault & VM_FAULT_MAJOR) {
1147 			tsk->maj_flt++;
1148 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1149 				      regs, address);
1150 		} else {
1151 			tsk->min_flt++;
1152 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1153 				      regs, address);
1154 		}
1155 		if (fault & VM_FAULT_RETRY) {
1156 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1157 			 * of starvation. */
1158 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1159 			goto retry;
1160 		}
1161 	}
1162 
1163 	check_v8086_mode(regs, address, tsk);
1164 
1165 	up_read(&mm->mmap_sem);
1166 }
1167