xref: /openbmc/linux/arch/x86/mm/fault.c (revision fd589a8f)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_counter.h>		/* perf_swcounter_event		*/
14 
15 #include <asm/traps.h>			/* dotraplinkage, ...		*/
16 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
17 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
18 
19 /*
20  * Page fault error code bits:
21  *
22  *   bit 0 ==	 0: no page found	1: protection fault
23  *   bit 1 ==	 0: read access		1: write access
24  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
25  *   bit 3 ==				1: use of reserved bit detected
26  *   bit 4 ==				1: fault was an instruction fetch
27  */
28 enum x86_pf_error_code {
29 
30 	PF_PROT		=		1 << 0,
31 	PF_WRITE	=		1 << 1,
32 	PF_USER		=		1 << 2,
33 	PF_RSVD		=		1 << 3,
34 	PF_INSTR	=		1 << 4,
35 };
36 
37 /*
38  * Returns 0 if mmiotrace is disabled, or if the fault is not
39  * handled by mmiotrace:
40  */
41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
42 {
43 	if (unlikely(is_kmmio_active()))
44 		if (kmmio_handler(regs, addr) == 1)
45 			return -1;
46 	return 0;
47 }
48 
49 static inline int notify_page_fault(struct pt_regs *regs)
50 {
51 	int ret = 0;
52 
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (kprobes_built_in() && !user_mode_vm(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
57 			ret = 1;
58 		preempt_enable();
59 	}
60 
61 	return ret;
62 }
63 
64 /*
65  * Prefetch quirks:
66  *
67  * 32-bit mode:
68  *
69  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * 64-bit mode:
73  *
74  *   Sometimes the CPU reports invalid exceptions on prefetch.
75  *   Check that here and ignore it.
76  *
77  * Opcode checker based on code by Richard Brunner.
78  */
79 static inline int
80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
81 		      unsigned char opcode, int *prefetch)
82 {
83 	unsigned char instr_hi = opcode & 0xf0;
84 	unsigned char instr_lo = opcode & 0x0f;
85 
86 	switch (instr_hi) {
87 	case 0x20:
88 	case 0x30:
89 		/*
90 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 		 * In X86_64 long mode, the CPU will signal invalid
92 		 * opcode if some of these prefixes are present so
93 		 * X86_64 will never get here anyway
94 		 */
95 		return ((instr_lo & 7) == 0x6);
96 #ifdef CONFIG_X86_64
97 	case 0x40:
98 		/*
99 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 		 * Need to figure out under what instruction mode the
101 		 * instruction was issued. Could check the LDT for lm,
102 		 * but for now it's good enough to assume that long
103 		 * mode only uses well known segments or kernel.
104 		 */
105 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
106 #endif
107 	case 0x60:
108 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
109 		return (instr_lo & 0xC) == 0x4;
110 	case 0xF0:
111 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 		return !instr_lo || (instr_lo>>1) == 1;
113 	case 0x00:
114 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
115 		if (probe_kernel_address(instr, opcode))
116 			return 0;
117 
118 		*prefetch = (instr_lo == 0xF) &&
119 			(opcode == 0x0D || opcode == 0x18);
120 		return 0;
121 	default:
122 		return 0;
123 	}
124 }
125 
126 static int
127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
128 {
129 	unsigned char *max_instr;
130 	unsigned char *instr;
131 	int prefetch = 0;
132 
133 	/*
134 	 * If it was a exec (instruction fetch) fault on NX page, then
135 	 * do not ignore the fault:
136 	 */
137 	if (error_code & PF_INSTR)
138 		return 0;
139 
140 	instr = (void *)convert_ip_to_linear(current, regs);
141 	max_instr = instr + 15;
142 
143 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
144 		return 0;
145 
146 	while (instr < max_instr) {
147 		unsigned char opcode;
148 
149 		if (probe_kernel_address(instr, opcode))
150 			break;
151 
152 		instr++;
153 
154 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
155 			break;
156 	}
157 	return prefetch;
158 }
159 
160 static void
161 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
162 		     struct task_struct *tsk)
163 {
164 	siginfo_t info;
165 
166 	info.si_signo	= si_signo;
167 	info.si_errno	= 0;
168 	info.si_code	= si_code;
169 	info.si_addr	= (void __user *)address;
170 
171 	force_sig_info(si_signo, &info, tsk);
172 }
173 
174 DEFINE_SPINLOCK(pgd_lock);
175 LIST_HEAD(pgd_list);
176 
177 #ifdef CONFIG_X86_32
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
179 {
180 	unsigned index = pgd_index(address);
181 	pgd_t *pgd_k;
182 	pud_t *pud, *pud_k;
183 	pmd_t *pmd, *pmd_k;
184 
185 	pgd += index;
186 	pgd_k = init_mm.pgd + index;
187 
188 	if (!pgd_present(*pgd_k))
189 		return NULL;
190 
191 	/*
192 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 	 * and redundant with the set_pmd() on non-PAE. As would
194 	 * set_pud.
195 	 */
196 	pud = pud_offset(pgd, address);
197 	pud_k = pud_offset(pgd_k, address);
198 	if (!pud_present(*pud_k))
199 		return NULL;
200 
201 	pmd = pmd_offset(pud, address);
202 	pmd_k = pmd_offset(pud_k, address);
203 	if (!pmd_present(*pmd_k))
204 		return NULL;
205 
206 	if (!pmd_present(*pmd))
207 		set_pmd(pmd, *pmd_k);
208 	else
209 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
210 
211 	return pmd_k;
212 }
213 
214 void vmalloc_sync_all(void)
215 {
216 	unsigned long address;
217 
218 	if (SHARED_KERNEL_PMD)
219 		return;
220 
221 	for (address = VMALLOC_START & PMD_MASK;
222 	     address >= TASK_SIZE && address < FIXADDR_TOP;
223 	     address += PMD_SIZE) {
224 
225 		unsigned long flags;
226 		struct page *page;
227 
228 		spin_lock_irqsave(&pgd_lock, flags);
229 		list_for_each_entry(page, &pgd_list, lru) {
230 			if (!vmalloc_sync_one(page_address(page), address))
231 				break;
232 		}
233 		spin_unlock_irqrestore(&pgd_lock, flags);
234 	}
235 }
236 
237 /*
238  * 32-bit:
239  *
240  *   Handle a fault on the vmalloc or module mapping area
241  */
242 static noinline int vmalloc_fault(unsigned long address)
243 {
244 	unsigned long pgd_paddr;
245 	pmd_t *pmd_k;
246 	pte_t *pte_k;
247 
248 	/* Make sure we are in vmalloc area: */
249 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
250 		return -1;
251 
252 	/*
253 	 * Synchronize this task's top level page-table
254 	 * with the 'reference' page table.
255 	 *
256 	 * Do _not_ use "current" here. We might be inside
257 	 * an interrupt in the middle of a task switch..
258 	 */
259 	pgd_paddr = read_cr3();
260 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
261 	if (!pmd_k)
262 		return -1;
263 
264 	pte_k = pte_offset_kernel(pmd_k, address);
265 	if (!pte_present(*pte_k))
266 		return -1;
267 
268 	return 0;
269 }
270 
271 /*
272  * Did it hit the DOS screen memory VA from vm86 mode?
273  */
274 static inline void
275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 		 struct task_struct *tsk)
277 {
278 	unsigned long bit;
279 
280 	if (!v8086_mode(regs))
281 		return;
282 
283 	bit = (address - 0xA0000) >> PAGE_SHIFT;
284 	if (bit < 32)
285 		tsk->thread.screen_bitmap |= 1 << bit;
286 }
287 
288 static bool low_pfn(unsigned long pfn)
289 {
290 	return pfn < max_low_pfn;
291 }
292 
293 static void dump_pagetable(unsigned long address)
294 {
295 	pgd_t *base = __va(read_cr3());
296 	pgd_t *pgd = &base[pgd_index(address)];
297 	pmd_t *pmd;
298 	pte_t *pte;
299 
300 #ifdef CONFIG_X86_PAE
301 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
302 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
303 		goto out;
304 #endif
305 	pmd = pmd_offset(pud_offset(pgd, address), address);
306 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
307 
308 	/*
309 	 * We must not directly access the pte in the highpte
310 	 * case if the page table is located in highmem.
311 	 * And let's rather not kmap-atomic the pte, just in case
312 	 * it's allocated already:
313 	 */
314 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
315 		goto out;
316 
317 	pte = pte_offset_kernel(pmd, address);
318 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
319 out:
320 	printk("\n");
321 }
322 
323 #else /* CONFIG_X86_64: */
324 
325 void vmalloc_sync_all(void)
326 {
327 	unsigned long address;
328 
329 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
330 	     address += PGDIR_SIZE) {
331 
332 		const pgd_t *pgd_ref = pgd_offset_k(address);
333 		unsigned long flags;
334 		struct page *page;
335 
336 		if (pgd_none(*pgd_ref))
337 			continue;
338 
339 		spin_lock_irqsave(&pgd_lock, flags);
340 		list_for_each_entry(page, &pgd_list, lru) {
341 			pgd_t *pgd;
342 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
343 			if (pgd_none(*pgd))
344 				set_pgd(pgd, *pgd_ref);
345 			else
346 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
347 		}
348 		spin_unlock_irqrestore(&pgd_lock, flags);
349 	}
350 }
351 
352 /*
353  * 64-bit:
354  *
355  *   Handle a fault on the vmalloc area
356  *
357  * This assumes no large pages in there.
358  */
359 static noinline int vmalloc_fault(unsigned long address)
360 {
361 	pgd_t *pgd, *pgd_ref;
362 	pud_t *pud, *pud_ref;
363 	pmd_t *pmd, *pmd_ref;
364 	pte_t *pte, *pte_ref;
365 
366 	/* Make sure we are in vmalloc area: */
367 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
368 		return -1;
369 
370 	/*
371 	 * Copy kernel mappings over when needed. This can also
372 	 * happen within a race in page table update. In the later
373 	 * case just flush:
374 	 */
375 	pgd = pgd_offset(current->active_mm, address);
376 	pgd_ref = pgd_offset_k(address);
377 	if (pgd_none(*pgd_ref))
378 		return -1;
379 
380 	if (pgd_none(*pgd))
381 		set_pgd(pgd, *pgd_ref);
382 	else
383 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384 
385 	/*
386 	 * Below here mismatches are bugs because these lower tables
387 	 * are shared:
388 	 */
389 
390 	pud = pud_offset(pgd, address);
391 	pud_ref = pud_offset(pgd_ref, address);
392 	if (pud_none(*pud_ref))
393 		return -1;
394 
395 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 		BUG();
397 
398 	pmd = pmd_offset(pud, address);
399 	pmd_ref = pmd_offset(pud_ref, address);
400 	if (pmd_none(*pmd_ref))
401 		return -1;
402 
403 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 		BUG();
405 
406 	pte_ref = pte_offset_kernel(pmd_ref, address);
407 	if (!pte_present(*pte_ref))
408 		return -1;
409 
410 	pte = pte_offset_kernel(pmd, address);
411 
412 	/*
413 	 * Don't use pte_page here, because the mappings can point
414 	 * outside mem_map, and the NUMA hash lookup cannot handle
415 	 * that:
416 	 */
417 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 		BUG();
419 
420 	return 0;
421 }
422 
423 static const char errata93_warning[] =
424 KERN_ERR
425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426 "******* Working around it, but it may cause SEGVs or burn power.\n"
427 "******* Please consider a BIOS update.\n"
428 "******* Disabling USB legacy in the BIOS may also help.\n";
429 
430 /*
431  * No vm86 mode in 64-bit mode:
432  */
433 static inline void
434 check_v8086_mode(struct pt_regs *regs, unsigned long address,
435 		 struct task_struct *tsk)
436 {
437 }
438 
439 static int bad_address(void *p)
440 {
441 	unsigned long dummy;
442 
443 	return probe_kernel_address((unsigned long *)p, dummy);
444 }
445 
446 static void dump_pagetable(unsigned long address)
447 {
448 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
449 	pgd_t *pgd = base + pgd_index(address);
450 	pud_t *pud;
451 	pmd_t *pmd;
452 	pte_t *pte;
453 
454 	if (bad_address(pgd))
455 		goto bad;
456 
457 	printk("PGD %lx ", pgd_val(*pgd));
458 
459 	if (!pgd_present(*pgd))
460 		goto out;
461 
462 	pud = pud_offset(pgd, address);
463 	if (bad_address(pud))
464 		goto bad;
465 
466 	printk("PUD %lx ", pud_val(*pud));
467 	if (!pud_present(*pud) || pud_large(*pud))
468 		goto out;
469 
470 	pmd = pmd_offset(pud, address);
471 	if (bad_address(pmd))
472 		goto bad;
473 
474 	printk("PMD %lx ", pmd_val(*pmd));
475 	if (!pmd_present(*pmd) || pmd_large(*pmd))
476 		goto out;
477 
478 	pte = pte_offset_kernel(pmd, address);
479 	if (bad_address(pte))
480 		goto bad;
481 
482 	printk("PTE %lx", pte_val(*pte));
483 out:
484 	printk("\n");
485 	return;
486 bad:
487 	printk("BAD\n");
488 }
489 
490 #endif /* CONFIG_X86_64 */
491 
492 /*
493  * Workaround for K8 erratum #93 & buggy BIOS.
494  *
495  * BIOS SMM functions are required to use a specific workaround
496  * to avoid corruption of the 64bit RIP register on C stepping K8.
497  *
498  * A lot of BIOS that didn't get tested properly miss this.
499  *
500  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501  * Try to work around it here.
502  *
503  * Note we only handle faults in kernel here.
504  * Does nothing on 32-bit.
505  */
506 static int is_errata93(struct pt_regs *regs, unsigned long address)
507 {
508 #ifdef CONFIG_X86_64
509 	if (address != regs->ip)
510 		return 0;
511 
512 	if ((address >> 32) != 0)
513 		return 0;
514 
515 	address |= 0xffffffffUL << 32;
516 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
517 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
518 		printk_once(errata93_warning);
519 		regs->ip = address;
520 		return 1;
521 	}
522 #endif
523 	return 0;
524 }
525 
526 /*
527  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528  * to illegal addresses >4GB.
529  *
530  * We catch this in the page fault handler because these addresses
531  * are not reachable. Just detect this case and return.  Any code
532  * segment in LDT is compatibility mode.
533  */
534 static int is_errata100(struct pt_regs *regs, unsigned long address)
535 {
536 #ifdef CONFIG_X86_64
537 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
538 		return 1;
539 #endif
540 	return 0;
541 }
542 
543 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
544 {
545 #ifdef CONFIG_X86_F00F_BUG
546 	unsigned long nr;
547 
548 	/*
549 	 * Pentium F0 0F C7 C8 bug workaround:
550 	 */
551 	if (boot_cpu_data.f00f_bug) {
552 		nr = (address - idt_descr.address) >> 3;
553 
554 		if (nr == 6) {
555 			do_invalid_op(regs, 0);
556 			return 1;
557 		}
558 	}
559 #endif
560 	return 0;
561 }
562 
563 static const char nx_warning[] = KERN_CRIT
564 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
565 
566 static void
567 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
568 		unsigned long address)
569 {
570 	if (!oops_may_print())
571 		return;
572 
573 	if (error_code & PF_INSTR) {
574 		unsigned int level;
575 
576 		pte_t *pte = lookup_address(address, &level);
577 
578 		if (pte && pte_present(*pte) && !pte_exec(*pte))
579 			printk(nx_warning, current_uid());
580 	}
581 
582 	printk(KERN_ALERT "BUG: unable to handle kernel ");
583 	if (address < PAGE_SIZE)
584 		printk(KERN_CONT "NULL pointer dereference");
585 	else
586 		printk(KERN_CONT "paging request");
587 
588 	printk(KERN_CONT " at %p\n", (void *) address);
589 	printk(KERN_ALERT "IP:");
590 	printk_address(regs->ip, 1);
591 
592 	dump_pagetable(address);
593 }
594 
595 static noinline void
596 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
597 	    unsigned long address)
598 {
599 	struct task_struct *tsk;
600 	unsigned long flags;
601 	int sig;
602 
603 	flags = oops_begin();
604 	tsk = current;
605 	sig = SIGKILL;
606 
607 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
608 	       tsk->comm, address);
609 	dump_pagetable(address);
610 
611 	tsk->thread.cr2		= address;
612 	tsk->thread.trap_no	= 14;
613 	tsk->thread.error_code	= error_code;
614 
615 	if (__die("Bad pagetable", regs, error_code))
616 		sig = 0;
617 
618 	oops_end(flags, regs, sig);
619 }
620 
621 static noinline void
622 no_context(struct pt_regs *regs, unsigned long error_code,
623 	   unsigned long address)
624 {
625 	struct task_struct *tsk = current;
626 	unsigned long *stackend;
627 	unsigned long flags;
628 	int sig;
629 
630 	/* Are we prepared to handle this kernel fault? */
631 	if (fixup_exception(regs))
632 		return;
633 
634 	/*
635 	 * 32-bit:
636 	 *
637 	 *   Valid to do another page fault here, because if this fault
638 	 *   had been triggered by is_prefetch fixup_exception would have
639 	 *   handled it.
640 	 *
641 	 * 64-bit:
642 	 *
643 	 *   Hall of shame of CPU/BIOS bugs.
644 	 */
645 	if (is_prefetch(regs, error_code, address))
646 		return;
647 
648 	if (is_errata93(regs, address))
649 		return;
650 
651 	/*
652 	 * Oops. The kernel tried to access some bad page. We'll have to
653 	 * terminate things with extreme prejudice:
654 	 */
655 	flags = oops_begin();
656 
657 	show_fault_oops(regs, error_code, address);
658 
659 	stackend = end_of_stack(tsk);
660 	if (*stackend != STACK_END_MAGIC)
661 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
662 
663 	tsk->thread.cr2		= address;
664 	tsk->thread.trap_no	= 14;
665 	tsk->thread.error_code	= error_code;
666 
667 	sig = SIGKILL;
668 	if (__die("Oops", regs, error_code))
669 		sig = 0;
670 
671 	/* Executive summary in case the body of the oops scrolled away */
672 	printk(KERN_EMERG "CR2: %016lx\n", address);
673 
674 	oops_end(flags, regs, sig);
675 }
676 
677 /*
678  * Print out info about fatal segfaults, if the show_unhandled_signals
679  * sysctl is set:
680  */
681 static inline void
682 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
683 		unsigned long address, struct task_struct *tsk)
684 {
685 	if (!unhandled_signal(tsk, SIGSEGV))
686 		return;
687 
688 	if (!printk_ratelimit())
689 		return;
690 
691 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
692 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
693 		tsk->comm, task_pid_nr(tsk), address,
694 		(void *)regs->ip, (void *)regs->sp, error_code);
695 
696 	print_vma_addr(KERN_CONT " in ", regs->ip);
697 
698 	printk(KERN_CONT "\n");
699 }
700 
701 static void
702 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
703 		       unsigned long address, int si_code)
704 {
705 	struct task_struct *tsk = current;
706 
707 	/* User mode accesses just cause a SIGSEGV */
708 	if (error_code & PF_USER) {
709 		/*
710 		 * It's possible to have interrupts off here:
711 		 */
712 		local_irq_enable();
713 
714 		/*
715 		 * Valid to do another page fault here because this one came
716 		 * from user space:
717 		 */
718 		if (is_prefetch(regs, error_code, address))
719 			return;
720 
721 		if (is_errata100(regs, address))
722 			return;
723 
724 		if (unlikely(show_unhandled_signals))
725 			show_signal_msg(regs, error_code, address, tsk);
726 
727 		/* Kernel addresses are always protection faults: */
728 		tsk->thread.cr2		= address;
729 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
730 		tsk->thread.trap_no	= 14;
731 
732 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
733 
734 		return;
735 	}
736 
737 	if (is_f00f_bug(regs, address))
738 		return;
739 
740 	no_context(regs, error_code, address);
741 }
742 
743 static noinline void
744 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
745 		     unsigned long address)
746 {
747 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
748 }
749 
750 static void
751 __bad_area(struct pt_regs *regs, unsigned long error_code,
752 	   unsigned long address, int si_code)
753 {
754 	struct mm_struct *mm = current->mm;
755 
756 	/*
757 	 * Something tried to access memory that isn't in our memory map..
758 	 * Fix it, but check if it's kernel or user first..
759 	 */
760 	up_read(&mm->mmap_sem);
761 
762 	__bad_area_nosemaphore(regs, error_code, address, si_code);
763 }
764 
765 static noinline void
766 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
767 {
768 	__bad_area(regs, error_code, address, SEGV_MAPERR);
769 }
770 
771 static noinline void
772 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
773 		      unsigned long address)
774 {
775 	__bad_area(regs, error_code, address, SEGV_ACCERR);
776 }
777 
778 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
779 static void
780 out_of_memory(struct pt_regs *regs, unsigned long error_code,
781 	      unsigned long address)
782 {
783 	/*
784 	 * We ran out of memory, call the OOM killer, and return the userspace
785 	 * (which will retry the fault, or kill us if we got oom-killed):
786 	 */
787 	up_read(&current->mm->mmap_sem);
788 
789 	pagefault_out_of_memory();
790 }
791 
792 static void
793 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
794 {
795 	struct task_struct *tsk = current;
796 	struct mm_struct *mm = tsk->mm;
797 
798 	up_read(&mm->mmap_sem);
799 
800 	/* Kernel mode? Handle exceptions or die: */
801 	if (!(error_code & PF_USER))
802 		no_context(regs, error_code, address);
803 
804 	/* User-space => ok to do another page fault: */
805 	if (is_prefetch(regs, error_code, address))
806 		return;
807 
808 	tsk->thread.cr2		= address;
809 	tsk->thread.error_code	= error_code;
810 	tsk->thread.trap_no	= 14;
811 
812 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
813 }
814 
815 static noinline void
816 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
817 	       unsigned long address, unsigned int fault)
818 {
819 	if (fault & VM_FAULT_OOM) {
820 		out_of_memory(regs, error_code, address);
821 	} else {
822 		if (fault & VM_FAULT_SIGBUS)
823 			do_sigbus(regs, error_code, address);
824 		else
825 			BUG();
826 	}
827 }
828 
829 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
830 {
831 	if ((error_code & PF_WRITE) && !pte_write(*pte))
832 		return 0;
833 
834 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
835 		return 0;
836 
837 	return 1;
838 }
839 
840 /*
841  * Handle a spurious fault caused by a stale TLB entry.
842  *
843  * This allows us to lazily refresh the TLB when increasing the
844  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
845  * eagerly is very expensive since that implies doing a full
846  * cross-processor TLB flush, even if no stale TLB entries exist
847  * on other processors.
848  *
849  * There are no security implications to leaving a stale TLB when
850  * increasing the permissions on a page.
851  */
852 static noinline int
853 spurious_fault(unsigned long error_code, unsigned long address)
854 {
855 	pgd_t *pgd;
856 	pud_t *pud;
857 	pmd_t *pmd;
858 	pte_t *pte;
859 	int ret;
860 
861 	/* Reserved-bit violation or user access to kernel space? */
862 	if (error_code & (PF_USER | PF_RSVD))
863 		return 0;
864 
865 	pgd = init_mm.pgd + pgd_index(address);
866 	if (!pgd_present(*pgd))
867 		return 0;
868 
869 	pud = pud_offset(pgd, address);
870 	if (!pud_present(*pud))
871 		return 0;
872 
873 	if (pud_large(*pud))
874 		return spurious_fault_check(error_code, (pte_t *) pud);
875 
876 	pmd = pmd_offset(pud, address);
877 	if (!pmd_present(*pmd))
878 		return 0;
879 
880 	if (pmd_large(*pmd))
881 		return spurious_fault_check(error_code, (pte_t *) pmd);
882 
883 	pte = pte_offset_kernel(pmd, address);
884 	if (!pte_present(*pte))
885 		return 0;
886 
887 	ret = spurious_fault_check(error_code, pte);
888 	if (!ret)
889 		return 0;
890 
891 	/*
892 	 * Make sure we have permissions in PMD.
893 	 * If not, then there's a bug in the page tables:
894 	 */
895 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
896 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
897 
898 	return ret;
899 }
900 
901 int show_unhandled_signals = 1;
902 
903 static inline int
904 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
905 {
906 	if (write) {
907 		/* write, present and write, not present: */
908 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
909 			return 1;
910 		return 0;
911 	}
912 
913 	/* read, present: */
914 	if (unlikely(error_code & PF_PROT))
915 		return 1;
916 
917 	/* read, not present: */
918 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
919 		return 1;
920 
921 	return 0;
922 }
923 
924 static int fault_in_kernel_space(unsigned long address)
925 {
926 	return address >= TASK_SIZE_MAX;
927 }
928 
929 /*
930  * This routine handles page faults.  It determines the address,
931  * and the problem, and then passes it off to one of the appropriate
932  * routines.
933  */
934 dotraplinkage void __kprobes
935 do_page_fault(struct pt_regs *regs, unsigned long error_code)
936 {
937 	struct vm_area_struct *vma;
938 	struct task_struct *tsk;
939 	unsigned long address;
940 	struct mm_struct *mm;
941 	int write;
942 	int fault;
943 
944 	tsk = current;
945 	mm = tsk->mm;
946 
947 	/* Get the faulting address: */
948 	address = read_cr2();
949 
950 	/*
951 	 * Detect and handle instructions that would cause a page fault for
952 	 * both a tracked kernel page and a userspace page.
953 	 */
954 	if (kmemcheck_active(regs))
955 		kmemcheck_hide(regs);
956 	prefetchw(&mm->mmap_sem);
957 
958 	if (unlikely(kmmio_fault(regs, address)))
959 		return;
960 
961 	/*
962 	 * We fault-in kernel-space virtual memory on-demand. The
963 	 * 'reference' page table is init_mm.pgd.
964 	 *
965 	 * NOTE! We MUST NOT take any locks for this case. We may
966 	 * be in an interrupt or a critical region, and should
967 	 * only copy the information from the master page table,
968 	 * nothing more.
969 	 *
970 	 * This verifies that the fault happens in kernel space
971 	 * (error_code & 4) == 0, and that the fault was not a
972 	 * protection error (error_code & 9) == 0.
973 	 */
974 	if (unlikely(fault_in_kernel_space(address))) {
975 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
976 			if (vmalloc_fault(address) >= 0)
977 				return;
978 
979 			if (kmemcheck_fault(regs, address, error_code))
980 				return;
981 		}
982 
983 		/* Can handle a stale RO->RW TLB: */
984 		if (spurious_fault(error_code, address))
985 			return;
986 
987 		/* kprobes don't want to hook the spurious faults: */
988 		if (notify_page_fault(regs))
989 			return;
990 		/*
991 		 * Don't take the mm semaphore here. If we fixup a prefetch
992 		 * fault we could otherwise deadlock:
993 		 */
994 		bad_area_nosemaphore(regs, error_code, address);
995 
996 		return;
997 	}
998 
999 	/* kprobes don't want to hook the spurious faults: */
1000 	if (unlikely(notify_page_fault(regs)))
1001 		return;
1002 	/*
1003 	 * It's safe to allow irq's after cr2 has been saved and the
1004 	 * vmalloc fault has been handled.
1005 	 *
1006 	 * User-mode registers count as a user access even for any
1007 	 * potential system fault or CPU buglet:
1008 	 */
1009 	if (user_mode_vm(regs)) {
1010 		local_irq_enable();
1011 		error_code |= PF_USER;
1012 	} else {
1013 		if (regs->flags & X86_EFLAGS_IF)
1014 			local_irq_enable();
1015 	}
1016 
1017 	if (unlikely(error_code & PF_RSVD))
1018 		pgtable_bad(regs, error_code, address);
1019 
1020 	perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1021 
1022 	/*
1023 	 * If we're in an interrupt, have no user context or are running
1024 	 * in an atomic region then we must not take the fault:
1025 	 */
1026 	if (unlikely(in_atomic() || !mm)) {
1027 		bad_area_nosemaphore(regs, error_code, address);
1028 		return;
1029 	}
1030 
1031 	/*
1032 	 * When running in the kernel we expect faults to occur only to
1033 	 * addresses in user space.  All other faults represent errors in
1034 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1035 	 * case of an erroneous fault occurring in a code path which already
1036 	 * holds mmap_sem we will deadlock attempting to validate the fault
1037 	 * against the address space.  Luckily the kernel only validly
1038 	 * references user space from well defined areas of code, which are
1039 	 * listed in the exceptions table.
1040 	 *
1041 	 * As the vast majority of faults will be valid we will only perform
1042 	 * the source reference check when there is a possibility of a
1043 	 * deadlock. Attempt to lock the address space, if we cannot we then
1044 	 * validate the source. If this is invalid we can skip the address
1045 	 * space check, thus avoiding the deadlock:
1046 	 */
1047 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1048 		if ((error_code & PF_USER) == 0 &&
1049 		    !search_exception_tables(regs->ip)) {
1050 			bad_area_nosemaphore(regs, error_code, address);
1051 			return;
1052 		}
1053 		down_read(&mm->mmap_sem);
1054 	} else {
1055 		/*
1056 		 * The above down_read_trylock() might have succeeded in
1057 		 * which case we'll have missed the might_sleep() from
1058 		 * down_read():
1059 		 */
1060 		might_sleep();
1061 	}
1062 
1063 	vma = find_vma(mm, address);
1064 	if (unlikely(!vma)) {
1065 		bad_area(regs, error_code, address);
1066 		return;
1067 	}
1068 	if (likely(vma->vm_start <= address))
1069 		goto good_area;
1070 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1071 		bad_area(regs, error_code, address);
1072 		return;
1073 	}
1074 	if (error_code & PF_USER) {
1075 		/*
1076 		 * Accessing the stack below %sp is always a bug.
1077 		 * The large cushion allows instructions like enter
1078 		 * and pusha to work. ("enter $65535, $31" pushes
1079 		 * 32 pointers and then decrements %sp by 65535.)
1080 		 */
1081 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1082 			bad_area(regs, error_code, address);
1083 			return;
1084 		}
1085 	}
1086 	if (unlikely(expand_stack(vma, address))) {
1087 		bad_area(regs, error_code, address);
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * Ok, we have a good vm_area for this memory access, so
1093 	 * we can handle it..
1094 	 */
1095 good_area:
1096 	write = error_code & PF_WRITE;
1097 
1098 	if (unlikely(access_error(error_code, write, vma))) {
1099 		bad_area_access_error(regs, error_code, address);
1100 		return;
1101 	}
1102 
1103 	/*
1104 	 * If for any reason at all we couldn't handle the fault,
1105 	 * make sure we exit gracefully rather than endlessly redo
1106 	 * the fault:
1107 	 */
1108 	fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1109 
1110 	if (unlikely(fault & VM_FAULT_ERROR)) {
1111 		mm_fault_error(regs, error_code, address, fault);
1112 		return;
1113 	}
1114 
1115 	if (fault & VM_FAULT_MAJOR) {
1116 		tsk->maj_flt++;
1117 		perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1118 				     regs, address);
1119 	} else {
1120 		tsk->min_flt++;
1121 		perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1122 				     regs, address);
1123 	}
1124 
1125 	check_v8086_mode(regs, address, tsk);
1126 
1127 	up_read(&mm->mmap_sem);
1128 }
1129