1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/magic.h> /* STACK_END_MAGIC */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/kdebug.h> /* oops_begin/end, ... */ 9 #include <linux/module.h> /* search_exception_table */ 10 #include <linux/bootmem.h> /* max_low_pfn */ 11 #include <linux/kprobes.h> /* __kprobes, ... */ 12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 13 #include <linux/perf_counter.h> /* perf_swcounter_event */ 14 15 #include <asm/traps.h> /* dotraplinkage, ... */ 16 #include <asm/pgalloc.h> /* pgd_*(), ... */ 17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 18 19 /* 20 * Page fault error code bits: 21 * 22 * bit 0 == 0: no page found 1: protection fault 23 * bit 1 == 0: read access 1: write access 24 * bit 2 == 0: kernel-mode access 1: user-mode access 25 * bit 3 == 1: use of reserved bit detected 26 * bit 4 == 1: fault was an instruction fetch 27 */ 28 enum x86_pf_error_code { 29 30 PF_PROT = 1 << 0, 31 PF_WRITE = 1 << 1, 32 PF_USER = 1 << 2, 33 PF_RSVD = 1 << 3, 34 PF_INSTR = 1 << 4, 35 }; 36 37 /* 38 * Returns 0 if mmiotrace is disabled, or if the fault is not 39 * handled by mmiotrace: 40 */ 41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) 42 { 43 if (unlikely(is_kmmio_active())) 44 if (kmmio_handler(regs, addr) == 1) 45 return -1; 46 return 0; 47 } 48 49 static inline int notify_page_fault(struct pt_regs *regs) 50 { 51 int ret = 0; 52 53 /* kprobe_running() needs smp_processor_id() */ 54 if (kprobes_built_in() && !user_mode_vm(regs)) { 55 preempt_disable(); 56 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 57 ret = 1; 58 preempt_enable(); 59 } 60 61 return ret; 62 } 63 64 /* 65 * Prefetch quirks: 66 * 67 * 32-bit mode: 68 * 69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 70 * Check that here and ignore it. 71 * 72 * 64-bit mode: 73 * 74 * Sometimes the CPU reports invalid exceptions on prefetch. 75 * Check that here and ignore it. 76 * 77 * Opcode checker based on code by Richard Brunner. 78 */ 79 static inline int 80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 81 unsigned char opcode, int *prefetch) 82 { 83 unsigned char instr_hi = opcode & 0xf0; 84 unsigned char instr_lo = opcode & 0x0f; 85 86 switch (instr_hi) { 87 case 0x20: 88 case 0x30: 89 /* 90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 91 * In X86_64 long mode, the CPU will signal invalid 92 * opcode if some of these prefixes are present so 93 * X86_64 will never get here anyway 94 */ 95 return ((instr_lo & 7) == 0x6); 96 #ifdef CONFIG_X86_64 97 case 0x40: 98 /* 99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 100 * Need to figure out under what instruction mode the 101 * instruction was issued. Could check the LDT for lm, 102 * but for now it's good enough to assume that long 103 * mode only uses well known segments or kernel. 104 */ 105 return (!user_mode(regs)) || (regs->cs == __USER_CS); 106 #endif 107 case 0x60: 108 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 109 return (instr_lo & 0xC) == 0x4; 110 case 0xF0: 111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 112 return !instr_lo || (instr_lo>>1) == 1; 113 case 0x00: 114 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 115 if (probe_kernel_address(instr, opcode)) 116 return 0; 117 118 *prefetch = (instr_lo == 0xF) && 119 (opcode == 0x0D || opcode == 0x18); 120 return 0; 121 default: 122 return 0; 123 } 124 } 125 126 static int 127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 128 { 129 unsigned char *max_instr; 130 unsigned char *instr; 131 int prefetch = 0; 132 133 /* 134 * If it was a exec (instruction fetch) fault on NX page, then 135 * do not ignore the fault: 136 */ 137 if (error_code & PF_INSTR) 138 return 0; 139 140 instr = (void *)convert_ip_to_linear(current, regs); 141 max_instr = instr + 15; 142 143 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 144 return 0; 145 146 while (instr < max_instr) { 147 unsigned char opcode; 148 149 if (probe_kernel_address(instr, opcode)) 150 break; 151 152 instr++; 153 154 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 155 break; 156 } 157 return prefetch; 158 } 159 160 static void 161 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 162 struct task_struct *tsk) 163 { 164 siginfo_t info; 165 166 info.si_signo = si_signo; 167 info.si_errno = 0; 168 info.si_code = si_code; 169 info.si_addr = (void __user *)address; 170 171 force_sig_info(si_signo, &info, tsk); 172 } 173 174 DEFINE_SPINLOCK(pgd_lock); 175 LIST_HEAD(pgd_list); 176 177 #ifdef CONFIG_X86_32 178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 179 { 180 unsigned index = pgd_index(address); 181 pgd_t *pgd_k; 182 pud_t *pud, *pud_k; 183 pmd_t *pmd, *pmd_k; 184 185 pgd += index; 186 pgd_k = init_mm.pgd + index; 187 188 if (!pgd_present(*pgd_k)) 189 return NULL; 190 191 /* 192 * set_pgd(pgd, *pgd_k); here would be useless on PAE 193 * and redundant with the set_pmd() on non-PAE. As would 194 * set_pud. 195 */ 196 pud = pud_offset(pgd, address); 197 pud_k = pud_offset(pgd_k, address); 198 if (!pud_present(*pud_k)) 199 return NULL; 200 201 pmd = pmd_offset(pud, address); 202 pmd_k = pmd_offset(pud_k, address); 203 if (!pmd_present(*pmd_k)) 204 return NULL; 205 206 if (!pmd_present(*pmd)) 207 set_pmd(pmd, *pmd_k); 208 else 209 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 210 211 return pmd_k; 212 } 213 214 void vmalloc_sync_all(void) 215 { 216 unsigned long address; 217 218 if (SHARED_KERNEL_PMD) 219 return; 220 221 for (address = VMALLOC_START & PMD_MASK; 222 address >= TASK_SIZE && address < FIXADDR_TOP; 223 address += PMD_SIZE) { 224 225 unsigned long flags; 226 struct page *page; 227 228 spin_lock_irqsave(&pgd_lock, flags); 229 list_for_each_entry(page, &pgd_list, lru) { 230 if (!vmalloc_sync_one(page_address(page), address)) 231 break; 232 } 233 spin_unlock_irqrestore(&pgd_lock, flags); 234 } 235 } 236 237 /* 238 * 32-bit: 239 * 240 * Handle a fault on the vmalloc or module mapping area 241 */ 242 static noinline int vmalloc_fault(unsigned long address) 243 { 244 unsigned long pgd_paddr; 245 pmd_t *pmd_k; 246 pte_t *pte_k; 247 248 /* Make sure we are in vmalloc area: */ 249 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 250 return -1; 251 252 /* 253 * Synchronize this task's top level page-table 254 * with the 'reference' page table. 255 * 256 * Do _not_ use "current" here. We might be inside 257 * an interrupt in the middle of a task switch.. 258 */ 259 pgd_paddr = read_cr3(); 260 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 261 if (!pmd_k) 262 return -1; 263 264 pte_k = pte_offset_kernel(pmd_k, address); 265 if (!pte_present(*pte_k)) 266 return -1; 267 268 return 0; 269 } 270 271 /* 272 * Did it hit the DOS screen memory VA from vm86 mode? 273 */ 274 static inline void 275 check_v8086_mode(struct pt_regs *regs, unsigned long address, 276 struct task_struct *tsk) 277 { 278 unsigned long bit; 279 280 if (!v8086_mode(regs)) 281 return; 282 283 bit = (address - 0xA0000) >> PAGE_SHIFT; 284 if (bit < 32) 285 tsk->thread.screen_bitmap |= 1 << bit; 286 } 287 288 static bool low_pfn(unsigned long pfn) 289 { 290 return pfn < max_low_pfn; 291 } 292 293 static void dump_pagetable(unsigned long address) 294 { 295 pgd_t *base = __va(read_cr3()); 296 pgd_t *pgd = &base[pgd_index(address)]; 297 pmd_t *pmd; 298 pte_t *pte; 299 300 #ifdef CONFIG_X86_PAE 301 printk("*pdpt = %016Lx ", pgd_val(*pgd)); 302 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 303 goto out; 304 #endif 305 pmd = pmd_offset(pud_offset(pgd, address), address); 306 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 307 308 /* 309 * We must not directly access the pte in the highpte 310 * case if the page table is located in highmem. 311 * And let's rather not kmap-atomic the pte, just in case 312 * it's allocated already: 313 */ 314 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 315 goto out; 316 317 pte = pte_offset_kernel(pmd, address); 318 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 319 out: 320 printk("\n"); 321 } 322 323 #else /* CONFIG_X86_64: */ 324 325 void vmalloc_sync_all(void) 326 { 327 unsigned long address; 328 329 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; 330 address += PGDIR_SIZE) { 331 332 const pgd_t *pgd_ref = pgd_offset_k(address); 333 unsigned long flags; 334 struct page *page; 335 336 if (pgd_none(*pgd_ref)) 337 continue; 338 339 spin_lock_irqsave(&pgd_lock, flags); 340 list_for_each_entry(page, &pgd_list, lru) { 341 pgd_t *pgd; 342 pgd = (pgd_t *)page_address(page) + pgd_index(address); 343 if (pgd_none(*pgd)) 344 set_pgd(pgd, *pgd_ref); 345 else 346 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 347 } 348 spin_unlock_irqrestore(&pgd_lock, flags); 349 } 350 } 351 352 /* 353 * 64-bit: 354 * 355 * Handle a fault on the vmalloc area 356 * 357 * This assumes no large pages in there. 358 */ 359 static noinline int vmalloc_fault(unsigned long address) 360 { 361 pgd_t *pgd, *pgd_ref; 362 pud_t *pud, *pud_ref; 363 pmd_t *pmd, *pmd_ref; 364 pte_t *pte, *pte_ref; 365 366 /* Make sure we are in vmalloc area: */ 367 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 368 return -1; 369 370 /* 371 * Copy kernel mappings over when needed. This can also 372 * happen within a race in page table update. In the later 373 * case just flush: 374 */ 375 pgd = pgd_offset(current->active_mm, address); 376 pgd_ref = pgd_offset_k(address); 377 if (pgd_none(*pgd_ref)) 378 return -1; 379 380 if (pgd_none(*pgd)) 381 set_pgd(pgd, *pgd_ref); 382 else 383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 384 385 /* 386 * Below here mismatches are bugs because these lower tables 387 * are shared: 388 */ 389 390 pud = pud_offset(pgd, address); 391 pud_ref = pud_offset(pgd_ref, address); 392 if (pud_none(*pud_ref)) 393 return -1; 394 395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 396 BUG(); 397 398 pmd = pmd_offset(pud, address); 399 pmd_ref = pmd_offset(pud_ref, address); 400 if (pmd_none(*pmd_ref)) 401 return -1; 402 403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 404 BUG(); 405 406 pte_ref = pte_offset_kernel(pmd_ref, address); 407 if (!pte_present(*pte_ref)) 408 return -1; 409 410 pte = pte_offset_kernel(pmd, address); 411 412 /* 413 * Don't use pte_page here, because the mappings can point 414 * outside mem_map, and the NUMA hash lookup cannot handle 415 * that: 416 */ 417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 418 BUG(); 419 420 return 0; 421 } 422 423 static const char errata93_warning[] = 424 KERN_ERR 425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 426 "******* Working around it, but it may cause SEGVs or burn power.\n" 427 "******* Please consider a BIOS update.\n" 428 "******* Disabling USB legacy in the BIOS may also help.\n"; 429 430 /* 431 * No vm86 mode in 64-bit mode: 432 */ 433 static inline void 434 check_v8086_mode(struct pt_regs *regs, unsigned long address, 435 struct task_struct *tsk) 436 { 437 } 438 439 static int bad_address(void *p) 440 { 441 unsigned long dummy; 442 443 return probe_kernel_address((unsigned long *)p, dummy); 444 } 445 446 static void dump_pagetable(unsigned long address) 447 { 448 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK); 449 pgd_t *pgd = base + pgd_index(address); 450 pud_t *pud; 451 pmd_t *pmd; 452 pte_t *pte; 453 454 if (bad_address(pgd)) 455 goto bad; 456 457 printk("PGD %lx ", pgd_val(*pgd)); 458 459 if (!pgd_present(*pgd)) 460 goto out; 461 462 pud = pud_offset(pgd, address); 463 if (bad_address(pud)) 464 goto bad; 465 466 printk("PUD %lx ", pud_val(*pud)); 467 if (!pud_present(*pud) || pud_large(*pud)) 468 goto out; 469 470 pmd = pmd_offset(pud, address); 471 if (bad_address(pmd)) 472 goto bad; 473 474 printk("PMD %lx ", pmd_val(*pmd)); 475 if (!pmd_present(*pmd) || pmd_large(*pmd)) 476 goto out; 477 478 pte = pte_offset_kernel(pmd, address); 479 if (bad_address(pte)) 480 goto bad; 481 482 printk("PTE %lx", pte_val(*pte)); 483 out: 484 printk("\n"); 485 return; 486 bad: 487 printk("BAD\n"); 488 } 489 490 #endif /* CONFIG_X86_64 */ 491 492 /* 493 * Workaround for K8 erratum #93 & buggy BIOS. 494 * 495 * BIOS SMM functions are required to use a specific workaround 496 * to avoid corruption of the 64bit RIP register on C stepping K8. 497 * 498 * A lot of BIOS that didn't get tested properly miss this. 499 * 500 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 501 * Try to work around it here. 502 * 503 * Note we only handle faults in kernel here. 504 * Does nothing on 32-bit. 505 */ 506 static int is_errata93(struct pt_regs *regs, unsigned long address) 507 { 508 #ifdef CONFIG_X86_64 509 if (address != regs->ip) 510 return 0; 511 512 if ((address >> 32) != 0) 513 return 0; 514 515 address |= 0xffffffffUL << 32; 516 if ((address >= (u64)_stext && address <= (u64)_etext) || 517 (address >= MODULES_VADDR && address <= MODULES_END)) { 518 printk_once(errata93_warning); 519 regs->ip = address; 520 return 1; 521 } 522 #endif 523 return 0; 524 } 525 526 /* 527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 528 * to illegal addresses >4GB. 529 * 530 * We catch this in the page fault handler because these addresses 531 * are not reachable. Just detect this case and return. Any code 532 * segment in LDT is compatibility mode. 533 */ 534 static int is_errata100(struct pt_regs *regs, unsigned long address) 535 { 536 #ifdef CONFIG_X86_64 537 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 538 return 1; 539 #endif 540 return 0; 541 } 542 543 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 544 { 545 #ifdef CONFIG_X86_F00F_BUG 546 unsigned long nr; 547 548 /* 549 * Pentium F0 0F C7 C8 bug workaround: 550 */ 551 if (boot_cpu_data.f00f_bug) { 552 nr = (address - idt_descr.address) >> 3; 553 554 if (nr == 6) { 555 do_invalid_op(regs, 0); 556 return 1; 557 } 558 } 559 #endif 560 return 0; 561 } 562 563 static const char nx_warning[] = KERN_CRIT 564 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 565 566 static void 567 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 568 unsigned long address) 569 { 570 if (!oops_may_print()) 571 return; 572 573 if (error_code & PF_INSTR) { 574 unsigned int level; 575 576 pte_t *pte = lookup_address(address, &level); 577 578 if (pte && pte_present(*pte) && !pte_exec(*pte)) 579 printk(nx_warning, current_uid()); 580 } 581 582 printk(KERN_ALERT "BUG: unable to handle kernel "); 583 if (address < PAGE_SIZE) 584 printk(KERN_CONT "NULL pointer dereference"); 585 else 586 printk(KERN_CONT "paging request"); 587 588 printk(KERN_CONT " at %p\n", (void *) address); 589 printk(KERN_ALERT "IP:"); 590 printk_address(regs->ip, 1); 591 592 dump_pagetable(address); 593 } 594 595 static noinline void 596 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 597 unsigned long address) 598 { 599 struct task_struct *tsk; 600 unsigned long flags; 601 int sig; 602 603 flags = oops_begin(); 604 tsk = current; 605 sig = SIGKILL; 606 607 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 608 tsk->comm, address); 609 dump_pagetable(address); 610 611 tsk->thread.cr2 = address; 612 tsk->thread.trap_no = 14; 613 tsk->thread.error_code = error_code; 614 615 if (__die("Bad pagetable", regs, error_code)) 616 sig = 0; 617 618 oops_end(flags, regs, sig); 619 } 620 621 static noinline void 622 no_context(struct pt_regs *regs, unsigned long error_code, 623 unsigned long address) 624 { 625 struct task_struct *tsk = current; 626 unsigned long *stackend; 627 unsigned long flags; 628 int sig; 629 630 /* Are we prepared to handle this kernel fault? */ 631 if (fixup_exception(regs)) 632 return; 633 634 /* 635 * 32-bit: 636 * 637 * Valid to do another page fault here, because if this fault 638 * had been triggered by is_prefetch fixup_exception would have 639 * handled it. 640 * 641 * 64-bit: 642 * 643 * Hall of shame of CPU/BIOS bugs. 644 */ 645 if (is_prefetch(regs, error_code, address)) 646 return; 647 648 if (is_errata93(regs, address)) 649 return; 650 651 /* 652 * Oops. The kernel tried to access some bad page. We'll have to 653 * terminate things with extreme prejudice: 654 */ 655 flags = oops_begin(); 656 657 show_fault_oops(regs, error_code, address); 658 659 stackend = end_of_stack(tsk); 660 if (*stackend != STACK_END_MAGIC) 661 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 662 663 tsk->thread.cr2 = address; 664 tsk->thread.trap_no = 14; 665 tsk->thread.error_code = error_code; 666 667 sig = SIGKILL; 668 if (__die("Oops", regs, error_code)) 669 sig = 0; 670 671 /* Executive summary in case the body of the oops scrolled away */ 672 printk(KERN_EMERG "CR2: %016lx\n", address); 673 674 oops_end(flags, regs, sig); 675 } 676 677 /* 678 * Print out info about fatal segfaults, if the show_unhandled_signals 679 * sysctl is set: 680 */ 681 static inline void 682 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 683 unsigned long address, struct task_struct *tsk) 684 { 685 if (!unhandled_signal(tsk, SIGSEGV)) 686 return; 687 688 if (!printk_ratelimit()) 689 return; 690 691 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 692 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 693 tsk->comm, task_pid_nr(tsk), address, 694 (void *)regs->ip, (void *)regs->sp, error_code); 695 696 print_vma_addr(KERN_CONT " in ", regs->ip); 697 698 printk(KERN_CONT "\n"); 699 } 700 701 static void 702 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 703 unsigned long address, int si_code) 704 { 705 struct task_struct *tsk = current; 706 707 /* User mode accesses just cause a SIGSEGV */ 708 if (error_code & PF_USER) { 709 /* 710 * It's possible to have interrupts off here: 711 */ 712 local_irq_enable(); 713 714 /* 715 * Valid to do another page fault here because this one came 716 * from user space: 717 */ 718 if (is_prefetch(regs, error_code, address)) 719 return; 720 721 if (is_errata100(regs, address)) 722 return; 723 724 if (unlikely(show_unhandled_signals)) 725 show_signal_msg(regs, error_code, address, tsk); 726 727 /* Kernel addresses are always protection faults: */ 728 tsk->thread.cr2 = address; 729 tsk->thread.error_code = error_code | (address >= TASK_SIZE); 730 tsk->thread.trap_no = 14; 731 732 force_sig_info_fault(SIGSEGV, si_code, address, tsk); 733 734 return; 735 } 736 737 if (is_f00f_bug(regs, address)) 738 return; 739 740 no_context(regs, error_code, address); 741 } 742 743 static noinline void 744 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 745 unsigned long address) 746 { 747 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 748 } 749 750 static void 751 __bad_area(struct pt_regs *regs, unsigned long error_code, 752 unsigned long address, int si_code) 753 { 754 struct mm_struct *mm = current->mm; 755 756 /* 757 * Something tried to access memory that isn't in our memory map.. 758 * Fix it, but check if it's kernel or user first.. 759 */ 760 up_read(&mm->mmap_sem); 761 762 __bad_area_nosemaphore(regs, error_code, address, si_code); 763 } 764 765 static noinline void 766 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 767 { 768 __bad_area(regs, error_code, address, SEGV_MAPERR); 769 } 770 771 static noinline void 772 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 773 unsigned long address) 774 { 775 __bad_area(regs, error_code, address, SEGV_ACCERR); 776 } 777 778 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 779 static void 780 out_of_memory(struct pt_regs *regs, unsigned long error_code, 781 unsigned long address) 782 { 783 /* 784 * We ran out of memory, call the OOM killer, and return the userspace 785 * (which will retry the fault, or kill us if we got oom-killed): 786 */ 787 up_read(¤t->mm->mmap_sem); 788 789 pagefault_out_of_memory(); 790 } 791 792 static void 793 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) 794 { 795 struct task_struct *tsk = current; 796 struct mm_struct *mm = tsk->mm; 797 798 up_read(&mm->mmap_sem); 799 800 /* Kernel mode? Handle exceptions or die: */ 801 if (!(error_code & PF_USER)) 802 no_context(regs, error_code, address); 803 804 /* User-space => ok to do another page fault: */ 805 if (is_prefetch(regs, error_code, address)) 806 return; 807 808 tsk->thread.cr2 = address; 809 tsk->thread.error_code = error_code; 810 tsk->thread.trap_no = 14; 811 812 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); 813 } 814 815 static noinline void 816 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 817 unsigned long address, unsigned int fault) 818 { 819 if (fault & VM_FAULT_OOM) { 820 out_of_memory(regs, error_code, address); 821 } else { 822 if (fault & VM_FAULT_SIGBUS) 823 do_sigbus(regs, error_code, address); 824 else 825 BUG(); 826 } 827 } 828 829 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 830 { 831 if ((error_code & PF_WRITE) && !pte_write(*pte)) 832 return 0; 833 834 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 835 return 0; 836 837 return 1; 838 } 839 840 /* 841 * Handle a spurious fault caused by a stale TLB entry. 842 * 843 * This allows us to lazily refresh the TLB when increasing the 844 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 845 * eagerly is very expensive since that implies doing a full 846 * cross-processor TLB flush, even if no stale TLB entries exist 847 * on other processors. 848 * 849 * There are no security implications to leaving a stale TLB when 850 * increasing the permissions on a page. 851 */ 852 static noinline int 853 spurious_fault(unsigned long error_code, unsigned long address) 854 { 855 pgd_t *pgd; 856 pud_t *pud; 857 pmd_t *pmd; 858 pte_t *pte; 859 int ret; 860 861 /* Reserved-bit violation or user access to kernel space? */ 862 if (error_code & (PF_USER | PF_RSVD)) 863 return 0; 864 865 pgd = init_mm.pgd + pgd_index(address); 866 if (!pgd_present(*pgd)) 867 return 0; 868 869 pud = pud_offset(pgd, address); 870 if (!pud_present(*pud)) 871 return 0; 872 873 if (pud_large(*pud)) 874 return spurious_fault_check(error_code, (pte_t *) pud); 875 876 pmd = pmd_offset(pud, address); 877 if (!pmd_present(*pmd)) 878 return 0; 879 880 if (pmd_large(*pmd)) 881 return spurious_fault_check(error_code, (pte_t *) pmd); 882 883 pte = pte_offset_kernel(pmd, address); 884 if (!pte_present(*pte)) 885 return 0; 886 887 ret = spurious_fault_check(error_code, pte); 888 if (!ret) 889 return 0; 890 891 /* 892 * Make sure we have permissions in PMD. 893 * If not, then there's a bug in the page tables: 894 */ 895 ret = spurious_fault_check(error_code, (pte_t *) pmd); 896 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 897 898 return ret; 899 } 900 901 int show_unhandled_signals = 1; 902 903 static inline int 904 access_error(unsigned long error_code, int write, struct vm_area_struct *vma) 905 { 906 if (write) { 907 /* write, present and write, not present: */ 908 if (unlikely(!(vma->vm_flags & VM_WRITE))) 909 return 1; 910 return 0; 911 } 912 913 /* read, present: */ 914 if (unlikely(error_code & PF_PROT)) 915 return 1; 916 917 /* read, not present: */ 918 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 919 return 1; 920 921 return 0; 922 } 923 924 static int fault_in_kernel_space(unsigned long address) 925 { 926 return address >= TASK_SIZE_MAX; 927 } 928 929 /* 930 * This routine handles page faults. It determines the address, 931 * and the problem, and then passes it off to one of the appropriate 932 * routines. 933 */ 934 dotraplinkage void __kprobes 935 do_page_fault(struct pt_regs *regs, unsigned long error_code) 936 { 937 struct vm_area_struct *vma; 938 struct task_struct *tsk; 939 unsigned long address; 940 struct mm_struct *mm; 941 int write; 942 int fault; 943 944 tsk = current; 945 mm = tsk->mm; 946 947 /* Get the faulting address: */ 948 address = read_cr2(); 949 950 /* 951 * Detect and handle instructions that would cause a page fault for 952 * both a tracked kernel page and a userspace page. 953 */ 954 if (kmemcheck_active(regs)) 955 kmemcheck_hide(regs); 956 prefetchw(&mm->mmap_sem); 957 958 if (unlikely(kmmio_fault(regs, address))) 959 return; 960 961 /* 962 * We fault-in kernel-space virtual memory on-demand. The 963 * 'reference' page table is init_mm.pgd. 964 * 965 * NOTE! We MUST NOT take any locks for this case. We may 966 * be in an interrupt or a critical region, and should 967 * only copy the information from the master page table, 968 * nothing more. 969 * 970 * This verifies that the fault happens in kernel space 971 * (error_code & 4) == 0, and that the fault was not a 972 * protection error (error_code & 9) == 0. 973 */ 974 if (unlikely(fault_in_kernel_space(address))) { 975 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 976 if (vmalloc_fault(address) >= 0) 977 return; 978 979 if (kmemcheck_fault(regs, address, error_code)) 980 return; 981 } 982 983 /* Can handle a stale RO->RW TLB: */ 984 if (spurious_fault(error_code, address)) 985 return; 986 987 /* kprobes don't want to hook the spurious faults: */ 988 if (notify_page_fault(regs)) 989 return; 990 /* 991 * Don't take the mm semaphore here. If we fixup a prefetch 992 * fault we could otherwise deadlock: 993 */ 994 bad_area_nosemaphore(regs, error_code, address); 995 996 return; 997 } 998 999 /* kprobes don't want to hook the spurious faults: */ 1000 if (unlikely(notify_page_fault(regs))) 1001 return; 1002 /* 1003 * It's safe to allow irq's after cr2 has been saved and the 1004 * vmalloc fault has been handled. 1005 * 1006 * User-mode registers count as a user access even for any 1007 * potential system fault or CPU buglet: 1008 */ 1009 if (user_mode_vm(regs)) { 1010 local_irq_enable(); 1011 error_code |= PF_USER; 1012 } else { 1013 if (regs->flags & X86_EFLAGS_IF) 1014 local_irq_enable(); 1015 } 1016 1017 if (unlikely(error_code & PF_RSVD)) 1018 pgtable_bad(regs, error_code, address); 1019 1020 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); 1021 1022 /* 1023 * If we're in an interrupt, have no user context or are running 1024 * in an atomic region then we must not take the fault: 1025 */ 1026 if (unlikely(in_atomic() || !mm)) { 1027 bad_area_nosemaphore(regs, error_code, address); 1028 return; 1029 } 1030 1031 /* 1032 * When running in the kernel we expect faults to occur only to 1033 * addresses in user space. All other faults represent errors in 1034 * the kernel and should generate an OOPS. Unfortunately, in the 1035 * case of an erroneous fault occurring in a code path which already 1036 * holds mmap_sem we will deadlock attempting to validate the fault 1037 * against the address space. Luckily the kernel only validly 1038 * references user space from well defined areas of code, which are 1039 * listed in the exceptions table. 1040 * 1041 * As the vast majority of faults will be valid we will only perform 1042 * the source reference check when there is a possibility of a 1043 * deadlock. Attempt to lock the address space, if we cannot we then 1044 * validate the source. If this is invalid we can skip the address 1045 * space check, thus avoiding the deadlock: 1046 */ 1047 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1048 if ((error_code & PF_USER) == 0 && 1049 !search_exception_tables(regs->ip)) { 1050 bad_area_nosemaphore(regs, error_code, address); 1051 return; 1052 } 1053 down_read(&mm->mmap_sem); 1054 } else { 1055 /* 1056 * The above down_read_trylock() might have succeeded in 1057 * which case we'll have missed the might_sleep() from 1058 * down_read(): 1059 */ 1060 might_sleep(); 1061 } 1062 1063 vma = find_vma(mm, address); 1064 if (unlikely(!vma)) { 1065 bad_area(regs, error_code, address); 1066 return; 1067 } 1068 if (likely(vma->vm_start <= address)) 1069 goto good_area; 1070 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1071 bad_area(regs, error_code, address); 1072 return; 1073 } 1074 if (error_code & PF_USER) { 1075 /* 1076 * Accessing the stack below %sp is always a bug. 1077 * The large cushion allows instructions like enter 1078 * and pusha to work. ("enter $65535, $31" pushes 1079 * 32 pointers and then decrements %sp by 65535.) 1080 */ 1081 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1082 bad_area(regs, error_code, address); 1083 return; 1084 } 1085 } 1086 if (unlikely(expand_stack(vma, address))) { 1087 bad_area(regs, error_code, address); 1088 return; 1089 } 1090 1091 /* 1092 * Ok, we have a good vm_area for this memory access, so 1093 * we can handle it.. 1094 */ 1095 good_area: 1096 write = error_code & PF_WRITE; 1097 1098 if (unlikely(access_error(error_code, write, vma))) { 1099 bad_area_access_error(regs, error_code, address); 1100 return; 1101 } 1102 1103 /* 1104 * If for any reason at all we couldn't handle the fault, 1105 * make sure we exit gracefully rather than endlessly redo 1106 * the fault: 1107 */ 1108 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0); 1109 1110 if (unlikely(fault & VM_FAULT_ERROR)) { 1111 mm_fault_error(regs, error_code, address, fault); 1112 return; 1113 } 1114 1115 if (fault & VM_FAULT_MAJOR) { 1116 tsk->maj_flt++; 1117 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, 1118 regs, address); 1119 } else { 1120 tsk->min_flt++; 1121 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, 1122 regs, address); 1123 } 1124 1125 check_v8086_mode(regs, address, tsk); 1126 1127 up_read(&mm->mmap_sem); 1128 } 1129