1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/memblock.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/ 20 #include <linux/mm_types.h> 21 22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 23 #include <asm/traps.h> /* dotraplinkage, ... */ 24 #include <asm/pgalloc.h> /* pgd_*(), ... */ 25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 26 #include <asm/vsyscall.h> /* emulate_vsyscall */ 27 #include <asm/vm86.h> /* struct vm86 */ 28 #include <asm/mmu_context.h> /* vma_pkey() */ 29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/ 30 #include <asm/desc.h> /* store_idt(), ... */ 31 32 #define CREATE_TRACE_POINTS 33 #include <asm/trace/exceptions.h> 34 35 /* 36 * Returns 0 if mmiotrace is disabled, or if the fault is not 37 * handled by mmiotrace: 38 */ 39 static nokprobe_inline int 40 kmmio_fault(struct pt_regs *regs, unsigned long addr) 41 { 42 if (unlikely(is_kmmio_active())) 43 if (kmmio_handler(regs, addr) == 1) 44 return -1; 45 return 0; 46 } 47 48 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 49 { 50 if (!kprobes_built_in()) 51 return 0; 52 if (user_mode(regs)) 53 return 0; 54 /* 55 * To be potentially processing a kprobe fault and to be allowed to call 56 * kprobe_running(), we have to be non-preemptible. 57 */ 58 if (preemptible()) 59 return 0; 60 if (!kprobe_running()) 61 return 0; 62 return kprobe_fault_handler(regs, X86_TRAP_PF); 63 } 64 65 /* 66 * Prefetch quirks: 67 * 68 * 32-bit mode: 69 * 70 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 71 * Check that here and ignore it. 72 * 73 * 64-bit mode: 74 * 75 * Sometimes the CPU reports invalid exceptions on prefetch. 76 * Check that here and ignore it. 77 * 78 * Opcode checker based on code by Richard Brunner. 79 */ 80 static inline int 81 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 82 unsigned char opcode, int *prefetch) 83 { 84 unsigned char instr_hi = opcode & 0xf0; 85 unsigned char instr_lo = opcode & 0x0f; 86 87 switch (instr_hi) { 88 case 0x20: 89 case 0x30: 90 /* 91 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 92 * In X86_64 long mode, the CPU will signal invalid 93 * opcode if some of these prefixes are present so 94 * X86_64 will never get here anyway 95 */ 96 return ((instr_lo & 7) == 0x6); 97 #ifdef CONFIG_X86_64 98 case 0x40: 99 /* 100 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 101 * Need to figure out under what instruction mode the 102 * instruction was issued. Could check the LDT for lm, 103 * but for now it's good enough to assume that long 104 * mode only uses well known segments or kernel. 105 */ 106 return (!user_mode(regs) || user_64bit_mode(regs)); 107 #endif 108 case 0x60: 109 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 110 return (instr_lo & 0xC) == 0x4; 111 case 0xF0: 112 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 113 return !instr_lo || (instr_lo>>1) == 1; 114 case 0x00: 115 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 116 if (probe_kernel_address(instr, opcode)) 117 return 0; 118 119 *prefetch = (instr_lo == 0xF) && 120 (opcode == 0x0D || opcode == 0x18); 121 return 0; 122 default: 123 return 0; 124 } 125 } 126 127 static int 128 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 129 { 130 unsigned char *max_instr; 131 unsigned char *instr; 132 int prefetch = 0; 133 134 /* 135 * If it was a exec (instruction fetch) fault on NX page, then 136 * do not ignore the fault: 137 */ 138 if (error_code & X86_PF_INSTR) 139 return 0; 140 141 instr = (void *)convert_ip_to_linear(current, regs); 142 max_instr = instr + 15; 143 144 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 145 return 0; 146 147 while (instr < max_instr) { 148 unsigned char opcode; 149 150 if (probe_kernel_address(instr, opcode)) 151 break; 152 153 instr++; 154 155 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 156 break; 157 } 158 return prefetch; 159 } 160 161 DEFINE_SPINLOCK(pgd_lock); 162 LIST_HEAD(pgd_list); 163 164 #ifdef CONFIG_X86_32 165 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 166 { 167 unsigned index = pgd_index(address); 168 pgd_t *pgd_k; 169 p4d_t *p4d, *p4d_k; 170 pud_t *pud, *pud_k; 171 pmd_t *pmd, *pmd_k; 172 173 pgd += index; 174 pgd_k = init_mm.pgd + index; 175 176 if (!pgd_present(*pgd_k)) 177 return NULL; 178 179 /* 180 * set_pgd(pgd, *pgd_k); here would be useless on PAE 181 * and redundant with the set_pmd() on non-PAE. As would 182 * set_p4d/set_pud. 183 */ 184 p4d = p4d_offset(pgd, address); 185 p4d_k = p4d_offset(pgd_k, address); 186 if (!p4d_present(*p4d_k)) 187 return NULL; 188 189 pud = pud_offset(p4d, address); 190 pud_k = pud_offset(p4d_k, address); 191 if (!pud_present(*pud_k)) 192 return NULL; 193 194 pmd = pmd_offset(pud, address); 195 pmd_k = pmd_offset(pud_k, address); 196 if (!pmd_present(*pmd_k)) 197 return NULL; 198 199 if (!pmd_present(*pmd)) 200 set_pmd(pmd, *pmd_k); 201 else 202 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 203 204 return pmd_k; 205 } 206 207 void vmalloc_sync_all(void) 208 { 209 unsigned long address; 210 211 if (SHARED_KERNEL_PMD) 212 return; 213 214 for (address = VMALLOC_START & PMD_MASK; 215 address >= TASK_SIZE_MAX && address < FIXADDR_TOP; 216 address += PMD_SIZE) { 217 struct page *page; 218 219 spin_lock(&pgd_lock); 220 list_for_each_entry(page, &pgd_list, lru) { 221 spinlock_t *pgt_lock; 222 pmd_t *ret; 223 224 /* the pgt_lock only for Xen */ 225 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 226 227 spin_lock(pgt_lock); 228 ret = vmalloc_sync_one(page_address(page), address); 229 spin_unlock(pgt_lock); 230 231 if (!ret) 232 break; 233 } 234 spin_unlock(&pgd_lock); 235 } 236 } 237 238 /* 239 * 32-bit: 240 * 241 * Handle a fault on the vmalloc or module mapping area 242 */ 243 static noinline int vmalloc_fault(unsigned long address) 244 { 245 unsigned long pgd_paddr; 246 pmd_t *pmd_k; 247 pte_t *pte_k; 248 249 /* Make sure we are in vmalloc area: */ 250 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 251 return -1; 252 253 /* 254 * Synchronize this task's top level page-table 255 * with the 'reference' page table. 256 * 257 * Do _not_ use "current" here. We might be inside 258 * an interrupt in the middle of a task switch.. 259 */ 260 pgd_paddr = read_cr3_pa(); 261 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 262 if (!pmd_k) 263 return -1; 264 265 if (pmd_large(*pmd_k)) 266 return 0; 267 268 pte_k = pte_offset_kernel(pmd_k, address); 269 if (!pte_present(*pte_k)) 270 return -1; 271 272 return 0; 273 } 274 NOKPROBE_SYMBOL(vmalloc_fault); 275 276 /* 277 * Did it hit the DOS screen memory VA from vm86 mode? 278 */ 279 static inline void 280 check_v8086_mode(struct pt_regs *regs, unsigned long address, 281 struct task_struct *tsk) 282 { 283 #ifdef CONFIG_VM86 284 unsigned long bit; 285 286 if (!v8086_mode(regs) || !tsk->thread.vm86) 287 return; 288 289 bit = (address - 0xA0000) >> PAGE_SHIFT; 290 if (bit < 32) 291 tsk->thread.vm86->screen_bitmap |= 1 << bit; 292 #endif 293 } 294 295 static bool low_pfn(unsigned long pfn) 296 { 297 return pfn < max_low_pfn; 298 } 299 300 static void dump_pagetable(unsigned long address) 301 { 302 pgd_t *base = __va(read_cr3_pa()); 303 pgd_t *pgd = &base[pgd_index(address)]; 304 p4d_t *p4d; 305 pud_t *pud; 306 pmd_t *pmd; 307 pte_t *pte; 308 309 #ifdef CONFIG_X86_PAE 310 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 311 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 312 goto out; 313 #define pr_pde pr_cont 314 #else 315 #define pr_pde pr_info 316 #endif 317 p4d = p4d_offset(pgd, address); 318 pud = pud_offset(p4d, address); 319 pmd = pmd_offset(pud, address); 320 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 321 #undef pr_pde 322 323 /* 324 * We must not directly access the pte in the highpte 325 * case if the page table is located in highmem. 326 * And let's rather not kmap-atomic the pte, just in case 327 * it's allocated already: 328 */ 329 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 330 goto out; 331 332 pte = pte_offset_kernel(pmd, address); 333 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 334 out: 335 pr_cont("\n"); 336 } 337 338 #else /* CONFIG_X86_64: */ 339 340 void vmalloc_sync_all(void) 341 { 342 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 343 } 344 345 /* 346 * 64-bit: 347 * 348 * Handle a fault on the vmalloc area 349 */ 350 static noinline int vmalloc_fault(unsigned long address) 351 { 352 pgd_t *pgd, *pgd_k; 353 p4d_t *p4d, *p4d_k; 354 pud_t *pud; 355 pmd_t *pmd; 356 pte_t *pte; 357 358 /* Make sure we are in vmalloc area: */ 359 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 360 return -1; 361 362 WARN_ON_ONCE(in_nmi()); 363 364 /* 365 * Copy kernel mappings over when needed. This can also 366 * happen within a race in page table update. In the later 367 * case just flush: 368 */ 369 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); 370 pgd_k = pgd_offset_k(address); 371 if (pgd_none(*pgd_k)) 372 return -1; 373 374 if (pgtable_l5_enabled()) { 375 if (pgd_none(*pgd)) { 376 set_pgd(pgd, *pgd_k); 377 arch_flush_lazy_mmu_mode(); 378 } else { 379 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k)); 380 } 381 } 382 383 /* With 4-level paging, copying happens on the p4d level. */ 384 p4d = p4d_offset(pgd, address); 385 p4d_k = p4d_offset(pgd_k, address); 386 if (p4d_none(*p4d_k)) 387 return -1; 388 389 if (p4d_none(*p4d) && !pgtable_l5_enabled()) { 390 set_p4d(p4d, *p4d_k); 391 arch_flush_lazy_mmu_mode(); 392 } else { 393 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k)); 394 } 395 396 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4); 397 398 pud = pud_offset(p4d, address); 399 if (pud_none(*pud)) 400 return -1; 401 402 if (pud_large(*pud)) 403 return 0; 404 405 pmd = pmd_offset(pud, address); 406 if (pmd_none(*pmd)) 407 return -1; 408 409 if (pmd_large(*pmd)) 410 return 0; 411 412 pte = pte_offset_kernel(pmd, address); 413 if (!pte_present(*pte)) 414 return -1; 415 416 return 0; 417 } 418 NOKPROBE_SYMBOL(vmalloc_fault); 419 420 #ifdef CONFIG_CPU_SUP_AMD 421 static const char errata93_warning[] = 422 KERN_ERR 423 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 424 "******* Working around it, but it may cause SEGVs or burn power.\n" 425 "******* Please consider a BIOS update.\n" 426 "******* Disabling USB legacy in the BIOS may also help.\n"; 427 #endif 428 429 /* 430 * No vm86 mode in 64-bit mode: 431 */ 432 static inline void 433 check_v8086_mode(struct pt_regs *regs, unsigned long address, 434 struct task_struct *tsk) 435 { 436 } 437 438 static int bad_address(void *p) 439 { 440 unsigned long dummy; 441 442 return probe_kernel_address((unsigned long *)p, dummy); 443 } 444 445 static void dump_pagetable(unsigned long address) 446 { 447 pgd_t *base = __va(read_cr3_pa()); 448 pgd_t *pgd = base + pgd_index(address); 449 p4d_t *p4d; 450 pud_t *pud; 451 pmd_t *pmd; 452 pte_t *pte; 453 454 if (bad_address(pgd)) 455 goto bad; 456 457 pr_info("PGD %lx ", pgd_val(*pgd)); 458 459 if (!pgd_present(*pgd)) 460 goto out; 461 462 p4d = p4d_offset(pgd, address); 463 if (bad_address(p4d)) 464 goto bad; 465 466 pr_cont("P4D %lx ", p4d_val(*p4d)); 467 if (!p4d_present(*p4d) || p4d_large(*p4d)) 468 goto out; 469 470 pud = pud_offset(p4d, address); 471 if (bad_address(pud)) 472 goto bad; 473 474 pr_cont("PUD %lx ", pud_val(*pud)); 475 if (!pud_present(*pud) || pud_large(*pud)) 476 goto out; 477 478 pmd = pmd_offset(pud, address); 479 if (bad_address(pmd)) 480 goto bad; 481 482 pr_cont("PMD %lx ", pmd_val(*pmd)); 483 if (!pmd_present(*pmd) || pmd_large(*pmd)) 484 goto out; 485 486 pte = pte_offset_kernel(pmd, address); 487 if (bad_address(pte)) 488 goto bad; 489 490 pr_cont("PTE %lx", pte_val(*pte)); 491 out: 492 pr_cont("\n"); 493 return; 494 bad: 495 pr_info("BAD\n"); 496 } 497 498 #endif /* CONFIG_X86_64 */ 499 500 /* 501 * Workaround for K8 erratum #93 & buggy BIOS. 502 * 503 * BIOS SMM functions are required to use a specific workaround 504 * to avoid corruption of the 64bit RIP register on C stepping K8. 505 * 506 * A lot of BIOS that didn't get tested properly miss this. 507 * 508 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 509 * Try to work around it here. 510 * 511 * Note we only handle faults in kernel here. 512 * Does nothing on 32-bit. 513 */ 514 static int is_errata93(struct pt_regs *regs, unsigned long address) 515 { 516 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 517 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 518 || boot_cpu_data.x86 != 0xf) 519 return 0; 520 521 if (address != regs->ip) 522 return 0; 523 524 if ((address >> 32) != 0) 525 return 0; 526 527 address |= 0xffffffffUL << 32; 528 if ((address >= (u64)_stext && address <= (u64)_etext) || 529 (address >= MODULES_VADDR && address <= MODULES_END)) { 530 printk_once(errata93_warning); 531 regs->ip = address; 532 return 1; 533 } 534 #endif 535 return 0; 536 } 537 538 /* 539 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 540 * to illegal addresses >4GB. 541 * 542 * We catch this in the page fault handler because these addresses 543 * are not reachable. Just detect this case and return. Any code 544 * segment in LDT is compatibility mode. 545 */ 546 static int is_errata100(struct pt_regs *regs, unsigned long address) 547 { 548 #ifdef CONFIG_X86_64 549 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 550 return 1; 551 #endif 552 return 0; 553 } 554 555 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 556 { 557 #ifdef CONFIG_X86_F00F_BUG 558 unsigned long nr; 559 560 /* 561 * Pentium F0 0F C7 C8 bug workaround: 562 */ 563 if (boot_cpu_has_bug(X86_BUG_F00F)) { 564 nr = (address - idt_descr.address) >> 3; 565 566 if (nr == 6) { 567 do_invalid_op(regs, 0); 568 return 1; 569 } 570 } 571 #endif 572 return 0; 573 } 574 575 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 576 { 577 u32 offset = (index >> 3) * sizeof(struct desc_struct); 578 unsigned long addr; 579 struct ldttss_desc desc; 580 581 if (index == 0) { 582 pr_alert("%s: NULL\n", name); 583 return; 584 } 585 586 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 587 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 588 return; 589 } 590 591 if (probe_kernel_read(&desc, (void *)(gdt->address + offset), 592 sizeof(struct ldttss_desc))) { 593 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 594 name, index); 595 return; 596 } 597 598 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 599 #ifdef CONFIG_X86_64 600 addr |= ((u64)desc.base3 << 32); 601 #endif 602 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 603 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 604 } 605 606 /* 607 * This helper function transforms the #PF error_code bits into 608 * "[PROT] [USER]" type of descriptive, almost human-readable error strings: 609 */ 610 static void err_str_append(unsigned long error_code, char *buf, unsigned long mask, const char *txt) 611 { 612 if (error_code & mask) { 613 if (buf[0]) 614 strcat(buf, " "); 615 strcat(buf, txt); 616 } 617 } 618 619 static void 620 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 621 { 622 char err_txt[64]; 623 624 if (!oops_may_print()) 625 return; 626 627 if (error_code & X86_PF_INSTR) { 628 unsigned int level; 629 pgd_t *pgd; 630 pte_t *pte; 631 632 pgd = __va(read_cr3_pa()); 633 pgd += pgd_index(address); 634 635 pte = lookup_address_in_pgd(pgd, address, &level); 636 637 if (pte && pte_present(*pte) && !pte_exec(*pte)) 638 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 639 from_kuid(&init_user_ns, current_uid())); 640 if (pte && pte_present(*pte) && pte_exec(*pte) && 641 (pgd_flags(*pgd) & _PAGE_USER) && 642 (__read_cr4() & X86_CR4_SMEP)) 643 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 644 from_kuid(&init_user_ns, current_uid())); 645 } 646 647 pr_alert("BUG: unable to handle kernel %s at %px\n", 648 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", 649 (void *)address); 650 651 err_txt[0] = 0; 652 653 /* 654 * Note: length of these appended strings including the separation space and the 655 * zero delimiter must fit into err_txt[]. 656 */ 657 err_str_append(error_code, err_txt, X86_PF_PROT, "[PROT]" ); 658 err_str_append(error_code, err_txt, X86_PF_WRITE, "[WRITE]"); 659 err_str_append(error_code, err_txt, X86_PF_USER, "[USER]" ); 660 err_str_append(error_code, err_txt, X86_PF_RSVD, "[RSVD]" ); 661 err_str_append(error_code, err_txt, X86_PF_INSTR, "[INSTR]"); 662 err_str_append(error_code, err_txt, X86_PF_PK, "[PK]" ); 663 664 pr_alert("#PF error: %s\n", error_code ? err_txt : "[normal kernel read fault]"); 665 666 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 667 struct desc_ptr idt, gdt; 668 u16 ldtr, tr; 669 670 pr_alert("This was a system access from user code\n"); 671 672 /* 673 * This can happen for quite a few reasons. The more obvious 674 * ones are faults accessing the GDT, or LDT. Perhaps 675 * surprisingly, if the CPU tries to deliver a benign or 676 * contributory exception from user code and gets a page fault 677 * during delivery, the page fault can be delivered as though 678 * it originated directly from user code. This could happen 679 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 680 * kernel or IST stack. 681 */ 682 store_idt(&idt); 683 684 /* Usable even on Xen PV -- it's just slow. */ 685 native_store_gdt(&gdt); 686 687 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 688 idt.address, idt.size, gdt.address, gdt.size); 689 690 store_ldt(ldtr); 691 show_ldttss(&gdt, "LDTR", ldtr); 692 693 store_tr(tr); 694 show_ldttss(&gdt, "TR", tr); 695 } 696 697 dump_pagetable(address); 698 } 699 700 static noinline void 701 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 702 unsigned long address) 703 { 704 struct task_struct *tsk; 705 unsigned long flags; 706 int sig; 707 708 flags = oops_begin(); 709 tsk = current; 710 sig = SIGKILL; 711 712 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 713 tsk->comm, address); 714 dump_pagetable(address); 715 716 if (__die("Bad pagetable", regs, error_code)) 717 sig = 0; 718 719 oops_end(flags, regs, sig); 720 } 721 722 static void set_signal_archinfo(unsigned long address, 723 unsigned long error_code) 724 { 725 struct task_struct *tsk = current; 726 727 /* 728 * To avoid leaking information about the kernel page 729 * table layout, pretend that user-mode accesses to 730 * kernel addresses are always protection faults. 731 */ 732 if (address >= TASK_SIZE_MAX) 733 error_code |= X86_PF_PROT; 734 735 tsk->thread.trap_nr = X86_TRAP_PF; 736 tsk->thread.error_code = error_code | X86_PF_USER; 737 tsk->thread.cr2 = address; 738 } 739 740 static noinline void 741 no_context(struct pt_regs *regs, unsigned long error_code, 742 unsigned long address, int signal, int si_code) 743 { 744 struct task_struct *tsk = current; 745 unsigned long flags; 746 int sig; 747 748 if (user_mode(regs)) { 749 /* 750 * This is an implicit supervisor-mode access from user 751 * mode. Bypass all the kernel-mode recovery code and just 752 * OOPS. 753 */ 754 goto oops; 755 } 756 757 /* Are we prepared to handle this kernel fault? */ 758 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 759 /* 760 * Any interrupt that takes a fault gets the fixup. This makes 761 * the below recursive fault logic only apply to a faults from 762 * task context. 763 */ 764 if (in_interrupt()) 765 return; 766 767 /* 768 * Per the above we're !in_interrupt(), aka. task context. 769 * 770 * In this case we need to make sure we're not recursively 771 * faulting through the emulate_vsyscall() logic. 772 */ 773 if (current->thread.sig_on_uaccess_err && signal) { 774 set_signal_archinfo(address, error_code); 775 776 /* XXX: hwpoison faults will set the wrong code. */ 777 force_sig_fault(signal, si_code, (void __user *)address, 778 tsk); 779 } 780 781 /* 782 * Barring that, we can do the fixup and be happy. 783 */ 784 return; 785 } 786 787 #ifdef CONFIG_VMAP_STACK 788 /* 789 * Stack overflow? During boot, we can fault near the initial 790 * stack in the direct map, but that's not an overflow -- check 791 * that we're in vmalloc space to avoid this. 792 */ 793 if (is_vmalloc_addr((void *)address) && 794 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 795 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 796 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); 797 /* 798 * We're likely to be running with very little stack space 799 * left. It's plausible that we'd hit this condition but 800 * double-fault even before we get this far, in which case 801 * we're fine: the double-fault handler will deal with it. 802 * 803 * We don't want to make it all the way into the oops code 804 * and then double-fault, though, because we're likely to 805 * break the console driver and lose most of the stack dump. 806 */ 807 asm volatile ("movq %[stack], %%rsp\n\t" 808 "call handle_stack_overflow\n\t" 809 "1: jmp 1b" 810 : ASM_CALL_CONSTRAINT 811 : "D" ("kernel stack overflow (page fault)"), 812 "S" (regs), "d" (address), 813 [stack] "rm" (stack)); 814 unreachable(); 815 } 816 #endif 817 818 /* 819 * 32-bit: 820 * 821 * Valid to do another page fault here, because if this fault 822 * had been triggered by is_prefetch fixup_exception would have 823 * handled it. 824 * 825 * 64-bit: 826 * 827 * Hall of shame of CPU/BIOS bugs. 828 */ 829 if (is_prefetch(regs, error_code, address)) 830 return; 831 832 if (is_errata93(regs, address)) 833 return; 834 835 /* 836 * Buggy firmware could access regions which might page fault, try to 837 * recover from such faults. 838 */ 839 if (IS_ENABLED(CONFIG_EFI)) 840 efi_recover_from_page_fault(address); 841 842 oops: 843 /* 844 * Oops. The kernel tried to access some bad page. We'll have to 845 * terminate things with extreme prejudice: 846 */ 847 flags = oops_begin(); 848 849 show_fault_oops(regs, error_code, address); 850 851 if (task_stack_end_corrupted(tsk)) 852 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 853 854 sig = SIGKILL; 855 if (__die("Oops", regs, error_code)) 856 sig = 0; 857 858 /* Executive summary in case the body of the oops scrolled away */ 859 printk(KERN_DEFAULT "CR2: %016lx\n", address); 860 861 oops_end(flags, regs, sig); 862 } 863 864 /* 865 * Print out info about fatal segfaults, if the show_unhandled_signals 866 * sysctl is set: 867 */ 868 static inline void 869 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 870 unsigned long address, struct task_struct *tsk) 871 { 872 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 873 874 if (!unhandled_signal(tsk, SIGSEGV)) 875 return; 876 877 if (!printk_ratelimit()) 878 return; 879 880 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 881 loglvl, tsk->comm, task_pid_nr(tsk), address, 882 (void *)regs->ip, (void *)regs->sp, error_code); 883 884 print_vma_addr(KERN_CONT " in ", regs->ip); 885 886 printk(KERN_CONT "\n"); 887 888 show_opcodes(regs, loglvl); 889 } 890 891 /* 892 * The (legacy) vsyscall page is the long page in the kernel portion 893 * of the address space that has user-accessible permissions. 894 */ 895 static bool is_vsyscall_vaddr(unsigned long vaddr) 896 { 897 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 898 } 899 900 static void 901 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 902 unsigned long address, u32 pkey, int si_code) 903 { 904 struct task_struct *tsk = current; 905 906 /* User mode accesses just cause a SIGSEGV */ 907 if (user_mode(regs) && (error_code & X86_PF_USER)) { 908 /* 909 * It's possible to have interrupts off here: 910 */ 911 local_irq_enable(); 912 913 /* 914 * Valid to do another page fault here because this one came 915 * from user space: 916 */ 917 if (is_prefetch(regs, error_code, address)) 918 return; 919 920 if (is_errata100(regs, address)) 921 return; 922 923 /* 924 * To avoid leaking information about the kernel page table 925 * layout, pretend that user-mode accesses to kernel addresses 926 * are always protection faults. 927 */ 928 if (address >= TASK_SIZE_MAX) 929 error_code |= X86_PF_PROT; 930 931 if (likely(show_unhandled_signals)) 932 show_signal_msg(regs, error_code, address, tsk); 933 934 set_signal_archinfo(address, error_code); 935 936 if (si_code == SEGV_PKUERR) 937 force_sig_pkuerr((void __user *)address, pkey); 938 939 force_sig_fault(SIGSEGV, si_code, (void __user *)address, tsk); 940 941 return; 942 } 943 944 if (is_f00f_bug(regs, address)) 945 return; 946 947 no_context(regs, error_code, address, SIGSEGV, si_code); 948 } 949 950 static noinline void 951 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 952 unsigned long address) 953 { 954 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 955 } 956 957 static void 958 __bad_area(struct pt_regs *regs, unsigned long error_code, 959 unsigned long address, u32 pkey, int si_code) 960 { 961 struct mm_struct *mm = current->mm; 962 /* 963 * Something tried to access memory that isn't in our memory map.. 964 * Fix it, but check if it's kernel or user first.. 965 */ 966 up_read(&mm->mmap_sem); 967 968 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 969 } 970 971 static noinline void 972 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 973 { 974 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 975 } 976 977 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 978 struct vm_area_struct *vma) 979 { 980 /* This code is always called on the current mm */ 981 bool foreign = false; 982 983 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 984 return false; 985 if (error_code & X86_PF_PK) 986 return true; 987 /* this checks permission keys on the VMA: */ 988 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 989 (error_code & X86_PF_INSTR), foreign)) 990 return true; 991 return false; 992 } 993 994 static noinline void 995 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 996 unsigned long address, struct vm_area_struct *vma) 997 { 998 /* 999 * This OSPKE check is not strictly necessary at runtime. 1000 * But, doing it this way allows compiler optimizations 1001 * if pkeys are compiled out. 1002 */ 1003 if (bad_area_access_from_pkeys(error_code, vma)) { 1004 /* 1005 * A protection key fault means that the PKRU value did not allow 1006 * access to some PTE. Userspace can figure out what PKRU was 1007 * from the XSAVE state. This function captures the pkey from 1008 * the vma and passes it to userspace so userspace can discover 1009 * which protection key was set on the PTE. 1010 * 1011 * If we get here, we know that the hardware signaled a X86_PF_PK 1012 * fault and that there was a VMA once we got in the fault 1013 * handler. It does *not* guarantee that the VMA we find here 1014 * was the one that we faulted on. 1015 * 1016 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 1017 * 2. T1 : set PKRU to deny access to pkey=4, touches page 1018 * 3. T1 : faults... 1019 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 1020 * 5. T1 : enters fault handler, takes mmap_sem, etc... 1021 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 1022 * faulted on a pte with its pkey=4. 1023 */ 1024 u32 pkey = vma_pkey(vma); 1025 1026 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 1027 } else { 1028 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 1029 } 1030 } 1031 1032 static void 1033 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 1034 vm_fault_t fault) 1035 { 1036 struct task_struct *tsk = current; 1037 1038 /* Kernel mode? Handle exceptions or die: */ 1039 if (!(error_code & X86_PF_USER)) { 1040 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1041 return; 1042 } 1043 1044 /* User-space => ok to do another page fault: */ 1045 if (is_prefetch(regs, error_code, address)) 1046 return; 1047 1048 set_signal_archinfo(address, error_code); 1049 1050 #ifdef CONFIG_MEMORY_FAILURE 1051 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 1052 unsigned lsb = 0; 1053 1054 pr_err( 1055 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 1056 tsk->comm, tsk->pid, address); 1057 if (fault & VM_FAULT_HWPOISON_LARGE) 1058 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 1059 if (fault & VM_FAULT_HWPOISON) 1060 lsb = PAGE_SHIFT; 1061 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, tsk); 1062 return; 1063 } 1064 #endif 1065 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, tsk); 1066 } 1067 1068 static noinline void 1069 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 1070 unsigned long address, vm_fault_t fault) 1071 { 1072 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { 1073 no_context(regs, error_code, address, 0, 0); 1074 return; 1075 } 1076 1077 if (fault & VM_FAULT_OOM) { 1078 /* Kernel mode? Handle exceptions or die: */ 1079 if (!(error_code & X86_PF_USER)) { 1080 no_context(regs, error_code, address, 1081 SIGSEGV, SEGV_MAPERR); 1082 return; 1083 } 1084 1085 /* 1086 * We ran out of memory, call the OOM killer, and return the 1087 * userspace (which will retry the fault, or kill us if we got 1088 * oom-killed): 1089 */ 1090 pagefault_out_of_memory(); 1091 } else { 1092 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1093 VM_FAULT_HWPOISON_LARGE)) 1094 do_sigbus(regs, error_code, address, fault); 1095 else if (fault & VM_FAULT_SIGSEGV) 1096 bad_area_nosemaphore(regs, error_code, address); 1097 else 1098 BUG(); 1099 } 1100 } 1101 1102 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 1103 { 1104 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 1105 return 0; 1106 1107 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 1108 return 0; 1109 1110 return 1; 1111 } 1112 1113 /* 1114 * Handle a spurious fault caused by a stale TLB entry. 1115 * 1116 * This allows us to lazily refresh the TLB when increasing the 1117 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1118 * eagerly is very expensive since that implies doing a full 1119 * cross-processor TLB flush, even if no stale TLB entries exist 1120 * on other processors. 1121 * 1122 * Spurious faults may only occur if the TLB contains an entry with 1123 * fewer permission than the page table entry. Non-present (P = 0) 1124 * and reserved bit (R = 1) faults are never spurious. 1125 * 1126 * There are no security implications to leaving a stale TLB when 1127 * increasing the permissions on a page. 1128 * 1129 * Returns non-zero if a spurious fault was handled, zero otherwise. 1130 * 1131 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1132 * (Optional Invalidation). 1133 */ 1134 static noinline int 1135 spurious_kernel_fault(unsigned long error_code, unsigned long address) 1136 { 1137 pgd_t *pgd; 1138 p4d_t *p4d; 1139 pud_t *pud; 1140 pmd_t *pmd; 1141 pte_t *pte; 1142 int ret; 1143 1144 /* 1145 * Only writes to RO or instruction fetches from NX may cause 1146 * spurious faults. 1147 * 1148 * These could be from user or supervisor accesses but the TLB 1149 * is only lazily flushed after a kernel mapping protection 1150 * change, so user accesses are not expected to cause spurious 1151 * faults. 1152 */ 1153 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1154 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1155 return 0; 1156 1157 pgd = init_mm.pgd + pgd_index(address); 1158 if (!pgd_present(*pgd)) 1159 return 0; 1160 1161 p4d = p4d_offset(pgd, address); 1162 if (!p4d_present(*p4d)) 1163 return 0; 1164 1165 if (p4d_large(*p4d)) 1166 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1167 1168 pud = pud_offset(p4d, address); 1169 if (!pud_present(*pud)) 1170 return 0; 1171 1172 if (pud_large(*pud)) 1173 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1174 1175 pmd = pmd_offset(pud, address); 1176 if (!pmd_present(*pmd)) 1177 return 0; 1178 1179 if (pmd_large(*pmd)) 1180 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1181 1182 pte = pte_offset_kernel(pmd, address); 1183 if (!pte_present(*pte)) 1184 return 0; 1185 1186 ret = spurious_kernel_fault_check(error_code, pte); 1187 if (!ret) 1188 return 0; 1189 1190 /* 1191 * Make sure we have permissions in PMD. 1192 * If not, then there's a bug in the page tables: 1193 */ 1194 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1195 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1196 1197 return ret; 1198 } 1199 NOKPROBE_SYMBOL(spurious_kernel_fault); 1200 1201 int show_unhandled_signals = 1; 1202 1203 static inline int 1204 access_error(unsigned long error_code, struct vm_area_struct *vma) 1205 { 1206 /* This is only called for the current mm, so: */ 1207 bool foreign = false; 1208 1209 /* 1210 * Read or write was blocked by protection keys. This is 1211 * always an unconditional error and can never result in 1212 * a follow-up action to resolve the fault, like a COW. 1213 */ 1214 if (error_code & X86_PF_PK) 1215 return 1; 1216 1217 /* 1218 * Make sure to check the VMA so that we do not perform 1219 * faults just to hit a X86_PF_PK as soon as we fill in a 1220 * page. 1221 */ 1222 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1223 (error_code & X86_PF_INSTR), foreign)) 1224 return 1; 1225 1226 if (error_code & X86_PF_WRITE) { 1227 /* write, present and write, not present: */ 1228 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1229 return 1; 1230 return 0; 1231 } 1232 1233 /* read, present: */ 1234 if (unlikely(error_code & X86_PF_PROT)) 1235 return 1; 1236 1237 /* read, not present: */ 1238 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1239 return 1; 1240 1241 return 0; 1242 } 1243 1244 static int fault_in_kernel_space(unsigned long address) 1245 { 1246 /* 1247 * On 64-bit systems, the vsyscall page is at an address above 1248 * TASK_SIZE_MAX, but is not considered part of the kernel 1249 * address space. 1250 */ 1251 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1252 return false; 1253 1254 return address >= TASK_SIZE_MAX; 1255 } 1256 1257 /* 1258 * Called for all faults where 'address' is part of the kernel address 1259 * space. Might get called for faults that originate from *code* that 1260 * ran in userspace or the kernel. 1261 */ 1262 static void 1263 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1264 unsigned long address) 1265 { 1266 /* 1267 * Protection keys exceptions only happen on user pages. We 1268 * have no user pages in the kernel portion of the address 1269 * space, so do not expect them here. 1270 */ 1271 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1272 1273 /* 1274 * We can fault-in kernel-space virtual memory on-demand. The 1275 * 'reference' page table is init_mm.pgd. 1276 * 1277 * NOTE! We MUST NOT take any locks for this case. We may 1278 * be in an interrupt or a critical region, and should 1279 * only copy the information from the master page table, 1280 * nothing more. 1281 * 1282 * Before doing this on-demand faulting, ensure that the 1283 * fault is not any of the following: 1284 * 1. A fault on a PTE with a reserved bit set. 1285 * 2. A fault caused by a user-mode access. (Do not demand- 1286 * fault kernel memory due to user-mode accesses). 1287 * 3. A fault caused by a page-level protection violation. 1288 * (A demand fault would be on a non-present page which 1289 * would have X86_PF_PROT==0). 1290 */ 1291 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1292 if (vmalloc_fault(address) >= 0) 1293 return; 1294 } 1295 1296 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1297 if (spurious_kernel_fault(hw_error_code, address)) 1298 return; 1299 1300 /* kprobes don't want to hook the spurious faults: */ 1301 if (kprobes_fault(regs)) 1302 return; 1303 1304 /* 1305 * Note, despite being a "bad area", there are quite a few 1306 * acceptable reasons to get here, such as erratum fixups 1307 * and handling kernel code that can fault, like get_user(). 1308 * 1309 * Don't take the mm semaphore here. If we fixup a prefetch 1310 * fault we could otherwise deadlock: 1311 */ 1312 bad_area_nosemaphore(regs, hw_error_code, address); 1313 } 1314 NOKPROBE_SYMBOL(do_kern_addr_fault); 1315 1316 /* Handle faults in the user portion of the address space */ 1317 static inline 1318 void do_user_addr_fault(struct pt_regs *regs, 1319 unsigned long hw_error_code, 1320 unsigned long address) 1321 { 1322 struct vm_area_struct *vma; 1323 struct task_struct *tsk; 1324 struct mm_struct *mm; 1325 vm_fault_t fault, major = 0; 1326 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1327 1328 tsk = current; 1329 mm = tsk->mm; 1330 1331 /* kprobes don't want to hook the spurious faults: */ 1332 if (unlikely(kprobes_fault(regs))) 1333 return; 1334 1335 /* 1336 * Reserved bits are never expected to be set on 1337 * entries in the user portion of the page tables. 1338 */ 1339 if (unlikely(hw_error_code & X86_PF_RSVD)) 1340 pgtable_bad(regs, hw_error_code, address); 1341 1342 /* 1343 * If SMAP is on, check for invalid kernel (supervisor) access to user 1344 * pages in the user address space. The odd case here is WRUSS, 1345 * which, according to the preliminary documentation, does not respect 1346 * SMAP and will have the USER bit set so, in all cases, SMAP 1347 * enforcement appears to be consistent with the USER bit. 1348 */ 1349 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1350 !(hw_error_code & X86_PF_USER) && 1351 !(regs->flags & X86_EFLAGS_AC))) 1352 { 1353 bad_area_nosemaphore(regs, hw_error_code, address); 1354 return; 1355 } 1356 1357 /* 1358 * If we're in an interrupt, have no user context or are running 1359 * in a region with pagefaults disabled then we must not take the fault 1360 */ 1361 if (unlikely(faulthandler_disabled() || !mm)) { 1362 bad_area_nosemaphore(regs, hw_error_code, address); 1363 return; 1364 } 1365 1366 /* 1367 * It's safe to allow irq's after cr2 has been saved and the 1368 * vmalloc fault has been handled. 1369 * 1370 * User-mode registers count as a user access even for any 1371 * potential system fault or CPU buglet: 1372 */ 1373 if (user_mode(regs)) { 1374 local_irq_enable(); 1375 flags |= FAULT_FLAG_USER; 1376 } else { 1377 if (regs->flags & X86_EFLAGS_IF) 1378 local_irq_enable(); 1379 } 1380 1381 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1382 1383 if (hw_error_code & X86_PF_WRITE) 1384 flags |= FAULT_FLAG_WRITE; 1385 if (hw_error_code & X86_PF_INSTR) 1386 flags |= FAULT_FLAG_INSTRUCTION; 1387 1388 #ifdef CONFIG_X86_64 1389 /* 1390 * Instruction fetch faults in the vsyscall page might need 1391 * emulation. The vsyscall page is at a high address 1392 * (>PAGE_OFFSET), but is considered to be part of the user 1393 * address space. 1394 * 1395 * The vsyscall page does not have a "real" VMA, so do this 1396 * emulation before we go searching for VMAs. 1397 */ 1398 if ((hw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) { 1399 if (emulate_vsyscall(regs, address)) 1400 return; 1401 } 1402 #endif 1403 1404 /* 1405 * Kernel-mode access to the user address space should only occur 1406 * on well-defined single instructions listed in the exception 1407 * tables. But, an erroneous kernel fault occurring outside one of 1408 * those areas which also holds mmap_sem might deadlock attempting 1409 * to validate the fault against the address space. 1410 * 1411 * Only do the expensive exception table search when we might be at 1412 * risk of a deadlock. This happens if we 1413 * 1. Failed to acquire mmap_sem, and 1414 * 2. The access did not originate in userspace. 1415 */ 1416 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1417 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1418 /* 1419 * Fault from code in kernel from 1420 * which we do not expect faults. 1421 */ 1422 bad_area_nosemaphore(regs, hw_error_code, address); 1423 return; 1424 } 1425 retry: 1426 down_read(&mm->mmap_sem); 1427 } else { 1428 /* 1429 * The above down_read_trylock() might have succeeded in 1430 * which case we'll have missed the might_sleep() from 1431 * down_read(): 1432 */ 1433 might_sleep(); 1434 } 1435 1436 vma = find_vma(mm, address); 1437 if (unlikely(!vma)) { 1438 bad_area(regs, hw_error_code, address); 1439 return; 1440 } 1441 if (likely(vma->vm_start <= address)) 1442 goto good_area; 1443 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1444 bad_area(regs, hw_error_code, address); 1445 return; 1446 } 1447 if (unlikely(expand_stack(vma, address))) { 1448 bad_area(regs, hw_error_code, address); 1449 return; 1450 } 1451 1452 /* 1453 * Ok, we have a good vm_area for this memory access, so 1454 * we can handle it.. 1455 */ 1456 good_area: 1457 if (unlikely(access_error(hw_error_code, vma))) { 1458 bad_area_access_error(regs, hw_error_code, address, vma); 1459 return; 1460 } 1461 1462 /* 1463 * If for any reason at all we couldn't handle the fault, 1464 * make sure we exit gracefully rather than endlessly redo 1465 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1466 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1467 * 1468 * Note that handle_userfault() may also release and reacquire mmap_sem 1469 * (and not return with VM_FAULT_RETRY), when returning to userland to 1470 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1471 * (potentially after handling any pending signal during the return to 1472 * userland). The return to userland is identified whenever 1473 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1474 */ 1475 fault = handle_mm_fault(vma, address, flags); 1476 major |= fault & VM_FAULT_MAJOR; 1477 1478 /* 1479 * If we need to retry the mmap_sem has already been released, 1480 * and if there is a fatal signal pending there is no guarantee 1481 * that we made any progress. Handle this case first. 1482 */ 1483 if (unlikely(fault & VM_FAULT_RETRY)) { 1484 /* Retry at most once */ 1485 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1486 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1487 flags |= FAULT_FLAG_TRIED; 1488 if (!fatal_signal_pending(tsk)) 1489 goto retry; 1490 } 1491 1492 /* User mode? Just return to handle the fatal exception */ 1493 if (flags & FAULT_FLAG_USER) 1494 return; 1495 1496 /* Not returning to user mode? Handle exceptions or die: */ 1497 no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR); 1498 return; 1499 } 1500 1501 up_read(&mm->mmap_sem); 1502 if (unlikely(fault & VM_FAULT_ERROR)) { 1503 mm_fault_error(regs, hw_error_code, address, fault); 1504 return; 1505 } 1506 1507 /* 1508 * Major/minor page fault accounting. If any of the events 1509 * returned VM_FAULT_MAJOR, we account it as a major fault. 1510 */ 1511 if (major) { 1512 tsk->maj_flt++; 1513 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1514 } else { 1515 tsk->min_flt++; 1516 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1517 } 1518 1519 check_v8086_mode(regs, address, tsk); 1520 } 1521 NOKPROBE_SYMBOL(do_user_addr_fault); 1522 1523 /* 1524 * This routine handles page faults. It determines the address, 1525 * and the problem, and then passes it off to one of the appropriate 1526 * routines. 1527 */ 1528 static noinline void 1529 __do_page_fault(struct pt_regs *regs, unsigned long hw_error_code, 1530 unsigned long address) 1531 { 1532 prefetchw(¤t->mm->mmap_sem); 1533 1534 if (unlikely(kmmio_fault(regs, address))) 1535 return; 1536 1537 /* Was the fault on kernel-controlled part of the address space? */ 1538 if (unlikely(fault_in_kernel_space(address))) 1539 do_kern_addr_fault(regs, hw_error_code, address); 1540 else 1541 do_user_addr_fault(regs, hw_error_code, address); 1542 } 1543 NOKPROBE_SYMBOL(__do_page_fault); 1544 1545 static nokprobe_inline void 1546 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1547 unsigned long error_code) 1548 { 1549 if (user_mode(regs)) 1550 trace_page_fault_user(address, regs, error_code); 1551 else 1552 trace_page_fault_kernel(address, regs, error_code); 1553 } 1554 1555 /* 1556 * We must have this function blacklisted from kprobes, tagged with notrace 1557 * and call read_cr2() before calling anything else. To avoid calling any 1558 * kind of tracing machinery before we've observed the CR2 value. 1559 * 1560 * exception_{enter,exit}() contains all sorts of tracepoints. 1561 */ 1562 dotraplinkage void notrace 1563 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1564 { 1565 unsigned long address = read_cr2(); /* Get the faulting address */ 1566 enum ctx_state prev_state; 1567 1568 prev_state = exception_enter(); 1569 if (trace_pagefault_enabled()) 1570 trace_page_fault_entries(address, regs, error_code); 1571 1572 __do_page_fault(regs, error_code, address); 1573 exception_exit(prev_state); 1574 } 1575 NOKPROBE_SYMBOL(do_page_fault); 1576