xref: /openbmc/linux/arch/x86/mm/fault.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Returns 0 if mmiotrace is disabled, or if the fault is not
33  * handled by mmiotrace:
34  */
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
37 {
38 	if (unlikely(is_kmmio_active()))
39 		if (kmmio_handler(regs, addr) == 1)
40 			return -1;
41 	return 0;
42 }
43 
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45 {
46 	int ret = 0;
47 
48 	/* kprobe_running() needs smp_processor_id() */
49 	if (kprobes_built_in() && !user_mode(regs)) {
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 
59 /*
60  * Prefetch quirks:
61  *
62  * 32-bit mode:
63  *
64  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65  *   Check that here and ignore it.
66  *
67  * 64-bit mode:
68  *
69  *   Sometimes the CPU reports invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * Opcode checker based on code by Richard Brunner.
73  */
74 static inline int
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 		      unsigned char opcode, int *prefetch)
77 {
78 	unsigned char instr_hi = opcode & 0xf0;
79 	unsigned char instr_lo = opcode & 0x0f;
80 
81 	switch (instr_hi) {
82 	case 0x20:
83 	case 0x30:
84 		/*
85 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 		 * In X86_64 long mode, the CPU will signal invalid
87 		 * opcode if some of these prefixes are present so
88 		 * X86_64 will never get here anyway
89 		 */
90 		return ((instr_lo & 7) == 0x6);
91 #ifdef CONFIG_X86_64
92 	case 0x40:
93 		/*
94 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 		 * Need to figure out under what instruction mode the
96 		 * instruction was issued. Could check the LDT for lm,
97 		 * but for now it's good enough to assume that long
98 		 * mode only uses well known segments or kernel.
99 		 */
100 		return (!user_mode(regs) || user_64bit_mode(regs));
101 #endif
102 	case 0x60:
103 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
104 		return (instr_lo & 0xC) == 0x4;
105 	case 0xF0:
106 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 		return !instr_lo || (instr_lo>>1) == 1;
108 	case 0x00:
109 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
110 		if (probe_kernel_address(instr, opcode))
111 			return 0;
112 
113 		*prefetch = (instr_lo == 0xF) &&
114 			(opcode == 0x0D || opcode == 0x18);
115 		return 0;
116 	default:
117 		return 0;
118 	}
119 }
120 
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 	unsigned char *max_instr;
125 	unsigned char *instr;
126 	int prefetch = 0;
127 
128 	/*
129 	 * If it was a exec (instruction fetch) fault on NX page, then
130 	 * do not ignore the fault:
131 	 */
132 	if (error_code & X86_PF_INSTR)
133 		return 0;
134 
135 	instr = (void *)convert_ip_to_linear(current, regs);
136 	max_instr = instr + 15;
137 
138 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 		return 0;
140 
141 	while (instr < max_instr) {
142 		unsigned char opcode;
143 
144 		if (probe_kernel_address(instr, opcode))
145 			break;
146 
147 		instr++;
148 
149 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 			break;
151 	}
152 	return prefetch;
153 }
154 
155 /*
156  * A protection key fault means that the PKRU value did not allow
157  * access to some PTE.  Userspace can figure out what PKRU was
158  * from the XSAVE state, and this function fills out a field in
159  * siginfo so userspace can discover which protection key was set
160  * on the PTE.
161  *
162  * If we get here, we know that the hardware signaled a X86_PF_PK
163  * fault and that there was a VMA once we got in the fault
164  * handler.  It does *not* guarantee that the VMA we find here
165  * was the one that we faulted on.
166  *
167  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
168  * 2. T1   : set PKRU to deny access to pkey=4, touches page
169  * 3. T1   : faults...
170  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171  * 5. T1   : enters fault handler, takes mmap_sem, etc...
172  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
173  *	     faulted on a pte with its pkey=4.
174  */
175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 		u32 *pkey)
177 {
178 	/* This is effectively an #ifdef */
179 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 		return;
181 
182 	/* Fault not from Protection Keys: nothing to do */
183 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 		return;
185 	/*
186 	 * force_sig_info_fault() is called from a number of
187 	 * contexts, some of which have a VMA and some of which
188 	 * do not.  The X86_PF_PK handing happens after we have a
189 	 * valid VMA, so we should never reach this without a
190 	 * valid VMA.
191 	 */
192 	if (!pkey) {
193 		WARN_ONCE(1, "PKU fault with no VMA passed in");
194 		info->si_pkey = 0;
195 		return;
196 	}
197 	/*
198 	 * si_pkey should be thought of as a strong hint, but not
199 	 * absolutely guranteed to be 100% accurate because of
200 	 * the race explained above.
201 	 */
202 	info->si_pkey = *pkey;
203 }
204 
205 static void
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 		     struct task_struct *tsk, u32 *pkey, int fault)
208 {
209 	unsigned lsb = 0;
210 	siginfo_t info;
211 
212 	clear_siginfo(&info);
213 	info.si_signo	= si_signo;
214 	info.si_errno	= 0;
215 	info.si_code	= si_code;
216 	info.si_addr	= (void __user *)address;
217 	if (fault & VM_FAULT_HWPOISON_LARGE)
218 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
219 	if (fault & VM_FAULT_HWPOISON)
220 		lsb = PAGE_SHIFT;
221 	info.si_addr_lsb = lsb;
222 
223 	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
224 
225 	force_sig_info(si_signo, &info, tsk);
226 }
227 
228 DEFINE_SPINLOCK(pgd_lock);
229 LIST_HEAD(pgd_list);
230 
231 #ifdef CONFIG_X86_32
232 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
233 {
234 	unsigned index = pgd_index(address);
235 	pgd_t *pgd_k;
236 	p4d_t *p4d, *p4d_k;
237 	pud_t *pud, *pud_k;
238 	pmd_t *pmd, *pmd_k;
239 
240 	pgd += index;
241 	pgd_k = init_mm.pgd + index;
242 
243 	if (!pgd_present(*pgd_k))
244 		return NULL;
245 
246 	/*
247 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
248 	 * and redundant with the set_pmd() on non-PAE. As would
249 	 * set_p4d/set_pud.
250 	 */
251 	p4d = p4d_offset(pgd, address);
252 	p4d_k = p4d_offset(pgd_k, address);
253 	if (!p4d_present(*p4d_k))
254 		return NULL;
255 
256 	pud = pud_offset(p4d, address);
257 	pud_k = pud_offset(p4d_k, address);
258 	if (!pud_present(*pud_k))
259 		return NULL;
260 
261 	pmd = pmd_offset(pud, address);
262 	pmd_k = pmd_offset(pud_k, address);
263 	if (!pmd_present(*pmd_k))
264 		return NULL;
265 
266 	if (!pmd_present(*pmd))
267 		set_pmd(pmd, *pmd_k);
268 	else
269 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
270 
271 	return pmd_k;
272 }
273 
274 void vmalloc_sync_all(void)
275 {
276 	unsigned long address;
277 
278 	if (SHARED_KERNEL_PMD)
279 		return;
280 
281 	for (address = VMALLOC_START & PMD_MASK;
282 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
283 	     address += PMD_SIZE) {
284 		struct page *page;
285 
286 		spin_lock(&pgd_lock);
287 		list_for_each_entry(page, &pgd_list, lru) {
288 			spinlock_t *pgt_lock;
289 			pmd_t *ret;
290 
291 			/* the pgt_lock only for Xen */
292 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
293 
294 			spin_lock(pgt_lock);
295 			ret = vmalloc_sync_one(page_address(page), address);
296 			spin_unlock(pgt_lock);
297 
298 			if (!ret)
299 				break;
300 		}
301 		spin_unlock(&pgd_lock);
302 	}
303 }
304 
305 /*
306  * 32-bit:
307  *
308  *   Handle a fault on the vmalloc or module mapping area
309  */
310 static noinline int vmalloc_fault(unsigned long address)
311 {
312 	unsigned long pgd_paddr;
313 	pmd_t *pmd_k;
314 	pte_t *pte_k;
315 
316 	/* Make sure we are in vmalloc area: */
317 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
318 		return -1;
319 
320 	WARN_ON_ONCE(in_nmi());
321 
322 	/*
323 	 * Synchronize this task's top level page-table
324 	 * with the 'reference' page table.
325 	 *
326 	 * Do _not_ use "current" here. We might be inside
327 	 * an interrupt in the middle of a task switch..
328 	 */
329 	pgd_paddr = read_cr3_pa();
330 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
331 	if (!pmd_k)
332 		return -1;
333 
334 	if (pmd_large(*pmd_k))
335 		return 0;
336 
337 	pte_k = pte_offset_kernel(pmd_k, address);
338 	if (!pte_present(*pte_k))
339 		return -1;
340 
341 	return 0;
342 }
343 NOKPROBE_SYMBOL(vmalloc_fault);
344 
345 /*
346  * Did it hit the DOS screen memory VA from vm86 mode?
347  */
348 static inline void
349 check_v8086_mode(struct pt_regs *regs, unsigned long address,
350 		 struct task_struct *tsk)
351 {
352 #ifdef CONFIG_VM86
353 	unsigned long bit;
354 
355 	if (!v8086_mode(regs) || !tsk->thread.vm86)
356 		return;
357 
358 	bit = (address - 0xA0000) >> PAGE_SHIFT;
359 	if (bit < 32)
360 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
361 #endif
362 }
363 
364 static bool low_pfn(unsigned long pfn)
365 {
366 	return pfn < max_low_pfn;
367 }
368 
369 static void dump_pagetable(unsigned long address)
370 {
371 	pgd_t *base = __va(read_cr3_pa());
372 	pgd_t *pgd = &base[pgd_index(address)];
373 	p4d_t *p4d;
374 	pud_t *pud;
375 	pmd_t *pmd;
376 	pte_t *pte;
377 
378 #ifdef CONFIG_X86_PAE
379 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
380 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
381 		goto out;
382 #define pr_pde pr_cont
383 #else
384 #define pr_pde pr_info
385 #endif
386 	p4d = p4d_offset(pgd, address);
387 	pud = pud_offset(p4d, address);
388 	pmd = pmd_offset(pud, address);
389 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
390 #undef pr_pde
391 
392 	/*
393 	 * We must not directly access the pte in the highpte
394 	 * case if the page table is located in highmem.
395 	 * And let's rather not kmap-atomic the pte, just in case
396 	 * it's allocated already:
397 	 */
398 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
399 		goto out;
400 
401 	pte = pte_offset_kernel(pmd, address);
402 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
403 out:
404 	pr_cont("\n");
405 }
406 
407 #else /* CONFIG_X86_64: */
408 
409 void vmalloc_sync_all(void)
410 {
411 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
412 }
413 
414 /*
415  * 64-bit:
416  *
417  *   Handle a fault on the vmalloc area
418  */
419 static noinline int vmalloc_fault(unsigned long address)
420 {
421 	pgd_t *pgd, *pgd_k;
422 	p4d_t *p4d, *p4d_k;
423 	pud_t *pud;
424 	pmd_t *pmd;
425 	pte_t *pte;
426 
427 	/* Make sure we are in vmalloc area: */
428 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
429 		return -1;
430 
431 	WARN_ON_ONCE(in_nmi());
432 
433 	/*
434 	 * Copy kernel mappings over when needed. This can also
435 	 * happen within a race in page table update. In the later
436 	 * case just flush:
437 	 */
438 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
439 	pgd_k = pgd_offset_k(address);
440 	if (pgd_none(*pgd_k))
441 		return -1;
442 
443 	if (pgtable_l5_enabled()) {
444 		if (pgd_none(*pgd)) {
445 			set_pgd(pgd, *pgd_k);
446 			arch_flush_lazy_mmu_mode();
447 		} else {
448 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
449 		}
450 	}
451 
452 	/* With 4-level paging, copying happens on the p4d level. */
453 	p4d = p4d_offset(pgd, address);
454 	p4d_k = p4d_offset(pgd_k, address);
455 	if (p4d_none(*p4d_k))
456 		return -1;
457 
458 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
459 		set_p4d(p4d, *p4d_k);
460 		arch_flush_lazy_mmu_mode();
461 	} else {
462 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
463 	}
464 
465 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
466 
467 	pud = pud_offset(p4d, address);
468 	if (pud_none(*pud))
469 		return -1;
470 
471 	if (pud_large(*pud))
472 		return 0;
473 
474 	pmd = pmd_offset(pud, address);
475 	if (pmd_none(*pmd))
476 		return -1;
477 
478 	if (pmd_large(*pmd))
479 		return 0;
480 
481 	pte = pte_offset_kernel(pmd, address);
482 	if (!pte_present(*pte))
483 		return -1;
484 
485 	return 0;
486 }
487 NOKPROBE_SYMBOL(vmalloc_fault);
488 
489 #ifdef CONFIG_CPU_SUP_AMD
490 static const char errata93_warning[] =
491 KERN_ERR
492 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
493 "******* Working around it, but it may cause SEGVs or burn power.\n"
494 "******* Please consider a BIOS update.\n"
495 "******* Disabling USB legacy in the BIOS may also help.\n";
496 #endif
497 
498 /*
499  * No vm86 mode in 64-bit mode:
500  */
501 static inline void
502 check_v8086_mode(struct pt_regs *regs, unsigned long address,
503 		 struct task_struct *tsk)
504 {
505 }
506 
507 static int bad_address(void *p)
508 {
509 	unsigned long dummy;
510 
511 	return probe_kernel_address((unsigned long *)p, dummy);
512 }
513 
514 static void dump_pagetable(unsigned long address)
515 {
516 	pgd_t *base = __va(read_cr3_pa());
517 	pgd_t *pgd = base + pgd_index(address);
518 	p4d_t *p4d;
519 	pud_t *pud;
520 	pmd_t *pmd;
521 	pte_t *pte;
522 
523 	if (bad_address(pgd))
524 		goto bad;
525 
526 	pr_info("PGD %lx ", pgd_val(*pgd));
527 
528 	if (!pgd_present(*pgd))
529 		goto out;
530 
531 	p4d = p4d_offset(pgd, address);
532 	if (bad_address(p4d))
533 		goto bad;
534 
535 	pr_cont("P4D %lx ", p4d_val(*p4d));
536 	if (!p4d_present(*p4d) || p4d_large(*p4d))
537 		goto out;
538 
539 	pud = pud_offset(p4d, address);
540 	if (bad_address(pud))
541 		goto bad;
542 
543 	pr_cont("PUD %lx ", pud_val(*pud));
544 	if (!pud_present(*pud) || pud_large(*pud))
545 		goto out;
546 
547 	pmd = pmd_offset(pud, address);
548 	if (bad_address(pmd))
549 		goto bad;
550 
551 	pr_cont("PMD %lx ", pmd_val(*pmd));
552 	if (!pmd_present(*pmd) || pmd_large(*pmd))
553 		goto out;
554 
555 	pte = pte_offset_kernel(pmd, address);
556 	if (bad_address(pte))
557 		goto bad;
558 
559 	pr_cont("PTE %lx", pte_val(*pte));
560 out:
561 	pr_cont("\n");
562 	return;
563 bad:
564 	pr_info("BAD\n");
565 }
566 
567 #endif /* CONFIG_X86_64 */
568 
569 /*
570  * Workaround for K8 erratum #93 & buggy BIOS.
571  *
572  * BIOS SMM functions are required to use a specific workaround
573  * to avoid corruption of the 64bit RIP register on C stepping K8.
574  *
575  * A lot of BIOS that didn't get tested properly miss this.
576  *
577  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
578  * Try to work around it here.
579  *
580  * Note we only handle faults in kernel here.
581  * Does nothing on 32-bit.
582  */
583 static int is_errata93(struct pt_regs *regs, unsigned long address)
584 {
585 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
586 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
587 	    || boot_cpu_data.x86 != 0xf)
588 		return 0;
589 
590 	if (address != regs->ip)
591 		return 0;
592 
593 	if ((address >> 32) != 0)
594 		return 0;
595 
596 	address |= 0xffffffffUL << 32;
597 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
598 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
599 		printk_once(errata93_warning);
600 		regs->ip = address;
601 		return 1;
602 	}
603 #endif
604 	return 0;
605 }
606 
607 /*
608  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
609  * to illegal addresses >4GB.
610  *
611  * We catch this in the page fault handler because these addresses
612  * are not reachable. Just detect this case and return.  Any code
613  * segment in LDT is compatibility mode.
614  */
615 static int is_errata100(struct pt_regs *regs, unsigned long address)
616 {
617 #ifdef CONFIG_X86_64
618 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
619 		return 1;
620 #endif
621 	return 0;
622 }
623 
624 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
625 {
626 #ifdef CONFIG_X86_F00F_BUG
627 	unsigned long nr;
628 
629 	/*
630 	 * Pentium F0 0F C7 C8 bug workaround:
631 	 */
632 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
633 		nr = (address - idt_descr.address) >> 3;
634 
635 		if (nr == 6) {
636 			do_invalid_op(regs, 0);
637 			return 1;
638 		}
639 	}
640 #endif
641 	return 0;
642 }
643 
644 static void
645 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
646 		unsigned long address)
647 {
648 	if (!oops_may_print())
649 		return;
650 
651 	if (error_code & X86_PF_INSTR) {
652 		unsigned int level;
653 		pgd_t *pgd;
654 		pte_t *pte;
655 
656 		pgd = __va(read_cr3_pa());
657 		pgd += pgd_index(address);
658 
659 		pte = lookup_address_in_pgd(pgd, address, &level);
660 
661 		if (pte && pte_present(*pte) && !pte_exec(*pte))
662 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
663 				from_kuid(&init_user_ns, current_uid()));
664 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
665 				(pgd_flags(*pgd) & _PAGE_USER) &&
666 				(__read_cr4() & X86_CR4_SMEP))
667 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
668 				from_kuid(&init_user_ns, current_uid()));
669 	}
670 
671 	pr_alert("BUG: unable to handle kernel %s at %px\n",
672 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
673 		 (void *)address);
674 
675 	dump_pagetable(address);
676 }
677 
678 static noinline void
679 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
680 	    unsigned long address)
681 {
682 	struct task_struct *tsk;
683 	unsigned long flags;
684 	int sig;
685 
686 	flags = oops_begin();
687 	tsk = current;
688 	sig = SIGKILL;
689 
690 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
691 	       tsk->comm, address);
692 	dump_pagetable(address);
693 
694 	tsk->thread.cr2		= address;
695 	tsk->thread.trap_nr	= X86_TRAP_PF;
696 	tsk->thread.error_code	= error_code;
697 
698 	if (__die("Bad pagetable", regs, error_code))
699 		sig = 0;
700 
701 	oops_end(flags, regs, sig);
702 }
703 
704 static noinline void
705 no_context(struct pt_regs *regs, unsigned long error_code,
706 	   unsigned long address, int signal, int si_code)
707 {
708 	struct task_struct *tsk = current;
709 	unsigned long flags;
710 	int sig;
711 
712 	/* Are we prepared to handle this kernel fault? */
713 	if (fixup_exception(regs, X86_TRAP_PF)) {
714 		/*
715 		 * Any interrupt that takes a fault gets the fixup. This makes
716 		 * the below recursive fault logic only apply to a faults from
717 		 * task context.
718 		 */
719 		if (in_interrupt())
720 			return;
721 
722 		/*
723 		 * Per the above we're !in_interrupt(), aka. task context.
724 		 *
725 		 * In this case we need to make sure we're not recursively
726 		 * faulting through the emulate_vsyscall() logic.
727 		 */
728 		if (current->thread.sig_on_uaccess_err && signal) {
729 			tsk->thread.trap_nr = X86_TRAP_PF;
730 			tsk->thread.error_code = error_code | X86_PF_USER;
731 			tsk->thread.cr2 = address;
732 
733 			/* XXX: hwpoison faults will set the wrong code. */
734 			force_sig_info_fault(signal, si_code, address,
735 					     tsk, NULL, 0);
736 		}
737 
738 		/*
739 		 * Barring that, we can do the fixup and be happy.
740 		 */
741 		return;
742 	}
743 
744 #ifdef CONFIG_VMAP_STACK
745 	/*
746 	 * Stack overflow?  During boot, we can fault near the initial
747 	 * stack in the direct map, but that's not an overflow -- check
748 	 * that we're in vmalloc space to avoid this.
749 	 */
750 	if (is_vmalloc_addr((void *)address) &&
751 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
752 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
753 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
754 		/*
755 		 * We're likely to be running with very little stack space
756 		 * left.  It's plausible that we'd hit this condition but
757 		 * double-fault even before we get this far, in which case
758 		 * we're fine: the double-fault handler will deal with it.
759 		 *
760 		 * We don't want to make it all the way into the oops code
761 		 * and then double-fault, though, because we're likely to
762 		 * break the console driver and lose most of the stack dump.
763 		 */
764 		asm volatile ("movq %[stack], %%rsp\n\t"
765 			      "call handle_stack_overflow\n\t"
766 			      "1: jmp 1b"
767 			      : ASM_CALL_CONSTRAINT
768 			      : "D" ("kernel stack overflow (page fault)"),
769 				"S" (regs), "d" (address),
770 				[stack] "rm" (stack));
771 		unreachable();
772 	}
773 #endif
774 
775 	/*
776 	 * 32-bit:
777 	 *
778 	 *   Valid to do another page fault here, because if this fault
779 	 *   had been triggered by is_prefetch fixup_exception would have
780 	 *   handled it.
781 	 *
782 	 * 64-bit:
783 	 *
784 	 *   Hall of shame of CPU/BIOS bugs.
785 	 */
786 	if (is_prefetch(regs, error_code, address))
787 		return;
788 
789 	if (is_errata93(regs, address))
790 		return;
791 
792 	/*
793 	 * Oops. The kernel tried to access some bad page. We'll have to
794 	 * terminate things with extreme prejudice:
795 	 */
796 	flags = oops_begin();
797 
798 	show_fault_oops(regs, error_code, address);
799 
800 	if (task_stack_end_corrupted(tsk))
801 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
802 
803 	tsk->thread.cr2		= address;
804 	tsk->thread.trap_nr	= X86_TRAP_PF;
805 	tsk->thread.error_code	= error_code;
806 
807 	sig = SIGKILL;
808 	if (__die("Oops", regs, error_code))
809 		sig = 0;
810 
811 	/* Executive summary in case the body of the oops scrolled away */
812 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
813 
814 	oops_end(flags, regs, sig);
815 }
816 
817 /*
818  * Print out info about fatal segfaults, if the show_unhandled_signals
819  * sysctl is set:
820  */
821 static inline void
822 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
823 		unsigned long address, struct task_struct *tsk)
824 {
825 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
826 
827 	if (!unhandled_signal(tsk, SIGSEGV))
828 		return;
829 
830 	if (!printk_ratelimit())
831 		return;
832 
833 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
834 		loglvl, tsk->comm, task_pid_nr(tsk), address,
835 		(void *)regs->ip, (void *)regs->sp, error_code);
836 
837 	print_vma_addr(KERN_CONT " in ", regs->ip);
838 
839 	printk(KERN_CONT "\n");
840 
841 	show_opcodes((u8 *)regs->ip, loglvl);
842 }
843 
844 static void
845 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
846 		       unsigned long address, u32 *pkey, int si_code)
847 {
848 	struct task_struct *tsk = current;
849 
850 	/* User mode accesses just cause a SIGSEGV */
851 	if (error_code & X86_PF_USER) {
852 		/*
853 		 * It's possible to have interrupts off here:
854 		 */
855 		local_irq_enable();
856 
857 		/*
858 		 * Valid to do another page fault here because this one came
859 		 * from user space:
860 		 */
861 		if (is_prefetch(regs, error_code, address))
862 			return;
863 
864 		if (is_errata100(regs, address))
865 			return;
866 
867 #ifdef CONFIG_X86_64
868 		/*
869 		 * Instruction fetch faults in the vsyscall page might need
870 		 * emulation.
871 		 */
872 		if (unlikely((error_code & X86_PF_INSTR) &&
873 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
874 			if (emulate_vsyscall(regs, address))
875 				return;
876 		}
877 #endif
878 
879 		/*
880 		 * To avoid leaking information about the kernel page table
881 		 * layout, pretend that user-mode accesses to kernel addresses
882 		 * are always protection faults.
883 		 */
884 		if (address >= TASK_SIZE_MAX)
885 			error_code |= X86_PF_PROT;
886 
887 		if (likely(show_unhandled_signals))
888 			show_signal_msg(regs, error_code, address, tsk);
889 
890 		tsk->thread.cr2		= address;
891 		tsk->thread.error_code	= error_code;
892 		tsk->thread.trap_nr	= X86_TRAP_PF;
893 
894 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
895 
896 		return;
897 	}
898 
899 	if (is_f00f_bug(regs, address))
900 		return;
901 
902 	no_context(regs, error_code, address, SIGSEGV, si_code);
903 }
904 
905 static noinline void
906 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
907 		     unsigned long address, u32 *pkey)
908 {
909 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
910 }
911 
912 static void
913 __bad_area(struct pt_regs *regs, unsigned long error_code,
914 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
915 {
916 	struct mm_struct *mm = current->mm;
917 	u32 pkey;
918 
919 	if (vma)
920 		pkey = vma_pkey(vma);
921 
922 	/*
923 	 * Something tried to access memory that isn't in our memory map..
924 	 * Fix it, but check if it's kernel or user first..
925 	 */
926 	up_read(&mm->mmap_sem);
927 
928 	__bad_area_nosemaphore(regs, error_code, address,
929 			       (vma) ? &pkey : NULL, si_code);
930 }
931 
932 static noinline void
933 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
934 {
935 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
936 }
937 
938 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
939 		struct vm_area_struct *vma)
940 {
941 	/* This code is always called on the current mm */
942 	bool foreign = false;
943 
944 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
945 		return false;
946 	if (error_code & X86_PF_PK)
947 		return true;
948 	/* this checks permission keys on the VMA: */
949 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
950 				       (error_code & X86_PF_INSTR), foreign))
951 		return true;
952 	return false;
953 }
954 
955 static noinline void
956 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
957 		      unsigned long address, struct vm_area_struct *vma)
958 {
959 	/*
960 	 * This OSPKE check is not strictly necessary at runtime.
961 	 * But, doing it this way allows compiler optimizations
962 	 * if pkeys are compiled out.
963 	 */
964 	if (bad_area_access_from_pkeys(error_code, vma))
965 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
966 	else
967 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
968 }
969 
970 static void
971 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
972 	  u32 *pkey, unsigned int fault)
973 {
974 	struct task_struct *tsk = current;
975 	int code = BUS_ADRERR;
976 
977 	/* Kernel mode? Handle exceptions or die: */
978 	if (!(error_code & X86_PF_USER)) {
979 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
980 		return;
981 	}
982 
983 	/* User-space => ok to do another page fault: */
984 	if (is_prefetch(regs, error_code, address))
985 		return;
986 
987 	tsk->thread.cr2		= address;
988 	tsk->thread.error_code	= error_code;
989 	tsk->thread.trap_nr	= X86_TRAP_PF;
990 
991 #ifdef CONFIG_MEMORY_FAILURE
992 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
993 		printk(KERN_ERR
994 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
995 			tsk->comm, tsk->pid, address);
996 		code = BUS_MCEERR_AR;
997 	}
998 #endif
999 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1000 }
1001 
1002 static noinline void
1003 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1004 	       unsigned long address, u32 *pkey, unsigned int fault)
1005 {
1006 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1007 		no_context(regs, error_code, address, 0, 0);
1008 		return;
1009 	}
1010 
1011 	if (fault & VM_FAULT_OOM) {
1012 		/* Kernel mode? Handle exceptions or die: */
1013 		if (!(error_code & X86_PF_USER)) {
1014 			no_context(regs, error_code, address,
1015 				   SIGSEGV, SEGV_MAPERR);
1016 			return;
1017 		}
1018 
1019 		/*
1020 		 * We ran out of memory, call the OOM killer, and return the
1021 		 * userspace (which will retry the fault, or kill us if we got
1022 		 * oom-killed):
1023 		 */
1024 		pagefault_out_of_memory();
1025 	} else {
1026 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1027 			     VM_FAULT_HWPOISON_LARGE))
1028 			do_sigbus(regs, error_code, address, pkey, fault);
1029 		else if (fault & VM_FAULT_SIGSEGV)
1030 			bad_area_nosemaphore(regs, error_code, address, pkey);
1031 		else
1032 			BUG();
1033 	}
1034 }
1035 
1036 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1037 {
1038 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1039 		return 0;
1040 
1041 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1042 		return 0;
1043 	/*
1044 	 * Note: We do not do lazy flushing on protection key
1045 	 * changes, so no spurious fault will ever set X86_PF_PK.
1046 	 */
1047 	if ((error_code & X86_PF_PK))
1048 		return 1;
1049 
1050 	return 1;
1051 }
1052 
1053 /*
1054  * Handle a spurious fault caused by a stale TLB entry.
1055  *
1056  * This allows us to lazily refresh the TLB when increasing the
1057  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1058  * eagerly is very expensive since that implies doing a full
1059  * cross-processor TLB flush, even if no stale TLB entries exist
1060  * on other processors.
1061  *
1062  * Spurious faults may only occur if the TLB contains an entry with
1063  * fewer permission than the page table entry.  Non-present (P = 0)
1064  * and reserved bit (R = 1) faults are never spurious.
1065  *
1066  * There are no security implications to leaving a stale TLB when
1067  * increasing the permissions on a page.
1068  *
1069  * Returns non-zero if a spurious fault was handled, zero otherwise.
1070  *
1071  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1072  * (Optional Invalidation).
1073  */
1074 static noinline int
1075 spurious_fault(unsigned long error_code, unsigned long address)
1076 {
1077 	pgd_t *pgd;
1078 	p4d_t *p4d;
1079 	pud_t *pud;
1080 	pmd_t *pmd;
1081 	pte_t *pte;
1082 	int ret;
1083 
1084 	/*
1085 	 * Only writes to RO or instruction fetches from NX may cause
1086 	 * spurious faults.
1087 	 *
1088 	 * These could be from user or supervisor accesses but the TLB
1089 	 * is only lazily flushed after a kernel mapping protection
1090 	 * change, so user accesses are not expected to cause spurious
1091 	 * faults.
1092 	 */
1093 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1094 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1095 		return 0;
1096 
1097 	pgd = init_mm.pgd + pgd_index(address);
1098 	if (!pgd_present(*pgd))
1099 		return 0;
1100 
1101 	p4d = p4d_offset(pgd, address);
1102 	if (!p4d_present(*p4d))
1103 		return 0;
1104 
1105 	if (p4d_large(*p4d))
1106 		return spurious_fault_check(error_code, (pte_t *) p4d);
1107 
1108 	pud = pud_offset(p4d, address);
1109 	if (!pud_present(*pud))
1110 		return 0;
1111 
1112 	if (pud_large(*pud))
1113 		return spurious_fault_check(error_code, (pte_t *) pud);
1114 
1115 	pmd = pmd_offset(pud, address);
1116 	if (!pmd_present(*pmd))
1117 		return 0;
1118 
1119 	if (pmd_large(*pmd))
1120 		return spurious_fault_check(error_code, (pte_t *) pmd);
1121 
1122 	pte = pte_offset_kernel(pmd, address);
1123 	if (!pte_present(*pte))
1124 		return 0;
1125 
1126 	ret = spurious_fault_check(error_code, pte);
1127 	if (!ret)
1128 		return 0;
1129 
1130 	/*
1131 	 * Make sure we have permissions in PMD.
1132 	 * If not, then there's a bug in the page tables:
1133 	 */
1134 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1135 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1136 
1137 	return ret;
1138 }
1139 NOKPROBE_SYMBOL(spurious_fault);
1140 
1141 int show_unhandled_signals = 1;
1142 
1143 static inline int
1144 access_error(unsigned long error_code, struct vm_area_struct *vma)
1145 {
1146 	/* This is only called for the current mm, so: */
1147 	bool foreign = false;
1148 
1149 	/*
1150 	 * Read or write was blocked by protection keys.  This is
1151 	 * always an unconditional error and can never result in
1152 	 * a follow-up action to resolve the fault, like a COW.
1153 	 */
1154 	if (error_code & X86_PF_PK)
1155 		return 1;
1156 
1157 	/*
1158 	 * Make sure to check the VMA so that we do not perform
1159 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1160 	 * page.
1161 	 */
1162 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1163 				       (error_code & X86_PF_INSTR), foreign))
1164 		return 1;
1165 
1166 	if (error_code & X86_PF_WRITE) {
1167 		/* write, present and write, not present: */
1168 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1169 			return 1;
1170 		return 0;
1171 	}
1172 
1173 	/* read, present: */
1174 	if (unlikely(error_code & X86_PF_PROT))
1175 		return 1;
1176 
1177 	/* read, not present: */
1178 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1179 		return 1;
1180 
1181 	return 0;
1182 }
1183 
1184 static int fault_in_kernel_space(unsigned long address)
1185 {
1186 	return address >= TASK_SIZE_MAX;
1187 }
1188 
1189 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1190 {
1191 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1192 		return false;
1193 
1194 	if (!static_cpu_has(X86_FEATURE_SMAP))
1195 		return false;
1196 
1197 	if (error_code & X86_PF_USER)
1198 		return false;
1199 
1200 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1201 		return false;
1202 
1203 	return true;
1204 }
1205 
1206 /*
1207  * This routine handles page faults.  It determines the address,
1208  * and the problem, and then passes it off to one of the appropriate
1209  * routines.
1210  */
1211 static noinline void
1212 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1213 		unsigned long address)
1214 {
1215 	struct vm_area_struct *vma;
1216 	struct task_struct *tsk;
1217 	struct mm_struct *mm;
1218 	int fault, major = 0;
1219 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1220 	u32 pkey;
1221 
1222 	tsk = current;
1223 	mm = tsk->mm;
1224 
1225 	prefetchw(&mm->mmap_sem);
1226 
1227 	if (unlikely(kmmio_fault(regs, address)))
1228 		return;
1229 
1230 	/*
1231 	 * We fault-in kernel-space virtual memory on-demand. The
1232 	 * 'reference' page table is init_mm.pgd.
1233 	 *
1234 	 * NOTE! We MUST NOT take any locks for this case. We may
1235 	 * be in an interrupt or a critical region, and should
1236 	 * only copy the information from the master page table,
1237 	 * nothing more.
1238 	 *
1239 	 * This verifies that the fault happens in kernel space
1240 	 * (error_code & 4) == 0, and that the fault was not a
1241 	 * protection error (error_code & 9) == 0.
1242 	 */
1243 	if (unlikely(fault_in_kernel_space(address))) {
1244 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1245 			if (vmalloc_fault(address) >= 0)
1246 				return;
1247 		}
1248 
1249 		/* Can handle a stale RO->RW TLB: */
1250 		if (spurious_fault(error_code, address))
1251 			return;
1252 
1253 		/* kprobes don't want to hook the spurious faults: */
1254 		if (kprobes_fault(regs))
1255 			return;
1256 		/*
1257 		 * Don't take the mm semaphore here. If we fixup a prefetch
1258 		 * fault we could otherwise deadlock:
1259 		 */
1260 		bad_area_nosemaphore(regs, error_code, address, NULL);
1261 
1262 		return;
1263 	}
1264 
1265 	/* kprobes don't want to hook the spurious faults: */
1266 	if (unlikely(kprobes_fault(regs)))
1267 		return;
1268 
1269 	if (unlikely(error_code & X86_PF_RSVD))
1270 		pgtable_bad(regs, error_code, address);
1271 
1272 	if (unlikely(smap_violation(error_code, regs))) {
1273 		bad_area_nosemaphore(regs, error_code, address, NULL);
1274 		return;
1275 	}
1276 
1277 	/*
1278 	 * If we're in an interrupt, have no user context or are running
1279 	 * in a region with pagefaults disabled then we must not take the fault
1280 	 */
1281 	if (unlikely(faulthandler_disabled() || !mm)) {
1282 		bad_area_nosemaphore(regs, error_code, address, NULL);
1283 		return;
1284 	}
1285 
1286 	/*
1287 	 * It's safe to allow irq's after cr2 has been saved and the
1288 	 * vmalloc fault has been handled.
1289 	 *
1290 	 * User-mode registers count as a user access even for any
1291 	 * potential system fault or CPU buglet:
1292 	 */
1293 	if (user_mode(regs)) {
1294 		local_irq_enable();
1295 		error_code |= X86_PF_USER;
1296 		flags |= FAULT_FLAG_USER;
1297 	} else {
1298 		if (regs->flags & X86_EFLAGS_IF)
1299 			local_irq_enable();
1300 	}
1301 
1302 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1303 
1304 	if (error_code & X86_PF_WRITE)
1305 		flags |= FAULT_FLAG_WRITE;
1306 	if (error_code & X86_PF_INSTR)
1307 		flags |= FAULT_FLAG_INSTRUCTION;
1308 
1309 	/*
1310 	 * When running in the kernel we expect faults to occur only to
1311 	 * addresses in user space.  All other faults represent errors in
1312 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1313 	 * case of an erroneous fault occurring in a code path which already
1314 	 * holds mmap_sem we will deadlock attempting to validate the fault
1315 	 * against the address space.  Luckily the kernel only validly
1316 	 * references user space from well defined areas of code, which are
1317 	 * listed in the exceptions table.
1318 	 *
1319 	 * As the vast majority of faults will be valid we will only perform
1320 	 * the source reference check when there is a possibility of a
1321 	 * deadlock. Attempt to lock the address space, if we cannot we then
1322 	 * validate the source. If this is invalid we can skip the address
1323 	 * space check, thus avoiding the deadlock:
1324 	 */
1325 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1326 		if (!(error_code & X86_PF_USER) &&
1327 		    !search_exception_tables(regs->ip)) {
1328 			bad_area_nosemaphore(regs, error_code, address, NULL);
1329 			return;
1330 		}
1331 retry:
1332 		down_read(&mm->mmap_sem);
1333 	} else {
1334 		/*
1335 		 * The above down_read_trylock() might have succeeded in
1336 		 * which case we'll have missed the might_sleep() from
1337 		 * down_read():
1338 		 */
1339 		might_sleep();
1340 	}
1341 
1342 	vma = find_vma(mm, address);
1343 	if (unlikely(!vma)) {
1344 		bad_area(regs, error_code, address);
1345 		return;
1346 	}
1347 	if (likely(vma->vm_start <= address))
1348 		goto good_area;
1349 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1350 		bad_area(regs, error_code, address);
1351 		return;
1352 	}
1353 	if (error_code & X86_PF_USER) {
1354 		/*
1355 		 * Accessing the stack below %sp is always a bug.
1356 		 * The large cushion allows instructions like enter
1357 		 * and pusha to work. ("enter $65535, $31" pushes
1358 		 * 32 pointers and then decrements %sp by 65535.)
1359 		 */
1360 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1361 			bad_area(regs, error_code, address);
1362 			return;
1363 		}
1364 	}
1365 	if (unlikely(expand_stack(vma, address))) {
1366 		bad_area(regs, error_code, address);
1367 		return;
1368 	}
1369 
1370 	/*
1371 	 * Ok, we have a good vm_area for this memory access, so
1372 	 * we can handle it..
1373 	 */
1374 good_area:
1375 	if (unlikely(access_error(error_code, vma))) {
1376 		bad_area_access_error(regs, error_code, address, vma);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * If for any reason at all we couldn't handle the fault,
1382 	 * make sure we exit gracefully rather than endlessly redo
1383 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1384 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1385 	 *
1386 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1387 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1388 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1389 	 * (potentially after handling any pending signal during the return to
1390 	 * userland). The return to userland is identified whenever
1391 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1392 	 * Thus we have to be careful about not touching vma after handling the
1393 	 * fault, so we read the pkey beforehand.
1394 	 */
1395 	pkey = vma_pkey(vma);
1396 	fault = handle_mm_fault(vma, address, flags);
1397 	major |= fault & VM_FAULT_MAJOR;
1398 
1399 	/*
1400 	 * If we need to retry the mmap_sem has already been released,
1401 	 * and if there is a fatal signal pending there is no guarantee
1402 	 * that we made any progress. Handle this case first.
1403 	 */
1404 	if (unlikely(fault & VM_FAULT_RETRY)) {
1405 		/* Retry at most once */
1406 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1407 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1408 			flags |= FAULT_FLAG_TRIED;
1409 			if (!fatal_signal_pending(tsk))
1410 				goto retry;
1411 		}
1412 
1413 		/* User mode? Just return to handle the fatal exception */
1414 		if (flags & FAULT_FLAG_USER)
1415 			return;
1416 
1417 		/* Not returning to user mode? Handle exceptions or die: */
1418 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1419 		return;
1420 	}
1421 
1422 	up_read(&mm->mmap_sem);
1423 	if (unlikely(fault & VM_FAULT_ERROR)) {
1424 		mm_fault_error(regs, error_code, address, &pkey, fault);
1425 		return;
1426 	}
1427 
1428 	/*
1429 	 * Major/minor page fault accounting. If any of the events
1430 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1431 	 */
1432 	if (major) {
1433 		tsk->maj_flt++;
1434 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1435 	} else {
1436 		tsk->min_flt++;
1437 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1438 	}
1439 
1440 	check_v8086_mode(regs, address, tsk);
1441 }
1442 NOKPROBE_SYMBOL(__do_page_fault);
1443 
1444 static nokprobe_inline void
1445 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1446 			 unsigned long error_code)
1447 {
1448 	if (user_mode(regs))
1449 		trace_page_fault_user(address, regs, error_code);
1450 	else
1451 		trace_page_fault_kernel(address, regs, error_code);
1452 }
1453 
1454 /*
1455  * We must have this function blacklisted from kprobes, tagged with notrace
1456  * and call read_cr2() before calling anything else. To avoid calling any
1457  * kind of tracing machinery before we've observed the CR2 value.
1458  *
1459  * exception_{enter,exit}() contains all sorts of tracepoints.
1460  */
1461 dotraplinkage void notrace
1462 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1463 {
1464 	unsigned long address = read_cr2(); /* Get the faulting address */
1465 	enum ctx_state prev_state;
1466 
1467 	prev_state = exception_enter();
1468 	if (trace_pagefault_enabled())
1469 		trace_page_fault_entries(address, regs, error_code);
1470 
1471 	__do_page_fault(regs, error_code, address);
1472 	exception_exit(prev_state);
1473 }
1474 NOKPROBE_SYMBOL(do_page_fault);
1475