xref: /openbmc/linux/arch/x86/mm/fault.c (revision da2ef666)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/mm_types.h>
20 
21 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
22 #include <asm/traps.h>			/* dotraplinkage, ...		*/
23 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
31 
32 /*
33  * Returns 0 if mmiotrace is disabled, or if the fault is not
34  * handled by mmiotrace:
35  */
36 static nokprobe_inline int
37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
38 {
39 	if (unlikely(is_kmmio_active()))
40 		if (kmmio_handler(regs, addr) == 1)
41 			return -1;
42 	return 0;
43 }
44 
45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
46 {
47 	int ret = 0;
48 
49 	/* kprobe_running() needs smp_processor_id() */
50 	if (kprobes_built_in() && !user_mode(regs)) {
51 		preempt_disable();
52 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 			ret = 1;
54 		preempt_enable();
55 	}
56 
57 	return ret;
58 }
59 
60 /*
61  * Prefetch quirks:
62  *
63  * 32-bit mode:
64  *
65  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66  *   Check that here and ignore it.
67  *
68  * 64-bit mode:
69  *
70  *   Sometimes the CPU reports invalid exceptions on prefetch.
71  *   Check that here and ignore it.
72  *
73  * Opcode checker based on code by Richard Brunner.
74  */
75 static inline int
76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 		      unsigned char opcode, int *prefetch)
78 {
79 	unsigned char instr_hi = opcode & 0xf0;
80 	unsigned char instr_lo = opcode & 0x0f;
81 
82 	switch (instr_hi) {
83 	case 0x20:
84 	case 0x30:
85 		/*
86 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 		 * In X86_64 long mode, the CPU will signal invalid
88 		 * opcode if some of these prefixes are present so
89 		 * X86_64 will never get here anyway
90 		 */
91 		return ((instr_lo & 7) == 0x6);
92 #ifdef CONFIG_X86_64
93 	case 0x40:
94 		/*
95 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 		 * Need to figure out under what instruction mode the
97 		 * instruction was issued. Could check the LDT for lm,
98 		 * but for now it's good enough to assume that long
99 		 * mode only uses well known segments or kernel.
100 		 */
101 		return (!user_mode(regs) || user_64bit_mode(regs));
102 #endif
103 	case 0x60:
104 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
105 		return (instr_lo & 0xC) == 0x4;
106 	case 0xF0:
107 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 		return !instr_lo || (instr_lo>>1) == 1;
109 	case 0x00:
110 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
111 		if (probe_kernel_address(instr, opcode))
112 			return 0;
113 
114 		*prefetch = (instr_lo == 0xF) &&
115 			(opcode == 0x0D || opcode == 0x18);
116 		return 0;
117 	default:
118 		return 0;
119 	}
120 }
121 
122 static int
123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 {
125 	unsigned char *max_instr;
126 	unsigned char *instr;
127 	int prefetch = 0;
128 
129 	/*
130 	 * If it was a exec (instruction fetch) fault on NX page, then
131 	 * do not ignore the fault:
132 	 */
133 	if (error_code & X86_PF_INSTR)
134 		return 0;
135 
136 	instr = (void *)convert_ip_to_linear(current, regs);
137 	max_instr = instr + 15;
138 
139 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
140 		return 0;
141 
142 	while (instr < max_instr) {
143 		unsigned char opcode;
144 
145 		if (probe_kernel_address(instr, opcode))
146 			break;
147 
148 		instr++;
149 
150 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
151 			break;
152 	}
153 	return prefetch;
154 }
155 
156 /*
157  * A protection key fault means that the PKRU value did not allow
158  * access to some PTE.  Userspace can figure out what PKRU was
159  * from the XSAVE state, and this function fills out a field in
160  * siginfo so userspace can discover which protection key was set
161  * on the PTE.
162  *
163  * If we get here, we know that the hardware signaled a X86_PF_PK
164  * fault and that there was a VMA once we got in the fault
165  * handler.  It does *not* guarantee that the VMA we find here
166  * was the one that we faulted on.
167  *
168  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
169  * 2. T1   : set PKRU to deny access to pkey=4, touches page
170  * 3. T1   : faults...
171  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172  * 5. T1   : enters fault handler, takes mmap_sem, etc...
173  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
174  *	     faulted on a pte with its pkey=4.
175  */
176 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
177 		u32 *pkey)
178 {
179 	/* This is effectively an #ifdef */
180 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
181 		return;
182 
183 	/* Fault not from Protection Keys: nothing to do */
184 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
185 		return;
186 	/*
187 	 * force_sig_info_fault() is called from a number of
188 	 * contexts, some of which have a VMA and some of which
189 	 * do not.  The X86_PF_PK handing happens after we have a
190 	 * valid VMA, so we should never reach this without a
191 	 * valid VMA.
192 	 */
193 	if (!pkey) {
194 		WARN_ONCE(1, "PKU fault with no VMA passed in");
195 		info->si_pkey = 0;
196 		return;
197 	}
198 	/*
199 	 * si_pkey should be thought of as a strong hint, but not
200 	 * absolutely guranteed to be 100% accurate because of
201 	 * the race explained above.
202 	 */
203 	info->si_pkey = *pkey;
204 }
205 
206 static void
207 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
208 		     struct task_struct *tsk, u32 *pkey, int fault)
209 {
210 	unsigned lsb = 0;
211 	siginfo_t info;
212 
213 	clear_siginfo(&info);
214 	info.si_signo	= si_signo;
215 	info.si_errno	= 0;
216 	info.si_code	= si_code;
217 	info.si_addr	= (void __user *)address;
218 	if (fault & VM_FAULT_HWPOISON_LARGE)
219 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
220 	if (fault & VM_FAULT_HWPOISON)
221 		lsb = PAGE_SHIFT;
222 	info.si_addr_lsb = lsb;
223 
224 	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
225 
226 	force_sig_info(si_signo, &info, tsk);
227 }
228 
229 DEFINE_SPINLOCK(pgd_lock);
230 LIST_HEAD(pgd_list);
231 
232 #ifdef CONFIG_X86_32
233 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
234 {
235 	unsigned index = pgd_index(address);
236 	pgd_t *pgd_k;
237 	p4d_t *p4d, *p4d_k;
238 	pud_t *pud, *pud_k;
239 	pmd_t *pmd, *pmd_k;
240 
241 	pgd += index;
242 	pgd_k = init_mm.pgd + index;
243 
244 	if (!pgd_present(*pgd_k))
245 		return NULL;
246 
247 	/*
248 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
249 	 * and redundant with the set_pmd() on non-PAE. As would
250 	 * set_p4d/set_pud.
251 	 */
252 	p4d = p4d_offset(pgd, address);
253 	p4d_k = p4d_offset(pgd_k, address);
254 	if (!p4d_present(*p4d_k))
255 		return NULL;
256 
257 	pud = pud_offset(p4d, address);
258 	pud_k = pud_offset(p4d_k, address);
259 	if (!pud_present(*pud_k))
260 		return NULL;
261 
262 	pmd = pmd_offset(pud, address);
263 	pmd_k = pmd_offset(pud_k, address);
264 	if (!pmd_present(*pmd_k))
265 		return NULL;
266 
267 	if (!pmd_present(*pmd))
268 		set_pmd(pmd, *pmd_k);
269 	else
270 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
271 
272 	return pmd_k;
273 }
274 
275 void vmalloc_sync_all(void)
276 {
277 	unsigned long address;
278 
279 	if (SHARED_KERNEL_PMD)
280 		return;
281 
282 	for (address = VMALLOC_START & PMD_MASK;
283 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
284 	     address += PMD_SIZE) {
285 		struct page *page;
286 
287 		spin_lock(&pgd_lock);
288 		list_for_each_entry(page, &pgd_list, lru) {
289 			spinlock_t *pgt_lock;
290 			pmd_t *ret;
291 
292 			/* the pgt_lock only for Xen */
293 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
294 
295 			spin_lock(pgt_lock);
296 			ret = vmalloc_sync_one(page_address(page), address);
297 			spin_unlock(pgt_lock);
298 
299 			if (!ret)
300 				break;
301 		}
302 		spin_unlock(&pgd_lock);
303 	}
304 }
305 
306 /*
307  * 32-bit:
308  *
309  *   Handle a fault on the vmalloc or module mapping area
310  */
311 static noinline int vmalloc_fault(unsigned long address)
312 {
313 	unsigned long pgd_paddr;
314 	pmd_t *pmd_k;
315 	pte_t *pte_k;
316 
317 	/* Make sure we are in vmalloc area: */
318 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
319 		return -1;
320 
321 	/*
322 	 * Synchronize this task's top level page-table
323 	 * with the 'reference' page table.
324 	 *
325 	 * Do _not_ use "current" here. We might be inside
326 	 * an interrupt in the middle of a task switch..
327 	 */
328 	pgd_paddr = read_cr3_pa();
329 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 	if (!pmd_k)
331 		return -1;
332 
333 	if (pmd_large(*pmd_k))
334 		return 0;
335 
336 	pte_k = pte_offset_kernel(pmd_k, address);
337 	if (!pte_present(*pte_k))
338 		return -1;
339 
340 	return 0;
341 }
342 NOKPROBE_SYMBOL(vmalloc_fault);
343 
344 /*
345  * Did it hit the DOS screen memory VA from vm86 mode?
346  */
347 static inline void
348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 		 struct task_struct *tsk)
350 {
351 #ifdef CONFIG_VM86
352 	unsigned long bit;
353 
354 	if (!v8086_mode(regs) || !tsk->thread.vm86)
355 		return;
356 
357 	bit = (address - 0xA0000) >> PAGE_SHIFT;
358 	if (bit < 32)
359 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
360 #endif
361 }
362 
363 static bool low_pfn(unsigned long pfn)
364 {
365 	return pfn < max_low_pfn;
366 }
367 
368 static void dump_pagetable(unsigned long address)
369 {
370 	pgd_t *base = __va(read_cr3_pa());
371 	pgd_t *pgd = &base[pgd_index(address)];
372 	p4d_t *p4d;
373 	pud_t *pud;
374 	pmd_t *pmd;
375 	pte_t *pte;
376 
377 #ifdef CONFIG_X86_PAE
378 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 		goto out;
381 #define pr_pde pr_cont
382 #else
383 #define pr_pde pr_info
384 #endif
385 	p4d = p4d_offset(pgd, address);
386 	pud = pud_offset(p4d, address);
387 	pmd = pmd_offset(pud, address);
388 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389 #undef pr_pde
390 
391 	/*
392 	 * We must not directly access the pte in the highpte
393 	 * case if the page table is located in highmem.
394 	 * And let's rather not kmap-atomic the pte, just in case
395 	 * it's allocated already:
396 	 */
397 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 		goto out;
399 
400 	pte = pte_offset_kernel(pmd, address);
401 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402 out:
403 	pr_cont("\n");
404 }
405 
406 #else /* CONFIG_X86_64: */
407 
408 void vmalloc_sync_all(void)
409 {
410 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411 }
412 
413 /*
414  * 64-bit:
415  *
416  *   Handle a fault on the vmalloc area
417  */
418 static noinline int vmalloc_fault(unsigned long address)
419 {
420 	pgd_t *pgd, *pgd_k;
421 	p4d_t *p4d, *p4d_k;
422 	pud_t *pud;
423 	pmd_t *pmd;
424 	pte_t *pte;
425 
426 	/* Make sure we are in vmalloc area: */
427 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 		return -1;
429 
430 	WARN_ON_ONCE(in_nmi());
431 
432 	/*
433 	 * Copy kernel mappings over when needed. This can also
434 	 * happen within a race in page table update. In the later
435 	 * case just flush:
436 	 */
437 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 	pgd_k = pgd_offset_k(address);
439 	if (pgd_none(*pgd_k))
440 		return -1;
441 
442 	if (pgtable_l5_enabled()) {
443 		if (pgd_none(*pgd)) {
444 			set_pgd(pgd, *pgd_k);
445 			arch_flush_lazy_mmu_mode();
446 		} else {
447 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
448 		}
449 	}
450 
451 	/* With 4-level paging, copying happens on the p4d level. */
452 	p4d = p4d_offset(pgd, address);
453 	p4d_k = p4d_offset(pgd_k, address);
454 	if (p4d_none(*p4d_k))
455 		return -1;
456 
457 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
458 		set_p4d(p4d, *p4d_k);
459 		arch_flush_lazy_mmu_mode();
460 	} else {
461 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
462 	}
463 
464 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
465 
466 	pud = pud_offset(p4d, address);
467 	if (pud_none(*pud))
468 		return -1;
469 
470 	if (pud_large(*pud))
471 		return 0;
472 
473 	pmd = pmd_offset(pud, address);
474 	if (pmd_none(*pmd))
475 		return -1;
476 
477 	if (pmd_large(*pmd))
478 		return 0;
479 
480 	pte = pte_offset_kernel(pmd, address);
481 	if (!pte_present(*pte))
482 		return -1;
483 
484 	return 0;
485 }
486 NOKPROBE_SYMBOL(vmalloc_fault);
487 
488 #ifdef CONFIG_CPU_SUP_AMD
489 static const char errata93_warning[] =
490 KERN_ERR
491 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
492 "******* Working around it, but it may cause SEGVs or burn power.\n"
493 "******* Please consider a BIOS update.\n"
494 "******* Disabling USB legacy in the BIOS may also help.\n";
495 #endif
496 
497 /*
498  * No vm86 mode in 64-bit mode:
499  */
500 static inline void
501 check_v8086_mode(struct pt_regs *regs, unsigned long address,
502 		 struct task_struct *tsk)
503 {
504 }
505 
506 static int bad_address(void *p)
507 {
508 	unsigned long dummy;
509 
510 	return probe_kernel_address((unsigned long *)p, dummy);
511 }
512 
513 static void dump_pagetable(unsigned long address)
514 {
515 	pgd_t *base = __va(read_cr3_pa());
516 	pgd_t *pgd = base + pgd_index(address);
517 	p4d_t *p4d;
518 	pud_t *pud;
519 	pmd_t *pmd;
520 	pte_t *pte;
521 
522 	if (bad_address(pgd))
523 		goto bad;
524 
525 	pr_info("PGD %lx ", pgd_val(*pgd));
526 
527 	if (!pgd_present(*pgd))
528 		goto out;
529 
530 	p4d = p4d_offset(pgd, address);
531 	if (bad_address(p4d))
532 		goto bad;
533 
534 	pr_cont("P4D %lx ", p4d_val(*p4d));
535 	if (!p4d_present(*p4d) || p4d_large(*p4d))
536 		goto out;
537 
538 	pud = pud_offset(p4d, address);
539 	if (bad_address(pud))
540 		goto bad;
541 
542 	pr_cont("PUD %lx ", pud_val(*pud));
543 	if (!pud_present(*pud) || pud_large(*pud))
544 		goto out;
545 
546 	pmd = pmd_offset(pud, address);
547 	if (bad_address(pmd))
548 		goto bad;
549 
550 	pr_cont("PMD %lx ", pmd_val(*pmd));
551 	if (!pmd_present(*pmd) || pmd_large(*pmd))
552 		goto out;
553 
554 	pte = pte_offset_kernel(pmd, address);
555 	if (bad_address(pte))
556 		goto bad;
557 
558 	pr_cont("PTE %lx", pte_val(*pte));
559 out:
560 	pr_cont("\n");
561 	return;
562 bad:
563 	pr_info("BAD\n");
564 }
565 
566 #endif /* CONFIG_X86_64 */
567 
568 /*
569  * Workaround for K8 erratum #93 & buggy BIOS.
570  *
571  * BIOS SMM functions are required to use a specific workaround
572  * to avoid corruption of the 64bit RIP register on C stepping K8.
573  *
574  * A lot of BIOS that didn't get tested properly miss this.
575  *
576  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
577  * Try to work around it here.
578  *
579  * Note we only handle faults in kernel here.
580  * Does nothing on 32-bit.
581  */
582 static int is_errata93(struct pt_regs *regs, unsigned long address)
583 {
584 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
585 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
586 	    || boot_cpu_data.x86 != 0xf)
587 		return 0;
588 
589 	if (address != regs->ip)
590 		return 0;
591 
592 	if ((address >> 32) != 0)
593 		return 0;
594 
595 	address |= 0xffffffffUL << 32;
596 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
597 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
598 		printk_once(errata93_warning);
599 		regs->ip = address;
600 		return 1;
601 	}
602 #endif
603 	return 0;
604 }
605 
606 /*
607  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
608  * to illegal addresses >4GB.
609  *
610  * We catch this in the page fault handler because these addresses
611  * are not reachable. Just detect this case and return.  Any code
612  * segment in LDT is compatibility mode.
613  */
614 static int is_errata100(struct pt_regs *regs, unsigned long address)
615 {
616 #ifdef CONFIG_X86_64
617 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
618 		return 1;
619 #endif
620 	return 0;
621 }
622 
623 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
624 {
625 #ifdef CONFIG_X86_F00F_BUG
626 	unsigned long nr;
627 
628 	/*
629 	 * Pentium F0 0F C7 C8 bug workaround:
630 	 */
631 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
632 		nr = (address - idt_descr.address) >> 3;
633 
634 		if (nr == 6) {
635 			do_invalid_op(regs, 0);
636 			return 1;
637 		}
638 	}
639 #endif
640 	return 0;
641 }
642 
643 static void
644 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
645 		unsigned long address)
646 {
647 	if (!oops_may_print())
648 		return;
649 
650 	if (error_code & X86_PF_INSTR) {
651 		unsigned int level;
652 		pgd_t *pgd;
653 		pte_t *pte;
654 
655 		pgd = __va(read_cr3_pa());
656 		pgd += pgd_index(address);
657 
658 		pte = lookup_address_in_pgd(pgd, address, &level);
659 
660 		if (pte && pte_present(*pte) && !pte_exec(*pte))
661 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
662 				from_kuid(&init_user_ns, current_uid()));
663 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
664 				(pgd_flags(*pgd) & _PAGE_USER) &&
665 				(__read_cr4() & X86_CR4_SMEP))
666 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
667 				from_kuid(&init_user_ns, current_uid()));
668 	}
669 
670 	pr_alert("BUG: unable to handle kernel %s at %px\n",
671 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
672 		 (void *)address);
673 
674 	dump_pagetable(address);
675 }
676 
677 static noinline void
678 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
679 	    unsigned long address)
680 {
681 	struct task_struct *tsk;
682 	unsigned long flags;
683 	int sig;
684 
685 	flags = oops_begin();
686 	tsk = current;
687 	sig = SIGKILL;
688 
689 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
690 	       tsk->comm, address);
691 	dump_pagetable(address);
692 
693 	tsk->thread.cr2		= address;
694 	tsk->thread.trap_nr	= X86_TRAP_PF;
695 	tsk->thread.error_code	= error_code;
696 
697 	if (__die("Bad pagetable", regs, error_code))
698 		sig = 0;
699 
700 	oops_end(flags, regs, sig);
701 }
702 
703 static noinline void
704 no_context(struct pt_regs *regs, unsigned long error_code,
705 	   unsigned long address, int signal, int si_code)
706 {
707 	struct task_struct *tsk = current;
708 	unsigned long flags;
709 	int sig;
710 
711 	/* Are we prepared to handle this kernel fault? */
712 	if (fixup_exception(regs, X86_TRAP_PF)) {
713 		/*
714 		 * Any interrupt that takes a fault gets the fixup. This makes
715 		 * the below recursive fault logic only apply to a faults from
716 		 * task context.
717 		 */
718 		if (in_interrupt())
719 			return;
720 
721 		/*
722 		 * Per the above we're !in_interrupt(), aka. task context.
723 		 *
724 		 * In this case we need to make sure we're not recursively
725 		 * faulting through the emulate_vsyscall() logic.
726 		 */
727 		if (current->thread.sig_on_uaccess_err && signal) {
728 			tsk->thread.trap_nr = X86_TRAP_PF;
729 			tsk->thread.error_code = error_code | X86_PF_USER;
730 			tsk->thread.cr2 = address;
731 
732 			/* XXX: hwpoison faults will set the wrong code. */
733 			force_sig_info_fault(signal, si_code, address,
734 					     tsk, NULL, 0);
735 		}
736 
737 		/*
738 		 * Barring that, we can do the fixup and be happy.
739 		 */
740 		return;
741 	}
742 
743 #ifdef CONFIG_VMAP_STACK
744 	/*
745 	 * Stack overflow?  During boot, we can fault near the initial
746 	 * stack in the direct map, but that's not an overflow -- check
747 	 * that we're in vmalloc space to avoid this.
748 	 */
749 	if (is_vmalloc_addr((void *)address) &&
750 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
751 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
752 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
753 		/*
754 		 * We're likely to be running with very little stack space
755 		 * left.  It's plausible that we'd hit this condition but
756 		 * double-fault even before we get this far, in which case
757 		 * we're fine: the double-fault handler will deal with it.
758 		 *
759 		 * We don't want to make it all the way into the oops code
760 		 * and then double-fault, though, because we're likely to
761 		 * break the console driver and lose most of the stack dump.
762 		 */
763 		asm volatile ("movq %[stack], %%rsp\n\t"
764 			      "call handle_stack_overflow\n\t"
765 			      "1: jmp 1b"
766 			      : ASM_CALL_CONSTRAINT
767 			      : "D" ("kernel stack overflow (page fault)"),
768 				"S" (regs), "d" (address),
769 				[stack] "rm" (stack));
770 		unreachable();
771 	}
772 #endif
773 
774 	/*
775 	 * 32-bit:
776 	 *
777 	 *   Valid to do another page fault here, because if this fault
778 	 *   had been triggered by is_prefetch fixup_exception would have
779 	 *   handled it.
780 	 *
781 	 * 64-bit:
782 	 *
783 	 *   Hall of shame of CPU/BIOS bugs.
784 	 */
785 	if (is_prefetch(regs, error_code, address))
786 		return;
787 
788 	if (is_errata93(regs, address))
789 		return;
790 
791 	/*
792 	 * Oops. The kernel tried to access some bad page. We'll have to
793 	 * terminate things with extreme prejudice:
794 	 */
795 	flags = oops_begin();
796 
797 	show_fault_oops(regs, error_code, address);
798 
799 	if (task_stack_end_corrupted(tsk))
800 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
801 
802 	tsk->thread.cr2		= address;
803 	tsk->thread.trap_nr	= X86_TRAP_PF;
804 	tsk->thread.error_code	= error_code;
805 
806 	sig = SIGKILL;
807 	if (__die("Oops", regs, error_code))
808 		sig = 0;
809 
810 	/* Executive summary in case the body of the oops scrolled away */
811 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
812 
813 	oops_end(flags, regs, sig);
814 }
815 
816 /*
817  * Print out info about fatal segfaults, if the show_unhandled_signals
818  * sysctl is set:
819  */
820 static inline void
821 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
822 		unsigned long address, struct task_struct *tsk)
823 {
824 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
825 
826 	if (!unhandled_signal(tsk, SIGSEGV))
827 		return;
828 
829 	if (!printk_ratelimit())
830 		return;
831 
832 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
833 		loglvl, tsk->comm, task_pid_nr(tsk), address,
834 		(void *)regs->ip, (void *)regs->sp, error_code);
835 
836 	print_vma_addr(KERN_CONT " in ", regs->ip);
837 
838 	printk(KERN_CONT "\n");
839 
840 	show_opcodes(regs, loglvl);
841 }
842 
843 static void
844 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
845 		       unsigned long address, u32 *pkey, int si_code)
846 {
847 	struct task_struct *tsk = current;
848 
849 	/* User mode accesses just cause a SIGSEGV */
850 	if (error_code & X86_PF_USER) {
851 		/*
852 		 * It's possible to have interrupts off here:
853 		 */
854 		local_irq_enable();
855 
856 		/*
857 		 * Valid to do another page fault here because this one came
858 		 * from user space:
859 		 */
860 		if (is_prefetch(regs, error_code, address))
861 			return;
862 
863 		if (is_errata100(regs, address))
864 			return;
865 
866 #ifdef CONFIG_X86_64
867 		/*
868 		 * Instruction fetch faults in the vsyscall page might need
869 		 * emulation.
870 		 */
871 		if (unlikely((error_code & X86_PF_INSTR) &&
872 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
873 			if (emulate_vsyscall(regs, address))
874 				return;
875 		}
876 #endif
877 
878 		/*
879 		 * To avoid leaking information about the kernel page table
880 		 * layout, pretend that user-mode accesses to kernel addresses
881 		 * are always protection faults.
882 		 */
883 		if (address >= TASK_SIZE_MAX)
884 			error_code |= X86_PF_PROT;
885 
886 		if (likely(show_unhandled_signals))
887 			show_signal_msg(regs, error_code, address, tsk);
888 
889 		tsk->thread.cr2		= address;
890 		tsk->thread.error_code	= error_code;
891 		tsk->thread.trap_nr	= X86_TRAP_PF;
892 
893 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
894 
895 		return;
896 	}
897 
898 	if (is_f00f_bug(regs, address))
899 		return;
900 
901 	no_context(regs, error_code, address, SIGSEGV, si_code);
902 }
903 
904 static noinline void
905 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
906 		     unsigned long address, u32 *pkey)
907 {
908 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
909 }
910 
911 static void
912 __bad_area(struct pt_regs *regs, unsigned long error_code,
913 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
914 {
915 	struct mm_struct *mm = current->mm;
916 	u32 pkey;
917 
918 	if (vma)
919 		pkey = vma_pkey(vma);
920 
921 	/*
922 	 * Something tried to access memory that isn't in our memory map..
923 	 * Fix it, but check if it's kernel or user first..
924 	 */
925 	up_read(&mm->mmap_sem);
926 
927 	__bad_area_nosemaphore(regs, error_code, address,
928 			       (vma) ? &pkey : NULL, si_code);
929 }
930 
931 static noinline void
932 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
933 {
934 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
935 }
936 
937 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
938 		struct vm_area_struct *vma)
939 {
940 	/* This code is always called on the current mm */
941 	bool foreign = false;
942 
943 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
944 		return false;
945 	if (error_code & X86_PF_PK)
946 		return true;
947 	/* this checks permission keys on the VMA: */
948 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
949 				       (error_code & X86_PF_INSTR), foreign))
950 		return true;
951 	return false;
952 }
953 
954 static noinline void
955 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
956 		      unsigned long address, struct vm_area_struct *vma)
957 {
958 	/*
959 	 * This OSPKE check is not strictly necessary at runtime.
960 	 * But, doing it this way allows compiler optimizations
961 	 * if pkeys are compiled out.
962 	 */
963 	if (bad_area_access_from_pkeys(error_code, vma))
964 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
965 	else
966 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
967 }
968 
969 static void
970 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
971 	  u32 *pkey, unsigned int fault)
972 {
973 	struct task_struct *tsk = current;
974 	int code = BUS_ADRERR;
975 
976 	/* Kernel mode? Handle exceptions or die: */
977 	if (!(error_code & X86_PF_USER)) {
978 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
979 		return;
980 	}
981 
982 	/* User-space => ok to do another page fault: */
983 	if (is_prefetch(regs, error_code, address))
984 		return;
985 
986 	tsk->thread.cr2		= address;
987 	tsk->thread.error_code	= error_code;
988 	tsk->thread.trap_nr	= X86_TRAP_PF;
989 
990 #ifdef CONFIG_MEMORY_FAILURE
991 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
992 		printk(KERN_ERR
993 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
994 			tsk->comm, tsk->pid, address);
995 		code = BUS_MCEERR_AR;
996 	}
997 #endif
998 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
999 }
1000 
1001 static noinline void
1002 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1003 	       unsigned long address, u32 *pkey, vm_fault_t fault)
1004 {
1005 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1006 		no_context(regs, error_code, address, 0, 0);
1007 		return;
1008 	}
1009 
1010 	if (fault & VM_FAULT_OOM) {
1011 		/* Kernel mode? Handle exceptions or die: */
1012 		if (!(error_code & X86_PF_USER)) {
1013 			no_context(regs, error_code, address,
1014 				   SIGSEGV, SEGV_MAPERR);
1015 			return;
1016 		}
1017 
1018 		/*
1019 		 * We ran out of memory, call the OOM killer, and return the
1020 		 * userspace (which will retry the fault, or kill us if we got
1021 		 * oom-killed):
1022 		 */
1023 		pagefault_out_of_memory();
1024 	} else {
1025 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1026 			     VM_FAULT_HWPOISON_LARGE))
1027 			do_sigbus(regs, error_code, address, pkey, fault);
1028 		else if (fault & VM_FAULT_SIGSEGV)
1029 			bad_area_nosemaphore(regs, error_code, address, pkey);
1030 		else
1031 			BUG();
1032 	}
1033 }
1034 
1035 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1036 {
1037 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1038 		return 0;
1039 
1040 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1041 		return 0;
1042 	/*
1043 	 * Note: We do not do lazy flushing on protection key
1044 	 * changes, so no spurious fault will ever set X86_PF_PK.
1045 	 */
1046 	if ((error_code & X86_PF_PK))
1047 		return 1;
1048 
1049 	return 1;
1050 }
1051 
1052 /*
1053  * Handle a spurious fault caused by a stale TLB entry.
1054  *
1055  * This allows us to lazily refresh the TLB when increasing the
1056  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1057  * eagerly is very expensive since that implies doing a full
1058  * cross-processor TLB flush, even if no stale TLB entries exist
1059  * on other processors.
1060  *
1061  * Spurious faults may only occur if the TLB contains an entry with
1062  * fewer permission than the page table entry.  Non-present (P = 0)
1063  * and reserved bit (R = 1) faults are never spurious.
1064  *
1065  * There are no security implications to leaving a stale TLB when
1066  * increasing the permissions on a page.
1067  *
1068  * Returns non-zero if a spurious fault was handled, zero otherwise.
1069  *
1070  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1071  * (Optional Invalidation).
1072  */
1073 static noinline int
1074 spurious_fault(unsigned long error_code, unsigned long address)
1075 {
1076 	pgd_t *pgd;
1077 	p4d_t *p4d;
1078 	pud_t *pud;
1079 	pmd_t *pmd;
1080 	pte_t *pte;
1081 	int ret;
1082 
1083 	/*
1084 	 * Only writes to RO or instruction fetches from NX may cause
1085 	 * spurious faults.
1086 	 *
1087 	 * These could be from user or supervisor accesses but the TLB
1088 	 * is only lazily flushed after a kernel mapping protection
1089 	 * change, so user accesses are not expected to cause spurious
1090 	 * faults.
1091 	 */
1092 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1093 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1094 		return 0;
1095 
1096 	pgd = init_mm.pgd + pgd_index(address);
1097 	if (!pgd_present(*pgd))
1098 		return 0;
1099 
1100 	p4d = p4d_offset(pgd, address);
1101 	if (!p4d_present(*p4d))
1102 		return 0;
1103 
1104 	if (p4d_large(*p4d))
1105 		return spurious_fault_check(error_code, (pte_t *) p4d);
1106 
1107 	pud = pud_offset(p4d, address);
1108 	if (!pud_present(*pud))
1109 		return 0;
1110 
1111 	if (pud_large(*pud))
1112 		return spurious_fault_check(error_code, (pte_t *) pud);
1113 
1114 	pmd = pmd_offset(pud, address);
1115 	if (!pmd_present(*pmd))
1116 		return 0;
1117 
1118 	if (pmd_large(*pmd))
1119 		return spurious_fault_check(error_code, (pte_t *) pmd);
1120 
1121 	pte = pte_offset_kernel(pmd, address);
1122 	if (!pte_present(*pte))
1123 		return 0;
1124 
1125 	ret = spurious_fault_check(error_code, pte);
1126 	if (!ret)
1127 		return 0;
1128 
1129 	/*
1130 	 * Make sure we have permissions in PMD.
1131 	 * If not, then there's a bug in the page tables:
1132 	 */
1133 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1134 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1135 
1136 	return ret;
1137 }
1138 NOKPROBE_SYMBOL(spurious_fault);
1139 
1140 int show_unhandled_signals = 1;
1141 
1142 static inline int
1143 access_error(unsigned long error_code, struct vm_area_struct *vma)
1144 {
1145 	/* This is only called for the current mm, so: */
1146 	bool foreign = false;
1147 
1148 	/*
1149 	 * Read or write was blocked by protection keys.  This is
1150 	 * always an unconditional error and can never result in
1151 	 * a follow-up action to resolve the fault, like a COW.
1152 	 */
1153 	if (error_code & X86_PF_PK)
1154 		return 1;
1155 
1156 	/*
1157 	 * Make sure to check the VMA so that we do not perform
1158 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1159 	 * page.
1160 	 */
1161 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1162 				       (error_code & X86_PF_INSTR), foreign))
1163 		return 1;
1164 
1165 	if (error_code & X86_PF_WRITE) {
1166 		/* write, present and write, not present: */
1167 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1168 			return 1;
1169 		return 0;
1170 	}
1171 
1172 	/* read, present: */
1173 	if (unlikely(error_code & X86_PF_PROT))
1174 		return 1;
1175 
1176 	/* read, not present: */
1177 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1178 		return 1;
1179 
1180 	return 0;
1181 }
1182 
1183 static int fault_in_kernel_space(unsigned long address)
1184 {
1185 	return address >= TASK_SIZE_MAX;
1186 }
1187 
1188 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1189 {
1190 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1191 		return false;
1192 
1193 	if (!static_cpu_has(X86_FEATURE_SMAP))
1194 		return false;
1195 
1196 	if (error_code & X86_PF_USER)
1197 		return false;
1198 
1199 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1200 		return false;
1201 
1202 	return true;
1203 }
1204 
1205 /*
1206  * This routine handles page faults.  It determines the address,
1207  * and the problem, and then passes it off to one of the appropriate
1208  * routines.
1209  */
1210 static noinline void
1211 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1212 		unsigned long address)
1213 {
1214 	struct vm_area_struct *vma;
1215 	struct task_struct *tsk;
1216 	struct mm_struct *mm;
1217 	vm_fault_t fault, major = 0;
1218 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1219 	u32 pkey;
1220 
1221 	tsk = current;
1222 	mm = tsk->mm;
1223 
1224 	prefetchw(&mm->mmap_sem);
1225 
1226 	if (unlikely(kmmio_fault(regs, address)))
1227 		return;
1228 
1229 	/*
1230 	 * We fault-in kernel-space virtual memory on-demand. The
1231 	 * 'reference' page table is init_mm.pgd.
1232 	 *
1233 	 * NOTE! We MUST NOT take any locks for this case. We may
1234 	 * be in an interrupt or a critical region, and should
1235 	 * only copy the information from the master page table,
1236 	 * nothing more.
1237 	 *
1238 	 * This verifies that the fault happens in kernel space
1239 	 * (error_code & 4) == 0, and that the fault was not a
1240 	 * protection error (error_code & 9) == 0.
1241 	 */
1242 	if (unlikely(fault_in_kernel_space(address))) {
1243 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1244 			if (vmalloc_fault(address) >= 0)
1245 				return;
1246 		}
1247 
1248 		/* Can handle a stale RO->RW TLB: */
1249 		if (spurious_fault(error_code, address))
1250 			return;
1251 
1252 		/* kprobes don't want to hook the spurious faults: */
1253 		if (kprobes_fault(regs))
1254 			return;
1255 		/*
1256 		 * Don't take the mm semaphore here. If we fixup a prefetch
1257 		 * fault we could otherwise deadlock:
1258 		 */
1259 		bad_area_nosemaphore(regs, error_code, address, NULL);
1260 
1261 		return;
1262 	}
1263 
1264 	/* kprobes don't want to hook the spurious faults: */
1265 	if (unlikely(kprobes_fault(regs)))
1266 		return;
1267 
1268 	if (unlikely(error_code & X86_PF_RSVD))
1269 		pgtable_bad(regs, error_code, address);
1270 
1271 	if (unlikely(smap_violation(error_code, regs))) {
1272 		bad_area_nosemaphore(regs, error_code, address, NULL);
1273 		return;
1274 	}
1275 
1276 	/*
1277 	 * If we're in an interrupt, have no user context or are running
1278 	 * in a region with pagefaults disabled then we must not take the fault
1279 	 */
1280 	if (unlikely(faulthandler_disabled() || !mm)) {
1281 		bad_area_nosemaphore(regs, error_code, address, NULL);
1282 		return;
1283 	}
1284 
1285 	/*
1286 	 * It's safe to allow irq's after cr2 has been saved and the
1287 	 * vmalloc fault has been handled.
1288 	 *
1289 	 * User-mode registers count as a user access even for any
1290 	 * potential system fault or CPU buglet:
1291 	 */
1292 	if (user_mode(regs)) {
1293 		local_irq_enable();
1294 		error_code |= X86_PF_USER;
1295 		flags |= FAULT_FLAG_USER;
1296 	} else {
1297 		if (regs->flags & X86_EFLAGS_IF)
1298 			local_irq_enable();
1299 	}
1300 
1301 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1302 
1303 	if (error_code & X86_PF_WRITE)
1304 		flags |= FAULT_FLAG_WRITE;
1305 	if (error_code & X86_PF_INSTR)
1306 		flags |= FAULT_FLAG_INSTRUCTION;
1307 
1308 	/*
1309 	 * When running in the kernel we expect faults to occur only to
1310 	 * addresses in user space.  All other faults represent errors in
1311 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1312 	 * case of an erroneous fault occurring in a code path which already
1313 	 * holds mmap_sem we will deadlock attempting to validate the fault
1314 	 * against the address space.  Luckily the kernel only validly
1315 	 * references user space from well defined areas of code, which are
1316 	 * listed in the exceptions table.
1317 	 *
1318 	 * As the vast majority of faults will be valid we will only perform
1319 	 * the source reference check when there is a possibility of a
1320 	 * deadlock. Attempt to lock the address space, if we cannot we then
1321 	 * validate the source. If this is invalid we can skip the address
1322 	 * space check, thus avoiding the deadlock:
1323 	 */
1324 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1325 		if (!(error_code & X86_PF_USER) &&
1326 		    !search_exception_tables(regs->ip)) {
1327 			bad_area_nosemaphore(regs, error_code, address, NULL);
1328 			return;
1329 		}
1330 retry:
1331 		down_read(&mm->mmap_sem);
1332 	} else {
1333 		/*
1334 		 * The above down_read_trylock() might have succeeded in
1335 		 * which case we'll have missed the might_sleep() from
1336 		 * down_read():
1337 		 */
1338 		might_sleep();
1339 	}
1340 
1341 	vma = find_vma(mm, address);
1342 	if (unlikely(!vma)) {
1343 		bad_area(regs, error_code, address);
1344 		return;
1345 	}
1346 	if (likely(vma->vm_start <= address))
1347 		goto good_area;
1348 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1349 		bad_area(regs, error_code, address);
1350 		return;
1351 	}
1352 	if (error_code & X86_PF_USER) {
1353 		/*
1354 		 * Accessing the stack below %sp is always a bug.
1355 		 * The large cushion allows instructions like enter
1356 		 * and pusha to work. ("enter $65535, $31" pushes
1357 		 * 32 pointers and then decrements %sp by 65535.)
1358 		 */
1359 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1360 			bad_area(regs, error_code, address);
1361 			return;
1362 		}
1363 	}
1364 	if (unlikely(expand_stack(vma, address))) {
1365 		bad_area(regs, error_code, address);
1366 		return;
1367 	}
1368 
1369 	/*
1370 	 * Ok, we have a good vm_area for this memory access, so
1371 	 * we can handle it..
1372 	 */
1373 good_area:
1374 	if (unlikely(access_error(error_code, vma))) {
1375 		bad_area_access_error(regs, error_code, address, vma);
1376 		return;
1377 	}
1378 
1379 	/*
1380 	 * If for any reason at all we couldn't handle the fault,
1381 	 * make sure we exit gracefully rather than endlessly redo
1382 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1383 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1384 	 *
1385 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1386 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1387 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1388 	 * (potentially after handling any pending signal during the return to
1389 	 * userland). The return to userland is identified whenever
1390 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1391 	 * Thus we have to be careful about not touching vma after handling the
1392 	 * fault, so we read the pkey beforehand.
1393 	 */
1394 	pkey = vma_pkey(vma);
1395 	fault = handle_mm_fault(vma, address, flags);
1396 	major |= fault & VM_FAULT_MAJOR;
1397 
1398 	/*
1399 	 * If we need to retry the mmap_sem has already been released,
1400 	 * and if there is a fatal signal pending there is no guarantee
1401 	 * that we made any progress. Handle this case first.
1402 	 */
1403 	if (unlikely(fault & VM_FAULT_RETRY)) {
1404 		/* Retry at most once */
1405 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1406 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1407 			flags |= FAULT_FLAG_TRIED;
1408 			if (!fatal_signal_pending(tsk))
1409 				goto retry;
1410 		}
1411 
1412 		/* User mode? Just return to handle the fatal exception */
1413 		if (flags & FAULT_FLAG_USER)
1414 			return;
1415 
1416 		/* Not returning to user mode? Handle exceptions or die: */
1417 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1418 		return;
1419 	}
1420 
1421 	up_read(&mm->mmap_sem);
1422 	if (unlikely(fault & VM_FAULT_ERROR)) {
1423 		mm_fault_error(regs, error_code, address, &pkey, fault);
1424 		return;
1425 	}
1426 
1427 	/*
1428 	 * Major/minor page fault accounting. If any of the events
1429 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1430 	 */
1431 	if (major) {
1432 		tsk->maj_flt++;
1433 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1434 	} else {
1435 		tsk->min_flt++;
1436 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1437 	}
1438 
1439 	check_v8086_mode(regs, address, tsk);
1440 }
1441 NOKPROBE_SYMBOL(__do_page_fault);
1442 
1443 static nokprobe_inline void
1444 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1445 			 unsigned long error_code)
1446 {
1447 	if (user_mode(regs))
1448 		trace_page_fault_user(address, regs, error_code);
1449 	else
1450 		trace_page_fault_kernel(address, regs, error_code);
1451 }
1452 
1453 /*
1454  * We must have this function blacklisted from kprobes, tagged with notrace
1455  * and call read_cr2() before calling anything else. To avoid calling any
1456  * kind of tracing machinery before we've observed the CR2 value.
1457  *
1458  * exception_{enter,exit}() contains all sorts of tracepoints.
1459  */
1460 dotraplinkage void notrace
1461 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1462 {
1463 	unsigned long address = read_cr2(); /* Get the faulting address */
1464 	enum ctx_state prev_state;
1465 
1466 	prev_state = exception_enter();
1467 	if (trace_pagefault_enabled())
1468 		trace_page_fault_entries(address, regs, error_code);
1469 
1470 	__do_page_fault(regs, error_code, address);
1471 	exception_exit(prev_state);
1472 }
1473 NOKPROBE_SYMBOL(do_page_fault);
1474