xref: /openbmc/linux/arch/x86/mm/fault.c (revision d774a589)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8 #include <linux/extable.h>		/* search_exception_tables	*/
9 #include <linux/bootmem.h>		/* max_low_pfn			*/
10 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12 #include <linux/perf_event.h>		/* perf_sw_event		*/
13 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14 #include <linux/prefetch.h>		/* prefetchw			*/
15 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
17 
18 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
19 #include <asm/traps.h>			/* dotraplinkage, ...		*/
20 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
21 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
22 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
23 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
24 #include <asm/vm86.h>			/* struct vm86			*/
25 #include <asm/mmu_context.h>		/* vma_pkey()			*/
26 
27 #define CREATE_TRACE_POINTS
28 #include <asm/trace/exceptions.h>
29 
30 /*
31  * Page fault error code bits:
32  *
33  *   bit 0 ==	 0: no page found	1: protection fault
34  *   bit 1 ==	 0: read access		1: write access
35  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
36  *   bit 3 ==				1: use of reserved bit detected
37  *   bit 4 ==				1: fault was an instruction fetch
38  *   bit 5 ==				1: protection keys block access
39  */
40 enum x86_pf_error_code {
41 
42 	PF_PROT		=		1 << 0,
43 	PF_WRITE	=		1 << 1,
44 	PF_USER		=		1 << 2,
45 	PF_RSVD		=		1 << 3,
46 	PF_INSTR	=		1 << 4,
47 	PF_PK		=		1 << 5,
48 };
49 
50 /*
51  * Returns 0 if mmiotrace is disabled, or if the fault is not
52  * handled by mmiotrace:
53  */
54 static nokprobe_inline int
55 kmmio_fault(struct pt_regs *regs, unsigned long addr)
56 {
57 	if (unlikely(is_kmmio_active()))
58 		if (kmmio_handler(regs, addr) == 1)
59 			return -1;
60 	return 0;
61 }
62 
63 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
64 {
65 	int ret = 0;
66 
67 	/* kprobe_running() needs smp_processor_id() */
68 	if (kprobes_built_in() && !user_mode(regs)) {
69 		preempt_disable();
70 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 			ret = 1;
72 		preempt_enable();
73 	}
74 
75 	return ret;
76 }
77 
78 /*
79  * Prefetch quirks:
80  *
81  * 32-bit mode:
82  *
83  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84  *   Check that here and ignore it.
85  *
86  * 64-bit mode:
87  *
88  *   Sometimes the CPU reports invalid exceptions on prefetch.
89  *   Check that here and ignore it.
90  *
91  * Opcode checker based on code by Richard Brunner.
92  */
93 static inline int
94 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 		      unsigned char opcode, int *prefetch)
96 {
97 	unsigned char instr_hi = opcode & 0xf0;
98 	unsigned char instr_lo = opcode & 0x0f;
99 
100 	switch (instr_hi) {
101 	case 0x20:
102 	case 0x30:
103 		/*
104 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 		 * In X86_64 long mode, the CPU will signal invalid
106 		 * opcode if some of these prefixes are present so
107 		 * X86_64 will never get here anyway
108 		 */
109 		return ((instr_lo & 7) == 0x6);
110 #ifdef CONFIG_X86_64
111 	case 0x40:
112 		/*
113 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 		 * Need to figure out under what instruction mode the
115 		 * instruction was issued. Could check the LDT for lm,
116 		 * but for now it's good enough to assume that long
117 		 * mode only uses well known segments or kernel.
118 		 */
119 		return (!user_mode(regs) || user_64bit_mode(regs));
120 #endif
121 	case 0x60:
122 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
123 		return (instr_lo & 0xC) == 0x4;
124 	case 0xF0:
125 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 		return !instr_lo || (instr_lo>>1) == 1;
127 	case 0x00:
128 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
129 		if (probe_kernel_address(instr, opcode))
130 			return 0;
131 
132 		*prefetch = (instr_lo == 0xF) &&
133 			(opcode == 0x0D || opcode == 0x18);
134 		return 0;
135 	default:
136 		return 0;
137 	}
138 }
139 
140 static int
141 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
142 {
143 	unsigned char *max_instr;
144 	unsigned char *instr;
145 	int prefetch = 0;
146 
147 	/*
148 	 * If it was a exec (instruction fetch) fault on NX page, then
149 	 * do not ignore the fault:
150 	 */
151 	if (error_code & PF_INSTR)
152 		return 0;
153 
154 	instr = (void *)convert_ip_to_linear(current, regs);
155 	max_instr = instr + 15;
156 
157 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
158 		return 0;
159 
160 	while (instr < max_instr) {
161 		unsigned char opcode;
162 
163 		if (probe_kernel_address(instr, opcode))
164 			break;
165 
166 		instr++;
167 
168 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
169 			break;
170 	}
171 	return prefetch;
172 }
173 
174 /*
175  * A protection key fault means that the PKRU value did not allow
176  * access to some PTE.  Userspace can figure out what PKRU was
177  * from the XSAVE state, and this function fills out a field in
178  * siginfo so userspace can discover which protection key was set
179  * on the PTE.
180  *
181  * If we get here, we know that the hardware signaled a PF_PK
182  * fault and that there was a VMA once we got in the fault
183  * handler.  It does *not* guarantee that the VMA we find here
184  * was the one that we faulted on.
185  *
186  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
187  * 2. T1   : set PKRU to deny access to pkey=4, touches page
188  * 3. T1   : faults...
189  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190  * 5. T1   : enters fault handler, takes mmap_sem, etc...
191  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
192  *	     faulted on a pte with its pkey=4.
193  */
194 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 		struct vm_area_struct *vma)
196 {
197 	/* This is effectively an #ifdef */
198 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 		return;
200 
201 	/* Fault not from Protection Keys: nothing to do */
202 	if (si_code != SEGV_PKUERR)
203 		return;
204 	/*
205 	 * force_sig_info_fault() is called from a number of
206 	 * contexts, some of which have a VMA and some of which
207 	 * do not.  The PF_PK handing happens after we have a
208 	 * valid VMA, so we should never reach this without a
209 	 * valid VMA.
210 	 */
211 	if (!vma) {
212 		WARN_ONCE(1, "PKU fault with no VMA passed in");
213 		info->si_pkey = 0;
214 		return;
215 	}
216 	/*
217 	 * si_pkey should be thought of as a strong hint, but not
218 	 * absolutely guranteed to be 100% accurate because of
219 	 * the race explained above.
220 	 */
221 	info->si_pkey = vma_pkey(vma);
222 }
223 
224 static void
225 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 		     struct task_struct *tsk, struct vm_area_struct *vma,
227 		     int fault)
228 {
229 	unsigned lsb = 0;
230 	siginfo_t info;
231 
232 	info.si_signo	= si_signo;
233 	info.si_errno	= 0;
234 	info.si_code	= si_code;
235 	info.si_addr	= (void __user *)address;
236 	if (fault & VM_FAULT_HWPOISON_LARGE)
237 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 	if (fault & VM_FAULT_HWPOISON)
239 		lsb = PAGE_SHIFT;
240 	info.si_addr_lsb = lsb;
241 
242 	fill_sig_info_pkey(si_code, &info, vma);
243 
244 	force_sig_info(si_signo, &info, tsk);
245 }
246 
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
249 
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252 {
253 	unsigned index = pgd_index(address);
254 	pgd_t *pgd_k;
255 	pud_t *pud, *pud_k;
256 	pmd_t *pmd, *pmd_k;
257 
258 	pgd += index;
259 	pgd_k = init_mm.pgd + index;
260 
261 	if (!pgd_present(*pgd_k))
262 		return NULL;
263 
264 	/*
265 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 	 * and redundant with the set_pmd() on non-PAE. As would
267 	 * set_pud.
268 	 */
269 	pud = pud_offset(pgd, address);
270 	pud_k = pud_offset(pgd_k, address);
271 	if (!pud_present(*pud_k))
272 		return NULL;
273 
274 	pmd = pmd_offset(pud, address);
275 	pmd_k = pmd_offset(pud_k, address);
276 	if (!pmd_present(*pmd_k))
277 		return NULL;
278 
279 	if (!pmd_present(*pmd))
280 		set_pmd(pmd, *pmd_k);
281 	else
282 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
283 
284 	return pmd_k;
285 }
286 
287 void vmalloc_sync_all(void)
288 {
289 	unsigned long address;
290 
291 	if (SHARED_KERNEL_PMD)
292 		return;
293 
294 	for (address = VMALLOC_START & PMD_MASK;
295 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
296 	     address += PMD_SIZE) {
297 		struct page *page;
298 
299 		spin_lock(&pgd_lock);
300 		list_for_each_entry(page, &pgd_list, lru) {
301 			spinlock_t *pgt_lock;
302 			pmd_t *ret;
303 
304 			/* the pgt_lock only for Xen */
305 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
306 
307 			spin_lock(pgt_lock);
308 			ret = vmalloc_sync_one(page_address(page), address);
309 			spin_unlock(pgt_lock);
310 
311 			if (!ret)
312 				break;
313 		}
314 		spin_unlock(&pgd_lock);
315 	}
316 }
317 
318 /*
319  * 32-bit:
320  *
321  *   Handle a fault on the vmalloc or module mapping area
322  */
323 static noinline int vmalloc_fault(unsigned long address)
324 {
325 	unsigned long pgd_paddr;
326 	pmd_t *pmd_k;
327 	pte_t *pte_k;
328 
329 	/* Make sure we are in vmalloc area: */
330 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 		return -1;
332 
333 	WARN_ON_ONCE(in_nmi());
334 
335 	/*
336 	 * Synchronize this task's top level page-table
337 	 * with the 'reference' page table.
338 	 *
339 	 * Do _not_ use "current" here. We might be inside
340 	 * an interrupt in the middle of a task switch..
341 	 */
342 	pgd_paddr = read_cr3();
343 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 	if (!pmd_k)
345 		return -1;
346 
347 	if (pmd_huge(*pmd_k))
348 		return 0;
349 
350 	pte_k = pte_offset_kernel(pmd_k, address);
351 	if (!pte_present(*pte_k))
352 		return -1;
353 
354 	return 0;
355 }
356 NOKPROBE_SYMBOL(vmalloc_fault);
357 
358 /*
359  * Did it hit the DOS screen memory VA from vm86 mode?
360  */
361 static inline void
362 check_v8086_mode(struct pt_regs *regs, unsigned long address,
363 		 struct task_struct *tsk)
364 {
365 #ifdef CONFIG_VM86
366 	unsigned long bit;
367 
368 	if (!v8086_mode(regs) || !tsk->thread.vm86)
369 		return;
370 
371 	bit = (address - 0xA0000) >> PAGE_SHIFT;
372 	if (bit < 32)
373 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
374 #endif
375 }
376 
377 static bool low_pfn(unsigned long pfn)
378 {
379 	return pfn < max_low_pfn;
380 }
381 
382 static void dump_pagetable(unsigned long address)
383 {
384 	pgd_t *base = __va(read_cr3());
385 	pgd_t *pgd = &base[pgd_index(address)];
386 	pmd_t *pmd;
387 	pte_t *pte;
388 
389 #ifdef CONFIG_X86_PAE
390 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
391 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
392 		goto out;
393 #endif
394 	pmd = pmd_offset(pud_offset(pgd, address), address);
395 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
396 
397 	/*
398 	 * We must not directly access the pte in the highpte
399 	 * case if the page table is located in highmem.
400 	 * And let's rather not kmap-atomic the pte, just in case
401 	 * it's allocated already:
402 	 */
403 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
404 		goto out;
405 
406 	pte = pte_offset_kernel(pmd, address);
407 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
408 out:
409 	printk("\n");
410 }
411 
412 #else /* CONFIG_X86_64: */
413 
414 void vmalloc_sync_all(void)
415 {
416 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
417 }
418 
419 /*
420  * 64-bit:
421  *
422  *   Handle a fault on the vmalloc area
423  */
424 static noinline int vmalloc_fault(unsigned long address)
425 {
426 	pgd_t *pgd, *pgd_ref;
427 	pud_t *pud, *pud_ref;
428 	pmd_t *pmd, *pmd_ref;
429 	pte_t *pte, *pte_ref;
430 
431 	/* Make sure we are in vmalloc area: */
432 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
433 		return -1;
434 
435 	WARN_ON_ONCE(in_nmi());
436 
437 	/*
438 	 * Copy kernel mappings over when needed. This can also
439 	 * happen within a race in page table update. In the later
440 	 * case just flush:
441 	 */
442 	pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
443 	pgd_ref = pgd_offset_k(address);
444 	if (pgd_none(*pgd_ref))
445 		return -1;
446 
447 	if (pgd_none(*pgd)) {
448 		set_pgd(pgd, *pgd_ref);
449 		arch_flush_lazy_mmu_mode();
450 	} else {
451 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
452 	}
453 
454 	/*
455 	 * Below here mismatches are bugs because these lower tables
456 	 * are shared:
457 	 */
458 
459 	pud = pud_offset(pgd, address);
460 	pud_ref = pud_offset(pgd_ref, address);
461 	if (pud_none(*pud_ref))
462 		return -1;
463 
464 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
465 		BUG();
466 
467 	if (pud_huge(*pud))
468 		return 0;
469 
470 	pmd = pmd_offset(pud, address);
471 	pmd_ref = pmd_offset(pud_ref, address);
472 	if (pmd_none(*pmd_ref))
473 		return -1;
474 
475 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
476 		BUG();
477 
478 	if (pmd_huge(*pmd))
479 		return 0;
480 
481 	pte_ref = pte_offset_kernel(pmd_ref, address);
482 	if (!pte_present(*pte_ref))
483 		return -1;
484 
485 	pte = pte_offset_kernel(pmd, address);
486 
487 	/*
488 	 * Don't use pte_page here, because the mappings can point
489 	 * outside mem_map, and the NUMA hash lookup cannot handle
490 	 * that:
491 	 */
492 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
493 		BUG();
494 
495 	return 0;
496 }
497 NOKPROBE_SYMBOL(vmalloc_fault);
498 
499 #ifdef CONFIG_CPU_SUP_AMD
500 static const char errata93_warning[] =
501 KERN_ERR
502 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
503 "******* Working around it, but it may cause SEGVs or burn power.\n"
504 "******* Please consider a BIOS update.\n"
505 "******* Disabling USB legacy in the BIOS may also help.\n";
506 #endif
507 
508 /*
509  * No vm86 mode in 64-bit mode:
510  */
511 static inline void
512 check_v8086_mode(struct pt_regs *regs, unsigned long address,
513 		 struct task_struct *tsk)
514 {
515 }
516 
517 static int bad_address(void *p)
518 {
519 	unsigned long dummy;
520 
521 	return probe_kernel_address((unsigned long *)p, dummy);
522 }
523 
524 static void dump_pagetable(unsigned long address)
525 {
526 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
527 	pgd_t *pgd = base + pgd_index(address);
528 	pud_t *pud;
529 	pmd_t *pmd;
530 	pte_t *pte;
531 
532 	if (bad_address(pgd))
533 		goto bad;
534 
535 	printk("PGD %lx ", pgd_val(*pgd));
536 
537 	if (!pgd_present(*pgd))
538 		goto out;
539 
540 	pud = pud_offset(pgd, address);
541 	if (bad_address(pud))
542 		goto bad;
543 
544 	printk("PUD %lx ", pud_val(*pud));
545 	if (!pud_present(*pud) || pud_large(*pud))
546 		goto out;
547 
548 	pmd = pmd_offset(pud, address);
549 	if (bad_address(pmd))
550 		goto bad;
551 
552 	printk("PMD %lx ", pmd_val(*pmd));
553 	if (!pmd_present(*pmd) || pmd_large(*pmd))
554 		goto out;
555 
556 	pte = pte_offset_kernel(pmd, address);
557 	if (bad_address(pte))
558 		goto bad;
559 
560 	printk("PTE %lx", pte_val(*pte));
561 out:
562 	printk("\n");
563 	return;
564 bad:
565 	printk("BAD\n");
566 }
567 
568 #endif /* CONFIG_X86_64 */
569 
570 /*
571  * Workaround for K8 erratum #93 & buggy BIOS.
572  *
573  * BIOS SMM functions are required to use a specific workaround
574  * to avoid corruption of the 64bit RIP register on C stepping K8.
575  *
576  * A lot of BIOS that didn't get tested properly miss this.
577  *
578  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
579  * Try to work around it here.
580  *
581  * Note we only handle faults in kernel here.
582  * Does nothing on 32-bit.
583  */
584 static int is_errata93(struct pt_regs *regs, unsigned long address)
585 {
586 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
587 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
588 	    || boot_cpu_data.x86 != 0xf)
589 		return 0;
590 
591 	if (address != regs->ip)
592 		return 0;
593 
594 	if ((address >> 32) != 0)
595 		return 0;
596 
597 	address |= 0xffffffffUL << 32;
598 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
599 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
600 		printk_once(errata93_warning);
601 		regs->ip = address;
602 		return 1;
603 	}
604 #endif
605 	return 0;
606 }
607 
608 /*
609  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
610  * to illegal addresses >4GB.
611  *
612  * We catch this in the page fault handler because these addresses
613  * are not reachable. Just detect this case and return.  Any code
614  * segment in LDT is compatibility mode.
615  */
616 static int is_errata100(struct pt_regs *regs, unsigned long address)
617 {
618 #ifdef CONFIG_X86_64
619 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
620 		return 1;
621 #endif
622 	return 0;
623 }
624 
625 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
626 {
627 #ifdef CONFIG_X86_F00F_BUG
628 	unsigned long nr;
629 
630 	/*
631 	 * Pentium F0 0F C7 C8 bug workaround:
632 	 */
633 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
634 		nr = (address - idt_descr.address) >> 3;
635 
636 		if (nr == 6) {
637 			do_invalid_op(regs, 0);
638 			return 1;
639 		}
640 	}
641 #endif
642 	return 0;
643 }
644 
645 static const char nx_warning[] = KERN_CRIT
646 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
647 static const char smep_warning[] = KERN_CRIT
648 "unable to execute userspace code (SMEP?) (uid: %d)\n";
649 
650 static void
651 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
652 		unsigned long address)
653 {
654 	if (!oops_may_print())
655 		return;
656 
657 	if (error_code & PF_INSTR) {
658 		unsigned int level;
659 		pgd_t *pgd;
660 		pte_t *pte;
661 
662 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
663 		pgd += pgd_index(address);
664 
665 		pte = lookup_address_in_pgd(pgd, address, &level);
666 
667 		if (pte && pte_present(*pte) && !pte_exec(*pte))
668 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
669 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
670 				(pgd_flags(*pgd) & _PAGE_USER) &&
671 				(__read_cr4() & X86_CR4_SMEP))
672 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
673 	}
674 
675 	printk(KERN_ALERT "BUG: unable to handle kernel ");
676 	if (address < PAGE_SIZE)
677 		printk(KERN_CONT "NULL pointer dereference");
678 	else
679 		printk(KERN_CONT "paging request");
680 
681 	printk(KERN_CONT " at %p\n", (void *) address);
682 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
683 
684 	dump_pagetable(address);
685 }
686 
687 static noinline void
688 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
689 	    unsigned long address)
690 {
691 	struct task_struct *tsk;
692 	unsigned long flags;
693 	int sig;
694 
695 	flags = oops_begin();
696 	tsk = current;
697 	sig = SIGKILL;
698 
699 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
700 	       tsk->comm, address);
701 	dump_pagetable(address);
702 
703 	tsk->thread.cr2		= address;
704 	tsk->thread.trap_nr	= X86_TRAP_PF;
705 	tsk->thread.error_code	= error_code;
706 
707 	if (__die("Bad pagetable", regs, error_code))
708 		sig = 0;
709 
710 	oops_end(flags, regs, sig);
711 }
712 
713 static noinline void
714 no_context(struct pt_regs *regs, unsigned long error_code,
715 	   unsigned long address, int signal, int si_code)
716 {
717 	struct task_struct *tsk = current;
718 	unsigned long flags;
719 	int sig;
720 	/* No context means no VMA to pass down */
721 	struct vm_area_struct *vma = NULL;
722 
723 	/* Are we prepared to handle this kernel fault? */
724 	if (fixup_exception(regs, X86_TRAP_PF)) {
725 		/*
726 		 * Any interrupt that takes a fault gets the fixup. This makes
727 		 * the below recursive fault logic only apply to a faults from
728 		 * task context.
729 		 */
730 		if (in_interrupt())
731 			return;
732 
733 		/*
734 		 * Per the above we're !in_interrupt(), aka. task context.
735 		 *
736 		 * In this case we need to make sure we're not recursively
737 		 * faulting through the emulate_vsyscall() logic.
738 		 */
739 		if (current->thread.sig_on_uaccess_err && signal) {
740 			tsk->thread.trap_nr = X86_TRAP_PF;
741 			tsk->thread.error_code = error_code | PF_USER;
742 			tsk->thread.cr2 = address;
743 
744 			/* XXX: hwpoison faults will set the wrong code. */
745 			force_sig_info_fault(signal, si_code, address,
746 					     tsk, vma, 0);
747 		}
748 
749 		/*
750 		 * Barring that, we can do the fixup and be happy.
751 		 */
752 		return;
753 	}
754 
755 #ifdef CONFIG_VMAP_STACK
756 	/*
757 	 * Stack overflow?  During boot, we can fault near the initial
758 	 * stack in the direct map, but that's not an overflow -- check
759 	 * that we're in vmalloc space to avoid this.
760 	 */
761 	if (is_vmalloc_addr((void *)address) &&
762 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
763 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
764 		register void *__sp asm("rsp");
765 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
766 		/*
767 		 * We're likely to be running with very little stack space
768 		 * left.  It's plausible that we'd hit this condition but
769 		 * double-fault even before we get this far, in which case
770 		 * we're fine: the double-fault handler will deal with it.
771 		 *
772 		 * We don't want to make it all the way into the oops code
773 		 * and then double-fault, though, because we're likely to
774 		 * break the console driver and lose most of the stack dump.
775 		 */
776 		asm volatile ("movq %[stack], %%rsp\n\t"
777 			      "call handle_stack_overflow\n\t"
778 			      "1: jmp 1b"
779 			      : "+r" (__sp)
780 			      : "D" ("kernel stack overflow (page fault)"),
781 				"S" (regs), "d" (address),
782 				[stack] "rm" (stack));
783 		unreachable();
784 	}
785 #endif
786 
787 	/*
788 	 * 32-bit:
789 	 *
790 	 *   Valid to do another page fault here, because if this fault
791 	 *   had been triggered by is_prefetch fixup_exception would have
792 	 *   handled it.
793 	 *
794 	 * 64-bit:
795 	 *
796 	 *   Hall of shame of CPU/BIOS bugs.
797 	 */
798 	if (is_prefetch(regs, error_code, address))
799 		return;
800 
801 	if (is_errata93(regs, address))
802 		return;
803 
804 	/*
805 	 * Oops. The kernel tried to access some bad page. We'll have to
806 	 * terminate things with extreme prejudice:
807 	 */
808 	flags = oops_begin();
809 
810 	show_fault_oops(regs, error_code, address);
811 
812 	if (task_stack_end_corrupted(tsk))
813 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
814 
815 	tsk->thread.cr2		= address;
816 	tsk->thread.trap_nr	= X86_TRAP_PF;
817 	tsk->thread.error_code	= error_code;
818 
819 	sig = SIGKILL;
820 	if (__die("Oops", regs, error_code))
821 		sig = 0;
822 
823 	/* Executive summary in case the body of the oops scrolled away */
824 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
825 
826 	oops_end(flags, regs, sig);
827 }
828 
829 /*
830  * Print out info about fatal segfaults, if the show_unhandled_signals
831  * sysctl is set:
832  */
833 static inline void
834 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
835 		unsigned long address, struct task_struct *tsk)
836 {
837 	if (!unhandled_signal(tsk, SIGSEGV))
838 		return;
839 
840 	if (!printk_ratelimit())
841 		return;
842 
843 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
844 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
845 		tsk->comm, task_pid_nr(tsk), address,
846 		(void *)regs->ip, (void *)regs->sp, error_code);
847 
848 	print_vma_addr(KERN_CONT " in ", regs->ip);
849 
850 	printk(KERN_CONT "\n");
851 }
852 
853 static void
854 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
855 		       unsigned long address, struct vm_area_struct *vma,
856 		       int si_code)
857 {
858 	struct task_struct *tsk = current;
859 
860 	/* User mode accesses just cause a SIGSEGV */
861 	if (error_code & PF_USER) {
862 		/*
863 		 * It's possible to have interrupts off here:
864 		 */
865 		local_irq_enable();
866 
867 		/*
868 		 * Valid to do another page fault here because this one came
869 		 * from user space:
870 		 */
871 		if (is_prefetch(regs, error_code, address))
872 			return;
873 
874 		if (is_errata100(regs, address))
875 			return;
876 
877 #ifdef CONFIG_X86_64
878 		/*
879 		 * Instruction fetch faults in the vsyscall page might need
880 		 * emulation.
881 		 */
882 		if (unlikely((error_code & PF_INSTR) &&
883 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
884 			if (emulate_vsyscall(regs, address))
885 				return;
886 		}
887 #endif
888 
889 		/*
890 		 * To avoid leaking information about the kernel page table
891 		 * layout, pretend that user-mode accesses to kernel addresses
892 		 * are always protection faults.
893 		 */
894 		if (address >= TASK_SIZE_MAX)
895 			error_code |= PF_PROT;
896 
897 		if (likely(show_unhandled_signals))
898 			show_signal_msg(regs, error_code, address, tsk);
899 
900 		tsk->thread.cr2		= address;
901 		tsk->thread.error_code	= error_code;
902 		tsk->thread.trap_nr	= X86_TRAP_PF;
903 
904 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
905 
906 		return;
907 	}
908 
909 	if (is_f00f_bug(regs, address))
910 		return;
911 
912 	no_context(regs, error_code, address, SIGSEGV, si_code);
913 }
914 
915 static noinline void
916 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
917 		     unsigned long address, struct vm_area_struct *vma)
918 {
919 	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
920 }
921 
922 static void
923 __bad_area(struct pt_regs *regs, unsigned long error_code,
924 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
925 {
926 	struct mm_struct *mm = current->mm;
927 
928 	/*
929 	 * Something tried to access memory that isn't in our memory map..
930 	 * Fix it, but check if it's kernel or user first..
931 	 */
932 	up_read(&mm->mmap_sem);
933 
934 	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
935 }
936 
937 static noinline void
938 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
939 {
940 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
941 }
942 
943 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
944 		struct vm_area_struct *vma)
945 {
946 	/* This code is always called on the current mm */
947 	bool foreign = false;
948 
949 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
950 		return false;
951 	if (error_code & PF_PK)
952 		return true;
953 	/* this checks permission keys on the VMA: */
954 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
955 				(error_code & PF_INSTR), foreign))
956 		return true;
957 	return false;
958 }
959 
960 static noinline void
961 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
962 		      unsigned long address, struct vm_area_struct *vma)
963 {
964 	/*
965 	 * This OSPKE check is not strictly necessary at runtime.
966 	 * But, doing it this way allows compiler optimizations
967 	 * if pkeys are compiled out.
968 	 */
969 	if (bad_area_access_from_pkeys(error_code, vma))
970 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
971 	else
972 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
973 }
974 
975 static void
976 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
977 	  struct vm_area_struct *vma, unsigned int fault)
978 {
979 	struct task_struct *tsk = current;
980 	int code = BUS_ADRERR;
981 
982 	/* Kernel mode? Handle exceptions or die: */
983 	if (!(error_code & PF_USER)) {
984 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
985 		return;
986 	}
987 
988 	/* User-space => ok to do another page fault: */
989 	if (is_prefetch(regs, error_code, address))
990 		return;
991 
992 	tsk->thread.cr2		= address;
993 	tsk->thread.error_code	= error_code;
994 	tsk->thread.trap_nr	= X86_TRAP_PF;
995 
996 #ifdef CONFIG_MEMORY_FAILURE
997 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
998 		printk(KERN_ERR
999 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1000 			tsk->comm, tsk->pid, address);
1001 		code = BUS_MCEERR_AR;
1002 	}
1003 #endif
1004 	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1005 }
1006 
1007 static noinline void
1008 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1009 	       unsigned long address, struct vm_area_struct *vma,
1010 	       unsigned int fault)
1011 {
1012 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1013 		no_context(regs, error_code, address, 0, 0);
1014 		return;
1015 	}
1016 
1017 	if (fault & VM_FAULT_OOM) {
1018 		/* Kernel mode? Handle exceptions or die: */
1019 		if (!(error_code & PF_USER)) {
1020 			no_context(regs, error_code, address,
1021 				   SIGSEGV, SEGV_MAPERR);
1022 			return;
1023 		}
1024 
1025 		/*
1026 		 * We ran out of memory, call the OOM killer, and return the
1027 		 * userspace (which will retry the fault, or kill us if we got
1028 		 * oom-killed):
1029 		 */
1030 		pagefault_out_of_memory();
1031 	} else {
1032 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1033 			     VM_FAULT_HWPOISON_LARGE))
1034 			do_sigbus(regs, error_code, address, vma, fault);
1035 		else if (fault & VM_FAULT_SIGSEGV)
1036 			bad_area_nosemaphore(regs, error_code, address, vma);
1037 		else
1038 			BUG();
1039 	}
1040 }
1041 
1042 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1043 {
1044 	if ((error_code & PF_WRITE) && !pte_write(*pte))
1045 		return 0;
1046 
1047 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
1048 		return 0;
1049 	/*
1050 	 * Note: We do not do lazy flushing on protection key
1051 	 * changes, so no spurious fault will ever set PF_PK.
1052 	 */
1053 	if ((error_code & PF_PK))
1054 		return 1;
1055 
1056 	return 1;
1057 }
1058 
1059 /*
1060  * Handle a spurious fault caused by a stale TLB entry.
1061  *
1062  * This allows us to lazily refresh the TLB when increasing the
1063  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1064  * eagerly is very expensive since that implies doing a full
1065  * cross-processor TLB flush, even if no stale TLB entries exist
1066  * on other processors.
1067  *
1068  * Spurious faults may only occur if the TLB contains an entry with
1069  * fewer permission than the page table entry.  Non-present (P = 0)
1070  * and reserved bit (R = 1) faults are never spurious.
1071  *
1072  * There are no security implications to leaving a stale TLB when
1073  * increasing the permissions on a page.
1074  *
1075  * Returns non-zero if a spurious fault was handled, zero otherwise.
1076  *
1077  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1078  * (Optional Invalidation).
1079  */
1080 static noinline int
1081 spurious_fault(unsigned long error_code, unsigned long address)
1082 {
1083 	pgd_t *pgd;
1084 	pud_t *pud;
1085 	pmd_t *pmd;
1086 	pte_t *pte;
1087 	int ret;
1088 
1089 	/*
1090 	 * Only writes to RO or instruction fetches from NX may cause
1091 	 * spurious faults.
1092 	 *
1093 	 * These could be from user or supervisor accesses but the TLB
1094 	 * is only lazily flushed after a kernel mapping protection
1095 	 * change, so user accesses are not expected to cause spurious
1096 	 * faults.
1097 	 */
1098 	if (error_code != (PF_WRITE | PF_PROT)
1099 	    && error_code != (PF_INSTR | PF_PROT))
1100 		return 0;
1101 
1102 	pgd = init_mm.pgd + pgd_index(address);
1103 	if (!pgd_present(*pgd))
1104 		return 0;
1105 
1106 	pud = pud_offset(pgd, address);
1107 	if (!pud_present(*pud))
1108 		return 0;
1109 
1110 	if (pud_large(*pud))
1111 		return spurious_fault_check(error_code, (pte_t *) pud);
1112 
1113 	pmd = pmd_offset(pud, address);
1114 	if (!pmd_present(*pmd))
1115 		return 0;
1116 
1117 	if (pmd_large(*pmd))
1118 		return spurious_fault_check(error_code, (pte_t *) pmd);
1119 
1120 	pte = pte_offset_kernel(pmd, address);
1121 	if (!pte_present(*pte))
1122 		return 0;
1123 
1124 	ret = spurious_fault_check(error_code, pte);
1125 	if (!ret)
1126 		return 0;
1127 
1128 	/*
1129 	 * Make sure we have permissions in PMD.
1130 	 * If not, then there's a bug in the page tables:
1131 	 */
1132 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1133 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1134 
1135 	return ret;
1136 }
1137 NOKPROBE_SYMBOL(spurious_fault);
1138 
1139 int show_unhandled_signals = 1;
1140 
1141 static inline int
1142 access_error(unsigned long error_code, struct vm_area_struct *vma)
1143 {
1144 	/* This is only called for the current mm, so: */
1145 	bool foreign = false;
1146 
1147 	/*
1148 	 * Read or write was blocked by protection keys.  This is
1149 	 * always an unconditional error and can never result in
1150 	 * a follow-up action to resolve the fault, like a COW.
1151 	 */
1152 	if (error_code & PF_PK)
1153 		return 1;
1154 
1155 	/*
1156 	 * Make sure to check the VMA so that we do not perform
1157 	 * faults just to hit a PF_PK as soon as we fill in a
1158 	 * page.
1159 	 */
1160 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1161 				(error_code & PF_INSTR), foreign))
1162 		return 1;
1163 
1164 	if (error_code & PF_WRITE) {
1165 		/* write, present and write, not present: */
1166 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1167 			return 1;
1168 		return 0;
1169 	}
1170 
1171 	/* read, present: */
1172 	if (unlikely(error_code & PF_PROT))
1173 		return 1;
1174 
1175 	/* read, not present: */
1176 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1177 		return 1;
1178 
1179 	return 0;
1180 }
1181 
1182 static int fault_in_kernel_space(unsigned long address)
1183 {
1184 	return address >= TASK_SIZE_MAX;
1185 }
1186 
1187 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1188 {
1189 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1190 		return false;
1191 
1192 	if (!static_cpu_has(X86_FEATURE_SMAP))
1193 		return false;
1194 
1195 	if (error_code & PF_USER)
1196 		return false;
1197 
1198 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1199 		return false;
1200 
1201 	return true;
1202 }
1203 
1204 /*
1205  * This routine handles page faults.  It determines the address,
1206  * and the problem, and then passes it off to one of the appropriate
1207  * routines.
1208  *
1209  * This function must have noinline because both callers
1210  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1211  * guarantees there's a function trace entry.
1212  */
1213 static noinline void
1214 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1215 		unsigned long address)
1216 {
1217 	struct vm_area_struct *vma;
1218 	struct task_struct *tsk;
1219 	struct mm_struct *mm;
1220 	int fault, major = 0;
1221 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1222 
1223 	tsk = current;
1224 	mm = tsk->mm;
1225 
1226 	/*
1227 	 * Detect and handle instructions that would cause a page fault for
1228 	 * both a tracked kernel page and a userspace page.
1229 	 */
1230 	if (kmemcheck_active(regs))
1231 		kmemcheck_hide(regs);
1232 	prefetchw(&mm->mmap_sem);
1233 
1234 	if (unlikely(kmmio_fault(regs, address)))
1235 		return;
1236 
1237 	/*
1238 	 * We fault-in kernel-space virtual memory on-demand. The
1239 	 * 'reference' page table is init_mm.pgd.
1240 	 *
1241 	 * NOTE! We MUST NOT take any locks for this case. We may
1242 	 * be in an interrupt or a critical region, and should
1243 	 * only copy the information from the master page table,
1244 	 * nothing more.
1245 	 *
1246 	 * This verifies that the fault happens in kernel space
1247 	 * (error_code & 4) == 0, and that the fault was not a
1248 	 * protection error (error_code & 9) == 0.
1249 	 */
1250 	if (unlikely(fault_in_kernel_space(address))) {
1251 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1252 			if (vmalloc_fault(address) >= 0)
1253 				return;
1254 
1255 			if (kmemcheck_fault(regs, address, error_code))
1256 				return;
1257 		}
1258 
1259 		/* Can handle a stale RO->RW TLB: */
1260 		if (spurious_fault(error_code, address))
1261 			return;
1262 
1263 		/* kprobes don't want to hook the spurious faults: */
1264 		if (kprobes_fault(regs))
1265 			return;
1266 		/*
1267 		 * Don't take the mm semaphore here. If we fixup a prefetch
1268 		 * fault we could otherwise deadlock:
1269 		 */
1270 		bad_area_nosemaphore(regs, error_code, address, NULL);
1271 
1272 		return;
1273 	}
1274 
1275 	/* kprobes don't want to hook the spurious faults: */
1276 	if (unlikely(kprobes_fault(regs)))
1277 		return;
1278 
1279 	if (unlikely(error_code & PF_RSVD))
1280 		pgtable_bad(regs, error_code, address);
1281 
1282 	if (unlikely(smap_violation(error_code, regs))) {
1283 		bad_area_nosemaphore(regs, error_code, address, NULL);
1284 		return;
1285 	}
1286 
1287 	/*
1288 	 * If we're in an interrupt, have no user context or are running
1289 	 * in a region with pagefaults disabled then we must not take the fault
1290 	 */
1291 	if (unlikely(faulthandler_disabled() || !mm)) {
1292 		bad_area_nosemaphore(regs, error_code, address, NULL);
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * It's safe to allow irq's after cr2 has been saved and the
1298 	 * vmalloc fault has been handled.
1299 	 *
1300 	 * User-mode registers count as a user access even for any
1301 	 * potential system fault or CPU buglet:
1302 	 */
1303 	if (user_mode(regs)) {
1304 		local_irq_enable();
1305 		error_code |= PF_USER;
1306 		flags |= FAULT_FLAG_USER;
1307 	} else {
1308 		if (regs->flags & X86_EFLAGS_IF)
1309 			local_irq_enable();
1310 	}
1311 
1312 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1313 
1314 	if (error_code & PF_WRITE)
1315 		flags |= FAULT_FLAG_WRITE;
1316 	if (error_code & PF_INSTR)
1317 		flags |= FAULT_FLAG_INSTRUCTION;
1318 
1319 	/*
1320 	 * When running in the kernel we expect faults to occur only to
1321 	 * addresses in user space.  All other faults represent errors in
1322 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1323 	 * case of an erroneous fault occurring in a code path which already
1324 	 * holds mmap_sem we will deadlock attempting to validate the fault
1325 	 * against the address space.  Luckily the kernel only validly
1326 	 * references user space from well defined areas of code, which are
1327 	 * listed in the exceptions table.
1328 	 *
1329 	 * As the vast majority of faults will be valid we will only perform
1330 	 * the source reference check when there is a possibility of a
1331 	 * deadlock. Attempt to lock the address space, if we cannot we then
1332 	 * validate the source. If this is invalid we can skip the address
1333 	 * space check, thus avoiding the deadlock:
1334 	 */
1335 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1336 		if ((error_code & PF_USER) == 0 &&
1337 		    !search_exception_tables(regs->ip)) {
1338 			bad_area_nosemaphore(regs, error_code, address, NULL);
1339 			return;
1340 		}
1341 retry:
1342 		down_read(&mm->mmap_sem);
1343 	} else {
1344 		/*
1345 		 * The above down_read_trylock() might have succeeded in
1346 		 * which case we'll have missed the might_sleep() from
1347 		 * down_read():
1348 		 */
1349 		might_sleep();
1350 	}
1351 
1352 	vma = find_vma(mm, address);
1353 	if (unlikely(!vma)) {
1354 		bad_area(regs, error_code, address);
1355 		return;
1356 	}
1357 	if (likely(vma->vm_start <= address))
1358 		goto good_area;
1359 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1360 		bad_area(regs, error_code, address);
1361 		return;
1362 	}
1363 	if (error_code & PF_USER) {
1364 		/*
1365 		 * Accessing the stack below %sp is always a bug.
1366 		 * The large cushion allows instructions like enter
1367 		 * and pusha to work. ("enter $65535, $31" pushes
1368 		 * 32 pointers and then decrements %sp by 65535.)
1369 		 */
1370 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1371 			bad_area(regs, error_code, address);
1372 			return;
1373 		}
1374 	}
1375 	if (unlikely(expand_stack(vma, address))) {
1376 		bad_area(regs, error_code, address);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * Ok, we have a good vm_area for this memory access, so
1382 	 * we can handle it..
1383 	 */
1384 good_area:
1385 	if (unlikely(access_error(error_code, vma))) {
1386 		bad_area_access_error(regs, error_code, address, vma);
1387 		return;
1388 	}
1389 
1390 	/*
1391 	 * If for any reason at all we couldn't handle the fault,
1392 	 * make sure we exit gracefully rather than endlessly redo
1393 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1394 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1395 	 */
1396 	fault = handle_mm_fault(vma, address, flags);
1397 	major |= fault & VM_FAULT_MAJOR;
1398 
1399 	/*
1400 	 * If we need to retry the mmap_sem has already been released,
1401 	 * and if there is a fatal signal pending there is no guarantee
1402 	 * that we made any progress. Handle this case first.
1403 	 */
1404 	if (unlikely(fault & VM_FAULT_RETRY)) {
1405 		/* Retry at most once */
1406 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1407 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1408 			flags |= FAULT_FLAG_TRIED;
1409 			if (!fatal_signal_pending(tsk))
1410 				goto retry;
1411 		}
1412 
1413 		/* User mode? Just return to handle the fatal exception */
1414 		if (flags & FAULT_FLAG_USER)
1415 			return;
1416 
1417 		/* Not returning to user mode? Handle exceptions or die: */
1418 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1419 		return;
1420 	}
1421 
1422 	up_read(&mm->mmap_sem);
1423 	if (unlikely(fault & VM_FAULT_ERROR)) {
1424 		mm_fault_error(regs, error_code, address, vma, fault);
1425 		return;
1426 	}
1427 
1428 	/*
1429 	 * Major/minor page fault accounting. If any of the events
1430 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1431 	 */
1432 	if (major) {
1433 		tsk->maj_flt++;
1434 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1435 	} else {
1436 		tsk->min_flt++;
1437 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1438 	}
1439 
1440 	check_v8086_mode(regs, address, tsk);
1441 }
1442 NOKPROBE_SYMBOL(__do_page_fault);
1443 
1444 dotraplinkage void notrace
1445 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1446 {
1447 	unsigned long address = read_cr2(); /* Get the faulting address */
1448 	enum ctx_state prev_state;
1449 
1450 	/*
1451 	 * We must have this function tagged with __kprobes, notrace and call
1452 	 * read_cr2() before calling anything else. To avoid calling any kind
1453 	 * of tracing machinery before we've observed the CR2 value.
1454 	 *
1455 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1456 	 */
1457 
1458 	prev_state = exception_enter();
1459 	__do_page_fault(regs, error_code, address);
1460 	exception_exit(prev_state);
1461 }
1462 NOKPROBE_SYMBOL(do_page_fault);
1463 
1464 #ifdef CONFIG_TRACING
1465 static nokprobe_inline void
1466 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1467 			 unsigned long error_code)
1468 {
1469 	if (user_mode(regs))
1470 		trace_page_fault_user(address, regs, error_code);
1471 	else
1472 		trace_page_fault_kernel(address, regs, error_code);
1473 }
1474 
1475 dotraplinkage void notrace
1476 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1477 {
1478 	/*
1479 	 * The exception_enter and tracepoint processing could
1480 	 * trigger another page faults (user space callchain
1481 	 * reading) and destroy the original cr2 value, so read
1482 	 * the faulting address now.
1483 	 */
1484 	unsigned long address = read_cr2();
1485 	enum ctx_state prev_state;
1486 
1487 	prev_state = exception_enter();
1488 	trace_page_fault_entries(address, regs, error_code);
1489 	__do_page_fault(regs, error_code, address);
1490 	exception_exit(prev_state);
1491 }
1492 NOKPROBE_SYMBOL(trace_do_page_fault);
1493 #endif /* CONFIG_TRACING */
1494