xref: /openbmc/linux/arch/x86/mm/fault.c (revision d2999e1b)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 #include <linux/prefetch.h>		/* prefetchw			*/
16 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17 
18 #include <asm/traps.h>			/* dotraplinkage, ...		*/
19 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
20 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
21 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
22 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
23 
24 #define CREATE_TRACE_POINTS
25 #include <asm/trace/exceptions.h>
26 
27 /*
28  * Page fault error code bits:
29  *
30  *   bit 0 ==	 0: no page found	1: protection fault
31  *   bit 1 ==	 0: read access		1: write access
32  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
33  *   bit 3 ==				1: use of reserved bit detected
34  *   bit 4 ==				1: fault was an instruction fetch
35  */
36 enum x86_pf_error_code {
37 
38 	PF_PROT		=		1 << 0,
39 	PF_WRITE	=		1 << 1,
40 	PF_USER		=		1 << 2,
41 	PF_RSVD		=		1 << 3,
42 	PF_INSTR	=		1 << 4,
43 };
44 
45 /*
46  * Returns 0 if mmiotrace is disabled, or if the fault is not
47  * handled by mmiotrace:
48  */
49 static nokprobe_inline int
50 kmmio_fault(struct pt_regs *regs, unsigned long addr)
51 {
52 	if (unlikely(is_kmmio_active()))
53 		if (kmmio_handler(regs, addr) == 1)
54 			return -1;
55 	return 0;
56 }
57 
58 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
59 {
60 	int ret = 0;
61 
62 	/* kprobe_running() needs smp_processor_id() */
63 	if (kprobes_built_in() && !user_mode_vm(regs)) {
64 		preempt_disable();
65 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
66 			ret = 1;
67 		preempt_enable();
68 	}
69 
70 	return ret;
71 }
72 
73 /*
74  * Prefetch quirks:
75  *
76  * 32-bit mode:
77  *
78  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
79  *   Check that here and ignore it.
80  *
81  * 64-bit mode:
82  *
83  *   Sometimes the CPU reports invalid exceptions on prefetch.
84  *   Check that here and ignore it.
85  *
86  * Opcode checker based on code by Richard Brunner.
87  */
88 static inline int
89 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
90 		      unsigned char opcode, int *prefetch)
91 {
92 	unsigned char instr_hi = opcode & 0xf0;
93 	unsigned char instr_lo = opcode & 0x0f;
94 
95 	switch (instr_hi) {
96 	case 0x20:
97 	case 0x30:
98 		/*
99 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
100 		 * In X86_64 long mode, the CPU will signal invalid
101 		 * opcode if some of these prefixes are present so
102 		 * X86_64 will never get here anyway
103 		 */
104 		return ((instr_lo & 7) == 0x6);
105 #ifdef CONFIG_X86_64
106 	case 0x40:
107 		/*
108 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
109 		 * Need to figure out under what instruction mode the
110 		 * instruction was issued. Could check the LDT for lm,
111 		 * but for now it's good enough to assume that long
112 		 * mode only uses well known segments or kernel.
113 		 */
114 		return (!user_mode(regs) || user_64bit_mode(regs));
115 #endif
116 	case 0x60:
117 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
118 		return (instr_lo & 0xC) == 0x4;
119 	case 0xF0:
120 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
121 		return !instr_lo || (instr_lo>>1) == 1;
122 	case 0x00:
123 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
124 		if (probe_kernel_address(instr, opcode))
125 			return 0;
126 
127 		*prefetch = (instr_lo == 0xF) &&
128 			(opcode == 0x0D || opcode == 0x18);
129 		return 0;
130 	default:
131 		return 0;
132 	}
133 }
134 
135 static int
136 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
137 {
138 	unsigned char *max_instr;
139 	unsigned char *instr;
140 	int prefetch = 0;
141 
142 	/*
143 	 * If it was a exec (instruction fetch) fault on NX page, then
144 	 * do not ignore the fault:
145 	 */
146 	if (error_code & PF_INSTR)
147 		return 0;
148 
149 	instr = (void *)convert_ip_to_linear(current, regs);
150 	max_instr = instr + 15;
151 
152 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
153 		return 0;
154 
155 	while (instr < max_instr) {
156 		unsigned char opcode;
157 
158 		if (probe_kernel_address(instr, opcode))
159 			break;
160 
161 		instr++;
162 
163 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164 			break;
165 	}
166 	return prefetch;
167 }
168 
169 static void
170 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
171 		     struct task_struct *tsk, int fault)
172 {
173 	unsigned lsb = 0;
174 	siginfo_t info;
175 
176 	info.si_signo	= si_signo;
177 	info.si_errno	= 0;
178 	info.si_code	= si_code;
179 	info.si_addr	= (void __user *)address;
180 	if (fault & VM_FAULT_HWPOISON_LARGE)
181 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 	if (fault & VM_FAULT_HWPOISON)
183 		lsb = PAGE_SHIFT;
184 	info.si_addr_lsb = lsb;
185 
186 	force_sig_info(si_signo, &info, tsk);
187 }
188 
189 DEFINE_SPINLOCK(pgd_lock);
190 LIST_HEAD(pgd_list);
191 
192 #ifdef CONFIG_X86_32
193 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
194 {
195 	unsigned index = pgd_index(address);
196 	pgd_t *pgd_k;
197 	pud_t *pud, *pud_k;
198 	pmd_t *pmd, *pmd_k;
199 
200 	pgd += index;
201 	pgd_k = init_mm.pgd + index;
202 
203 	if (!pgd_present(*pgd_k))
204 		return NULL;
205 
206 	/*
207 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
208 	 * and redundant with the set_pmd() on non-PAE. As would
209 	 * set_pud.
210 	 */
211 	pud = pud_offset(pgd, address);
212 	pud_k = pud_offset(pgd_k, address);
213 	if (!pud_present(*pud_k))
214 		return NULL;
215 
216 	pmd = pmd_offset(pud, address);
217 	pmd_k = pmd_offset(pud_k, address);
218 	if (!pmd_present(*pmd_k))
219 		return NULL;
220 
221 	if (!pmd_present(*pmd))
222 		set_pmd(pmd, *pmd_k);
223 	else
224 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
225 
226 	return pmd_k;
227 }
228 
229 void vmalloc_sync_all(void)
230 {
231 	unsigned long address;
232 
233 	if (SHARED_KERNEL_PMD)
234 		return;
235 
236 	for (address = VMALLOC_START & PMD_MASK;
237 	     address >= TASK_SIZE && address < FIXADDR_TOP;
238 	     address += PMD_SIZE) {
239 		struct page *page;
240 
241 		spin_lock(&pgd_lock);
242 		list_for_each_entry(page, &pgd_list, lru) {
243 			spinlock_t *pgt_lock;
244 			pmd_t *ret;
245 
246 			/* the pgt_lock only for Xen */
247 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
248 
249 			spin_lock(pgt_lock);
250 			ret = vmalloc_sync_one(page_address(page), address);
251 			spin_unlock(pgt_lock);
252 
253 			if (!ret)
254 				break;
255 		}
256 		spin_unlock(&pgd_lock);
257 	}
258 }
259 
260 /*
261  * 32-bit:
262  *
263  *   Handle a fault on the vmalloc or module mapping area
264  */
265 static noinline int vmalloc_fault(unsigned long address)
266 {
267 	unsigned long pgd_paddr;
268 	pmd_t *pmd_k;
269 	pte_t *pte_k;
270 
271 	/* Make sure we are in vmalloc area: */
272 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
273 		return -1;
274 
275 	WARN_ON_ONCE(in_nmi());
276 
277 	/*
278 	 * Synchronize this task's top level page-table
279 	 * with the 'reference' page table.
280 	 *
281 	 * Do _not_ use "current" here. We might be inside
282 	 * an interrupt in the middle of a task switch..
283 	 */
284 	pgd_paddr = read_cr3();
285 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
286 	if (!pmd_k)
287 		return -1;
288 
289 	pte_k = pte_offset_kernel(pmd_k, address);
290 	if (!pte_present(*pte_k))
291 		return -1;
292 
293 	return 0;
294 }
295 NOKPROBE_SYMBOL(vmalloc_fault);
296 
297 /*
298  * Did it hit the DOS screen memory VA from vm86 mode?
299  */
300 static inline void
301 check_v8086_mode(struct pt_regs *regs, unsigned long address,
302 		 struct task_struct *tsk)
303 {
304 	unsigned long bit;
305 
306 	if (!v8086_mode(regs))
307 		return;
308 
309 	bit = (address - 0xA0000) >> PAGE_SHIFT;
310 	if (bit < 32)
311 		tsk->thread.screen_bitmap |= 1 << bit;
312 }
313 
314 static bool low_pfn(unsigned long pfn)
315 {
316 	return pfn < max_low_pfn;
317 }
318 
319 static void dump_pagetable(unsigned long address)
320 {
321 	pgd_t *base = __va(read_cr3());
322 	pgd_t *pgd = &base[pgd_index(address)];
323 	pmd_t *pmd;
324 	pte_t *pte;
325 
326 #ifdef CONFIG_X86_PAE
327 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
328 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
329 		goto out;
330 #endif
331 	pmd = pmd_offset(pud_offset(pgd, address), address);
332 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
333 
334 	/*
335 	 * We must not directly access the pte in the highpte
336 	 * case if the page table is located in highmem.
337 	 * And let's rather not kmap-atomic the pte, just in case
338 	 * it's allocated already:
339 	 */
340 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
341 		goto out;
342 
343 	pte = pte_offset_kernel(pmd, address);
344 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
345 out:
346 	printk("\n");
347 }
348 
349 #else /* CONFIG_X86_64: */
350 
351 void vmalloc_sync_all(void)
352 {
353 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
354 }
355 
356 /*
357  * 64-bit:
358  *
359  *   Handle a fault on the vmalloc area
360  *
361  * This assumes no large pages in there.
362  */
363 static noinline int vmalloc_fault(unsigned long address)
364 {
365 	pgd_t *pgd, *pgd_ref;
366 	pud_t *pud, *pud_ref;
367 	pmd_t *pmd, *pmd_ref;
368 	pte_t *pte, *pte_ref;
369 
370 	/* Make sure we are in vmalloc area: */
371 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
372 		return -1;
373 
374 	WARN_ON_ONCE(in_nmi());
375 
376 	/*
377 	 * Copy kernel mappings over when needed. This can also
378 	 * happen within a race in page table update. In the later
379 	 * case just flush:
380 	 */
381 	pgd = pgd_offset(current->active_mm, address);
382 	pgd_ref = pgd_offset_k(address);
383 	if (pgd_none(*pgd_ref))
384 		return -1;
385 
386 	if (pgd_none(*pgd)) {
387 		set_pgd(pgd, *pgd_ref);
388 		arch_flush_lazy_mmu_mode();
389 	} else {
390 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
391 	}
392 
393 	/*
394 	 * Below here mismatches are bugs because these lower tables
395 	 * are shared:
396 	 */
397 
398 	pud = pud_offset(pgd, address);
399 	pud_ref = pud_offset(pgd_ref, address);
400 	if (pud_none(*pud_ref))
401 		return -1;
402 
403 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
404 		BUG();
405 
406 	pmd = pmd_offset(pud, address);
407 	pmd_ref = pmd_offset(pud_ref, address);
408 	if (pmd_none(*pmd_ref))
409 		return -1;
410 
411 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
412 		BUG();
413 
414 	pte_ref = pte_offset_kernel(pmd_ref, address);
415 	if (!pte_present(*pte_ref))
416 		return -1;
417 
418 	pte = pte_offset_kernel(pmd, address);
419 
420 	/*
421 	 * Don't use pte_page here, because the mappings can point
422 	 * outside mem_map, and the NUMA hash lookup cannot handle
423 	 * that:
424 	 */
425 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
426 		BUG();
427 
428 	return 0;
429 }
430 NOKPROBE_SYMBOL(vmalloc_fault);
431 
432 #ifdef CONFIG_CPU_SUP_AMD
433 static const char errata93_warning[] =
434 KERN_ERR
435 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
436 "******* Working around it, but it may cause SEGVs or burn power.\n"
437 "******* Please consider a BIOS update.\n"
438 "******* Disabling USB legacy in the BIOS may also help.\n";
439 #endif
440 
441 /*
442  * No vm86 mode in 64-bit mode:
443  */
444 static inline void
445 check_v8086_mode(struct pt_regs *regs, unsigned long address,
446 		 struct task_struct *tsk)
447 {
448 }
449 
450 static int bad_address(void *p)
451 {
452 	unsigned long dummy;
453 
454 	return probe_kernel_address((unsigned long *)p, dummy);
455 }
456 
457 static void dump_pagetable(unsigned long address)
458 {
459 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
460 	pgd_t *pgd = base + pgd_index(address);
461 	pud_t *pud;
462 	pmd_t *pmd;
463 	pte_t *pte;
464 
465 	if (bad_address(pgd))
466 		goto bad;
467 
468 	printk("PGD %lx ", pgd_val(*pgd));
469 
470 	if (!pgd_present(*pgd))
471 		goto out;
472 
473 	pud = pud_offset(pgd, address);
474 	if (bad_address(pud))
475 		goto bad;
476 
477 	printk("PUD %lx ", pud_val(*pud));
478 	if (!pud_present(*pud) || pud_large(*pud))
479 		goto out;
480 
481 	pmd = pmd_offset(pud, address);
482 	if (bad_address(pmd))
483 		goto bad;
484 
485 	printk("PMD %lx ", pmd_val(*pmd));
486 	if (!pmd_present(*pmd) || pmd_large(*pmd))
487 		goto out;
488 
489 	pte = pte_offset_kernel(pmd, address);
490 	if (bad_address(pte))
491 		goto bad;
492 
493 	printk("PTE %lx", pte_val(*pte));
494 out:
495 	printk("\n");
496 	return;
497 bad:
498 	printk("BAD\n");
499 }
500 
501 #endif /* CONFIG_X86_64 */
502 
503 /*
504  * Workaround for K8 erratum #93 & buggy BIOS.
505  *
506  * BIOS SMM functions are required to use a specific workaround
507  * to avoid corruption of the 64bit RIP register on C stepping K8.
508  *
509  * A lot of BIOS that didn't get tested properly miss this.
510  *
511  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
512  * Try to work around it here.
513  *
514  * Note we only handle faults in kernel here.
515  * Does nothing on 32-bit.
516  */
517 static int is_errata93(struct pt_regs *regs, unsigned long address)
518 {
519 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
520 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
521 	    || boot_cpu_data.x86 != 0xf)
522 		return 0;
523 
524 	if (address != regs->ip)
525 		return 0;
526 
527 	if ((address >> 32) != 0)
528 		return 0;
529 
530 	address |= 0xffffffffUL << 32;
531 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
532 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
533 		printk_once(errata93_warning);
534 		regs->ip = address;
535 		return 1;
536 	}
537 #endif
538 	return 0;
539 }
540 
541 /*
542  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
543  * to illegal addresses >4GB.
544  *
545  * We catch this in the page fault handler because these addresses
546  * are not reachable. Just detect this case and return.  Any code
547  * segment in LDT is compatibility mode.
548  */
549 static int is_errata100(struct pt_regs *regs, unsigned long address)
550 {
551 #ifdef CONFIG_X86_64
552 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
553 		return 1;
554 #endif
555 	return 0;
556 }
557 
558 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
559 {
560 #ifdef CONFIG_X86_F00F_BUG
561 	unsigned long nr;
562 
563 	/*
564 	 * Pentium F0 0F C7 C8 bug workaround:
565 	 */
566 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
567 		nr = (address - idt_descr.address) >> 3;
568 
569 		if (nr == 6) {
570 			do_invalid_op(regs, 0);
571 			return 1;
572 		}
573 	}
574 #endif
575 	return 0;
576 }
577 
578 static const char nx_warning[] = KERN_CRIT
579 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
580 
581 static void
582 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
583 		unsigned long address)
584 {
585 	if (!oops_may_print())
586 		return;
587 
588 	if (error_code & PF_INSTR) {
589 		unsigned int level;
590 		pgd_t *pgd;
591 		pte_t *pte;
592 
593 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
594 		pgd += pgd_index(address);
595 
596 		pte = lookup_address_in_pgd(pgd, address, &level);
597 
598 		if (pte && pte_present(*pte) && !pte_exec(*pte))
599 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
600 	}
601 
602 	printk(KERN_ALERT "BUG: unable to handle kernel ");
603 	if (address < PAGE_SIZE)
604 		printk(KERN_CONT "NULL pointer dereference");
605 	else
606 		printk(KERN_CONT "paging request");
607 
608 	printk(KERN_CONT " at %p\n", (void *) address);
609 	printk(KERN_ALERT "IP:");
610 	printk_address(regs->ip);
611 
612 	dump_pagetable(address);
613 }
614 
615 static noinline void
616 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
617 	    unsigned long address)
618 {
619 	struct task_struct *tsk;
620 	unsigned long flags;
621 	int sig;
622 
623 	flags = oops_begin();
624 	tsk = current;
625 	sig = SIGKILL;
626 
627 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
628 	       tsk->comm, address);
629 	dump_pagetable(address);
630 
631 	tsk->thread.cr2		= address;
632 	tsk->thread.trap_nr	= X86_TRAP_PF;
633 	tsk->thread.error_code	= error_code;
634 
635 	if (__die("Bad pagetable", regs, error_code))
636 		sig = 0;
637 
638 	oops_end(flags, regs, sig);
639 }
640 
641 static noinline void
642 no_context(struct pt_regs *regs, unsigned long error_code,
643 	   unsigned long address, int signal, int si_code)
644 {
645 	struct task_struct *tsk = current;
646 	unsigned long *stackend;
647 	unsigned long flags;
648 	int sig;
649 
650 	/* Are we prepared to handle this kernel fault? */
651 	if (fixup_exception(regs)) {
652 		/*
653 		 * Any interrupt that takes a fault gets the fixup. This makes
654 		 * the below recursive fault logic only apply to a faults from
655 		 * task context.
656 		 */
657 		if (in_interrupt())
658 			return;
659 
660 		/*
661 		 * Per the above we're !in_interrupt(), aka. task context.
662 		 *
663 		 * In this case we need to make sure we're not recursively
664 		 * faulting through the emulate_vsyscall() logic.
665 		 */
666 		if (current_thread_info()->sig_on_uaccess_error && signal) {
667 			tsk->thread.trap_nr = X86_TRAP_PF;
668 			tsk->thread.error_code = error_code | PF_USER;
669 			tsk->thread.cr2 = address;
670 
671 			/* XXX: hwpoison faults will set the wrong code. */
672 			force_sig_info_fault(signal, si_code, address, tsk, 0);
673 		}
674 
675 		/*
676 		 * Barring that, we can do the fixup and be happy.
677 		 */
678 		return;
679 	}
680 
681 	/*
682 	 * 32-bit:
683 	 *
684 	 *   Valid to do another page fault here, because if this fault
685 	 *   had been triggered by is_prefetch fixup_exception would have
686 	 *   handled it.
687 	 *
688 	 * 64-bit:
689 	 *
690 	 *   Hall of shame of CPU/BIOS bugs.
691 	 */
692 	if (is_prefetch(regs, error_code, address))
693 		return;
694 
695 	if (is_errata93(regs, address))
696 		return;
697 
698 	/*
699 	 * Oops. The kernel tried to access some bad page. We'll have to
700 	 * terminate things with extreme prejudice:
701 	 */
702 	flags = oops_begin();
703 
704 	show_fault_oops(regs, error_code, address);
705 
706 	stackend = end_of_stack(tsk);
707 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
708 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
709 
710 	tsk->thread.cr2		= address;
711 	tsk->thread.trap_nr	= X86_TRAP_PF;
712 	tsk->thread.error_code	= error_code;
713 
714 	sig = SIGKILL;
715 	if (__die("Oops", regs, error_code))
716 		sig = 0;
717 
718 	/* Executive summary in case the body of the oops scrolled away */
719 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
720 
721 	oops_end(flags, regs, sig);
722 }
723 
724 /*
725  * Print out info about fatal segfaults, if the show_unhandled_signals
726  * sysctl is set:
727  */
728 static inline void
729 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
730 		unsigned long address, struct task_struct *tsk)
731 {
732 	if (!unhandled_signal(tsk, SIGSEGV))
733 		return;
734 
735 	if (!printk_ratelimit())
736 		return;
737 
738 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
739 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
740 		tsk->comm, task_pid_nr(tsk), address,
741 		(void *)regs->ip, (void *)regs->sp, error_code);
742 
743 	print_vma_addr(KERN_CONT " in ", regs->ip);
744 
745 	printk(KERN_CONT "\n");
746 }
747 
748 static void
749 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
750 		       unsigned long address, int si_code)
751 {
752 	struct task_struct *tsk = current;
753 
754 	/* User mode accesses just cause a SIGSEGV */
755 	if (error_code & PF_USER) {
756 		/*
757 		 * It's possible to have interrupts off here:
758 		 */
759 		local_irq_enable();
760 
761 		/*
762 		 * Valid to do another page fault here because this one came
763 		 * from user space:
764 		 */
765 		if (is_prefetch(regs, error_code, address))
766 			return;
767 
768 		if (is_errata100(regs, address))
769 			return;
770 
771 #ifdef CONFIG_X86_64
772 		/*
773 		 * Instruction fetch faults in the vsyscall page might need
774 		 * emulation.
775 		 */
776 		if (unlikely((error_code & PF_INSTR) &&
777 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
778 			if (emulate_vsyscall(regs, address))
779 				return;
780 		}
781 #endif
782 		/* Kernel addresses are always protection faults: */
783 		if (address >= TASK_SIZE)
784 			error_code |= PF_PROT;
785 
786 		if (likely(show_unhandled_signals))
787 			show_signal_msg(regs, error_code, address, tsk);
788 
789 		tsk->thread.cr2		= address;
790 		tsk->thread.error_code	= error_code;
791 		tsk->thread.trap_nr	= X86_TRAP_PF;
792 
793 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
794 
795 		return;
796 	}
797 
798 	if (is_f00f_bug(regs, address))
799 		return;
800 
801 	no_context(regs, error_code, address, SIGSEGV, si_code);
802 }
803 
804 static noinline void
805 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
806 		     unsigned long address)
807 {
808 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
809 }
810 
811 static void
812 __bad_area(struct pt_regs *regs, unsigned long error_code,
813 	   unsigned long address, int si_code)
814 {
815 	struct mm_struct *mm = current->mm;
816 
817 	/*
818 	 * Something tried to access memory that isn't in our memory map..
819 	 * Fix it, but check if it's kernel or user first..
820 	 */
821 	up_read(&mm->mmap_sem);
822 
823 	__bad_area_nosemaphore(regs, error_code, address, si_code);
824 }
825 
826 static noinline void
827 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
828 {
829 	__bad_area(regs, error_code, address, SEGV_MAPERR);
830 }
831 
832 static noinline void
833 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
834 		      unsigned long address)
835 {
836 	__bad_area(regs, error_code, address, SEGV_ACCERR);
837 }
838 
839 static void
840 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
841 	  unsigned int fault)
842 {
843 	struct task_struct *tsk = current;
844 	struct mm_struct *mm = tsk->mm;
845 	int code = BUS_ADRERR;
846 
847 	up_read(&mm->mmap_sem);
848 
849 	/* Kernel mode? Handle exceptions or die: */
850 	if (!(error_code & PF_USER)) {
851 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
852 		return;
853 	}
854 
855 	/* User-space => ok to do another page fault: */
856 	if (is_prefetch(regs, error_code, address))
857 		return;
858 
859 	tsk->thread.cr2		= address;
860 	tsk->thread.error_code	= error_code;
861 	tsk->thread.trap_nr	= X86_TRAP_PF;
862 
863 #ifdef CONFIG_MEMORY_FAILURE
864 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
865 		printk(KERN_ERR
866 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
867 			tsk->comm, tsk->pid, address);
868 		code = BUS_MCEERR_AR;
869 	}
870 #endif
871 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
872 }
873 
874 static noinline void
875 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
876 	       unsigned long address, unsigned int fault)
877 {
878 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
879 		up_read(&current->mm->mmap_sem);
880 		no_context(regs, error_code, address, 0, 0);
881 		return;
882 	}
883 
884 	if (fault & VM_FAULT_OOM) {
885 		/* Kernel mode? Handle exceptions or die: */
886 		if (!(error_code & PF_USER)) {
887 			up_read(&current->mm->mmap_sem);
888 			no_context(regs, error_code, address,
889 				   SIGSEGV, SEGV_MAPERR);
890 			return;
891 		}
892 
893 		up_read(&current->mm->mmap_sem);
894 
895 		/*
896 		 * We ran out of memory, call the OOM killer, and return the
897 		 * userspace (which will retry the fault, or kill us if we got
898 		 * oom-killed):
899 		 */
900 		pagefault_out_of_memory();
901 	} else {
902 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
903 			     VM_FAULT_HWPOISON_LARGE))
904 			do_sigbus(regs, error_code, address, fault);
905 		else
906 			BUG();
907 	}
908 }
909 
910 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
911 {
912 	if ((error_code & PF_WRITE) && !pte_write(*pte))
913 		return 0;
914 
915 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
916 		return 0;
917 
918 	return 1;
919 }
920 
921 /*
922  * Handle a spurious fault caused by a stale TLB entry.
923  *
924  * This allows us to lazily refresh the TLB when increasing the
925  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
926  * eagerly is very expensive since that implies doing a full
927  * cross-processor TLB flush, even if no stale TLB entries exist
928  * on other processors.
929  *
930  * There are no security implications to leaving a stale TLB when
931  * increasing the permissions on a page.
932  */
933 static noinline int
934 spurious_fault(unsigned long error_code, unsigned long address)
935 {
936 	pgd_t *pgd;
937 	pud_t *pud;
938 	pmd_t *pmd;
939 	pte_t *pte;
940 	int ret;
941 
942 	/* Reserved-bit violation or user access to kernel space? */
943 	if (error_code & (PF_USER | PF_RSVD))
944 		return 0;
945 
946 	pgd = init_mm.pgd + pgd_index(address);
947 	if (!pgd_present(*pgd))
948 		return 0;
949 
950 	pud = pud_offset(pgd, address);
951 	if (!pud_present(*pud))
952 		return 0;
953 
954 	if (pud_large(*pud))
955 		return spurious_fault_check(error_code, (pte_t *) pud);
956 
957 	pmd = pmd_offset(pud, address);
958 	if (!pmd_present(*pmd))
959 		return 0;
960 
961 	if (pmd_large(*pmd))
962 		return spurious_fault_check(error_code, (pte_t *) pmd);
963 
964 	pte = pte_offset_kernel(pmd, address);
965 	if (!pte_present(*pte))
966 		return 0;
967 
968 	ret = spurious_fault_check(error_code, pte);
969 	if (!ret)
970 		return 0;
971 
972 	/*
973 	 * Make sure we have permissions in PMD.
974 	 * If not, then there's a bug in the page tables:
975 	 */
976 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
977 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
978 
979 	return ret;
980 }
981 NOKPROBE_SYMBOL(spurious_fault);
982 
983 int show_unhandled_signals = 1;
984 
985 static inline int
986 access_error(unsigned long error_code, struct vm_area_struct *vma)
987 {
988 	if (error_code & PF_WRITE) {
989 		/* write, present and write, not present: */
990 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
991 			return 1;
992 		return 0;
993 	}
994 
995 	/* read, present: */
996 	if (unlikely(error_code & PF_PROT))
997 		return 1;
998 
999 	/* read, not present: */
1000 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1001 		return 1;
1002 
1003 	return 0;
1004 }
1005 
1006 static int fault_in_kernel_space(unsigned long address)
1007 {
1008 	return address >= TASK_SIZE_MAX;
1009 }
1010 
1011 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1012 {
1013 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1014 		return false;
1015 
1016 	if (!static_cpu_has(X86_FEATURE_SMAP))
1017 		return false;
1018 
1019 	if (error_code & PF_USER)
1020 		return false;
1021 
1022 	if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 /*
1029  * This routine handles page faults.  It determines the address,
1030  * and the problem, and then passes it off to one of the appropriate
1031  * routines.
1032  *
1033  * This function must have noinline because both callers
1034  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1035  * guarantees there's a function trace entry.
1036  */
1037 static noinline void
1038 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1039 		unsigned long address)
1040 {
1041 	struct vm_area_struct *vma;
1042 	struct task_struct *tsk;
1043 	struct mm_struct *mm;
1044 	int fault;
1045 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1046 
1047 	tsk = current;
1048 	mm = tsk->mm;
1049 
1050 	/*
1051 	 * Detect and handle instructions that would cause a page fault for
1052 	 * both a tracked kernel page and a userspace page.
1053 	 */
1054 	if (kmemcheck_active(regs))
1055 		kmemcheck_hide(regs);
1056 	prefetchw(&mm->mmap_sem);
1057 
1058 	if (unlikely(kmmio_fault(regs, address)))
1059 		return;
1060 
1061 	/*
1062 	 * We fault-in kernel-space virtual memory on-demand. The
1063 	 * 'reference' page table is init_mm.pgd.
1064 	 *
1065 	 * NOTE! We MUST NOT take any locks for this case. We may
1066 	 * be in an interrupt or a critical region, and should
1067 	 * only copy the information from the master page table,
1068 	 * nothing more.
1069 	 *
1070 	 * This verifies that the fault happens in kernel space
1071 	 * (error_code & 4) == 0, and that the fault was not a
1072 	 * protection error (error_code & 9) == 0.
1073 	 */
1074 	if (unlikely(fault_in_kernel_space(address))) {
1075 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1076 			if (vmalloc_fault(address) >= 0)
1077 				return;
1078 
1079 			if (kmemcheck_fault(regs, address, error_code))
1080 				return;
1081 		}
1082 
1083 		/* Can handle a stale RO->RW TLB: */
1084 		if (spurious_fault(error_code, address))
1085 			return;
1086 
1087 		/* kprobes don't want to hook the spurious faults: */
1088 		if (kprobes_fault(regs))
1089 			return;
1090 		/*
1091 		 * Don't take the mm semaphore here. If we fixup a prefetch
1092 		 * fault we could otherwise deadlock:
1093 		 */
1094 		bad_area_nosemaphore(regs, error_code, address);
1095 
1096 		return;
1097 	}
1098 
1099 	/* kprobes don't want to hook the spurious faults: */
1100 	if (unlikely(kprobes_fault(regs)))
1101 		return;
1102 
1103 	if (unlikely(error_code & PF_RSVD))
1104 		pgtable_bad(regs, error_code, address);
1105 
1106 	if (unlikely(smap_violation(error_code, regs))) {
1107 		bad_area_nosemaphore(regs, error_code, address);
1108 		return;
1109 	}
1110 
1111 	/*
1112 	 * If we're in an interrupt, have no user context or are running
1113 	 * in an atomic region then we must not take the fault:
1114 	 */
1115 	if (unlikely(in_atomic() || !mm)) {
1116 		bad_area_nosemaphore(regs, error_code, address);
1117 		return;
1118 	}
1119 
1120 	/*
1121 	 * It's safe to allow irq's after cr2 has been saved and the
1122 	 * vmalloc fault has been handled.
1123 	 *
1124 	 * User-mode registers count as a user access even for any
1125 	 * potential system fault or CPU buglet:
1126 	 */
1127 	if (user_mode_vm(regs)) {
1128 		local_irq_enable();
1129 		error_code |= PF_USER;
1130 		flags |= FAULT_FLAG_USER;
1131 	} else {
1132 		if (regs->flags & X86_EFLAGS_IF)
1133 			local_irq_enable();
1134 	}
1135 
1136 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1137 
1138 	if (error_code & PF_WRITE)
1139 		flags |= FAULT_FLAG_WRITE;
1140 
1141 	/*
1142 	 * When running in the kernel we expect faults to occur only to
1143 	 * addresses in user space.  All other faults represent errors in
1144 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1145 	 * case of an erroneous fault occurring in a code path which already
1146 	 * holds mmap_sem we will deadlock attempting to validate the fault
1147 	 * against the address space.  Luckily the kernel only validly
1148 	 * references user space from well defined areas of code, which are
1149 	 * listed in the exceptions table.
1150 	 *
1151 	 * As the vast majority of faults will be valid we will only perform
1152 	 * the source reference check when there is a possibility of a
1153 	 * deadlock. Attempt to lock the address space, if we cannot we then
1154 	 * validate the source. If this is invalid we can skip the address
1155 	 * space check, thus avoiding the deadlock:
1156 	 */
1157 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1158 		if ((error_code & PF_USER) == 0 &&
1159 		    !search_exception_tables(regs->ip)) {
1160 			bad_area_nosemaphore(regs, error_code, address);
1161 			return;
1162 		}
1163 retry:
1164 		down_read(&mm->mmap_sem);
1165 	} else {
1166 		/*
1167 		 * The above down_read_trylock() might have succeeded in
1168 		 * which case we'll have missed the might_sleep() from
1169 		 * down_read():
1170 		 */
1171 		might_sleep();
1172 	}
1173 
1174 	vma = find_vma(mm, address);
1175 	if (unlikely(!vma)) {
1176 		bad_area(regs, error_code, address);
1177 		return;
1178 	}
1179 	if (likely(vma->vm_start <= address))
1180 		goto good_area;
1181 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1182 		bad_area(regs, error_code, address);
1183 		return;
1184 	}
1185 	if (error_code & PF_USER) {
1186 		/*
1187 		 * Accessing the stack below %sp is always a bug.
1188 		 * The large cushion allows instructions like enter
1189 		 * and pusha to work. ("enter $65535, $31" pushes
1190 		 * 32 pointers and then decrements %sp by 65535.)
1191 		 */
1192 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1193 			bad_area(regs, error_code, address);
1194 			return;
1195 		}
1196 	}
1197 	if (unlikely(expand_stack(vma, address))) {
1198 		bad_area(regs, error_code, address);
1199 		return;
1200 	}
1201 
1202 	/*
1203 	 * Ok, we have a good vm_area for this memory access, so
1204 	 * we can handle it..
1205 	 */
1206 good_area:
1207 	if (unlikely(access_error(error_code, vma))) {
1208 		bad_area_access_error(regs, error_code, address);
1209 		return;
1210 	}
1211 
1212 	/*
1213 	 * If for any reason at all we couldn't handle the fault,
1214 	 * make sure we exit gracefully rather than endlessly redo
1215 	 * the fault:
1216 	 */
1217 	fault = handle_mm_fault(mm, vma, address, flags);
1218 
1219 	/*
1220 	 * If we need to retry but a fatal signal is pending, handle the
1221 	 * signal first. We do not need to release the mmap_sem because it
1222 	 * would already be released in __lock_page_or_retry in mm/filemap.c.
1223 	 */
1224 	if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1225 		return;
1226 
1227 	if (unlikely(fault & VM_FAULT_ERROR)) {
1228 		mm_fault_error(regs, error_code, address, fault);
1229 		return;
1230 	}
1231 
1232 	/*
1233 	 * Major/minor page fault accounting is only done on the
1234 	 * initial attempt. If we go through a retry, it is extremely
1235 	 * likely that the page will be found in page cache at that point.
1236 	 */
1237 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1238 		if (fault & VM_FAULT_MAJOR) {
1239 			tsk->maj_flt++;
1240 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1241 				      regs, address);
1242 		} else {
1243 			tsk->min_flt++;
1244 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1245 				      regs, address);
1246 		}
1247 		if (fault & VM_FAULT_RETRY) {
1248 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1249 			 * of starvation. */
1250 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1251 			flags |= FAULT_FLAG_TRIED;
1252 			goto retry;
1253 		}
1254 	}
1255 
1256 	check_v8086_mode(regs, address, tsk);
1257 
1258 	up_read(&mm->mmap_sem);
1259 }
1260 NOKPROBE_SYMBOL(__do_page_fault);
1261 
1262 dotraplinkage void notrace
1263 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1264 {
1265 	unsigned long address = read_cr2(); /* Get the faulting address */
1266 	enum ctx_state prev_state;
1267 
1268 	/*
1269 	 * We must have this function tagged with __kprobes, notrace and call
1270 	 * read_cr2() before calling anything else. To avoid calling any kind
1271 	 * of tracing machinery before we've observed the CR2 value.
1272 	 *
1273 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1274 	 */
1275 
1276 	prev_state = exception_enter();
1277 	__do_page_fault(regs, error_code, address);
1278 	exception_exit(prev_state);
1279 }
1280 NOKPROBE_SYMBOL(do_page_fault);
1281 
1282 #ifdef CONFIG_TRACING
1283 static nokprobe_inline void
1284 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1285 			 unsigned long error_code)
1286 {
1287 	if (user_mode(regs))
1288 		trace_page_fault_user(address, regs, error_code);
1289 	else
1290 		trace_page_fault_kernel(address, regs, error_code);
1291 }
1292 
1293 dotraplinkage void notrace
1294 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1295 {
1296 	/*
1297 	 * The exception_enter and tracepoint processing could
1298 	 * trigger another page faults (user space callchain
1299 	 * reading) and destroy the original cr2 value, so read
1300 	 * the faulting address now.
1301 	 */
1302 	unsigned long address = read_cr2();
1303 	enum ctx_state prev_state;
1304 
1305 	prev_state = exception_enter();
1306 	trace_page_fault_entries(address, regs, error_code);
1307 	__do_page_fault(regs, error_code, address);
1308 	exception_exit(prev_state);
1309 }
1310 NOKPROBE_SYMBOL(trace_do_page_fault);
1311 #endif /* CONFIG_TRACING */
1312