xref: /openbmc/linux/arch/x86/mm/fault.c (revision c0e297dc)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8 #include <linux/module.h>		/* search_exception_table	*/
9 #include <linux/bootmem.h>		/* max_low_pfn			*/
10 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12 #include <linux/perf_event.h>		/* perf_sw_event		*/
13 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14 #include <linux/prefetch.h>		/* prefetchw			*/
15 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
17 
18 #include <asm/traps.h>			/* dotraplinkage, ...		*/
19 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
20 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
21 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
22 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
23 
24 #define CREATE_TRACE_POINTS
25 #include <asm/trace/exceptions.h>
26 
27 /*
28  * Page fault error code bits:
29  *
30  *   bit 0 ==	 0: no page found	1: protection fault
31  *   bit 1 ==	 0: read access		1: write access
32  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
33  *   bit 3 ==				1: use of reserved bit detected
34  *   bit 4 ==				1: fault was an instruction fetch
35  */
36 enum x86_pf_error_code {
37 
38 	PF_PROT		=		1 << 0,
39 	PF_WRITE	=		1 << 1,
40 	PF_USER		=		1 << 2,
41 	PF_RSVD		=		1 << 3,
42 	PF_INSTR	=		1 << 4,
43 };
44 
45 /*
46  * Returns 0 if mmiotrace is disabled, or if the fault is not
47  * handled by mmiotrace:
48  */
49 static nokprobe_inline int
50 kmmio_fault(struct pt_regs *regs, unsigned long addr)
51 {
52 	if (unlikely(is_kmmio_active()))
53 		if (kmmio_handler(regs, addr) == 1)
54 			return -1;
55 	return 0;
56 }
57 
58 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
59 {
60 	int ret = 0;
61 
62 	/* kprobe_running() needs smp_processor_id() */
63 	if (kprobes_built_in() && !user_mode(regs)) {
64 		preempt_disable();
65 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
66 			ret = 1;
67 		preempt_enable();
68 	}
69 
70 	return ret;
71 }
72 
73 /*
74  * Prefetch quirks:
75  *
76  * 32-bit mode:
77  *
78  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
79  *   Check that here and ignore it.
80  *
81  * 64-bit mode:
82  *
83  *   Sometimes the CPU reports invalid exceptions on prefetch.
84  *   Check that here and ignore it.
85  *
86  * Opcode checker based on code by Richard Brunner.
87  */
88 static inline int
89 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
90 		      unsigned char opcode, int *prefetch)
91 {
92 	unsigned char instr_hi = opcode & 0xf0;
93 	unsigned char instr_lo = opcode & 0x0f;
94 
95 	switch (instr_hi) {
96 	case 0x20:
97 	case 0x30:
98 		/*
99 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
100 		 * In X86_64 long mode, the CPU will signal invalid
101 		 * opcode if some of these prefixes are present so
102 		 * X86_64 will never get here anyway
103 		 */
104 		return ((instr_lo & 7) == 0x6);
105 #ifdef CONFIG_X86_64
106 	case 0x40:
107 		/*
108 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
109 		 * Need to figure out under what instruction mode the
110 		 * instruction was issued. Could check the LDT for lm,
111 		 * but for now it's good enough to assume that long
112 		 * mode only uses well known segments or kernel.
113 		 */
114 		return (!user_mode(regs) || user_64bit_mode(regs));
115 #endif
116 	case 0x60:
117 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
118 		return (instr_lo & 0xC) == 0x4;
119 	case 0xF0:
120 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
121 		return !instr_lo || (instr_lo>>1) == 1;
122 	case 0x00:
123 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
124 		if (probe_kernel_address(instr, opcode))
125 			return 0;
126 
127 		*prefetch = (instr_lo == 0xF) &&
128 			(opcode == 0x0D || opcode == 0x18);
129 		return 0;
130 	default:
131 		return 0;
132 	}
133 }
134 
135 static int
136 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
137 {
138 	unsigned char *max_instr;
139 	unsigned char *instr;
140 	int prefetch = 0;
141 
142 	/*
143 	 * If it was a exec (instruction fetch) fault on NX page, then
144 	 * do not ignore the fault:
145 	 */
146 	if (error_code & PF_INSTR)
147 		return 0;
148 
149 	instr = (void *)convert_ip_to_linear(current, regs);
150 	max_instr = instr + 15;
151 
152 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
153 		return 0;
154 
155 	while (instr < max_instr) {
156 		unsigned char opcode;
157 
158 		if (probe_kernel_address(instr, opcode))
159 			break;
160 
161 		instr++;
162 
163 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
164 			break;
165 	}
166 	return prefetch;
167 }
168 
169 static void
170 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
171 		     struct task_struct *tsk, int fault)
172 {
173 	unsigned lsb = 0;
174 	siginfo_t info;
175 
176 	info.si_signo	= si_signo;
177 	info.si_errno	= 0;
178 	info.si_code	= si_code;
179 	info.si_addr	= (void __user *)address;
180 	if (fault & VM_FAULT_HWPOISON_LARGE)
181 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 	if (fault & VM_FAULT_HWPOISON)
183 		lsb = PAGE_SHIFT;
184 	info.si_addr_lsb = lsb;
185 
186 	force_sig_info(si_signo, &info, tsk);
187 }
188 
189 DEFINE_SPINLOCK(pgd_lock);
190 LIST_HEAD(pgd_list);
191 
192 #ifdef CONFIG_X86_32
193 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
194 {
195 	unsigned index = pgd_index(address);
196 	pgd_t *pgd_k;
197 	pud_t *pud, *pud_k;
198 	pmd_t *pmd, *pmd_k;
199 
200 	pgd += index;
201 	pgd_k = init_mm.pgd + index;
202 
203 	if (!pgd_present(*pgd_k))
204 		return NULL;
205 
206 	/*
207 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
208 	 * and redundant with the set_pmd() on non-PAE. As would
209 	 * set_pud.
210 	 */
211 	pud = pud_offset(pgd, address);
212 	pud_k = pud_offset(pgd_k, address);
213 	if (!pud_present(*pud_k))
214 		return NULL;
215 
216 	pmd = pmd_offset(pud, address);
217 	pmd_k = pmd_offset(pud_k, address);
218 	if (!pmd_present(*pmd_k))
219 		return NULL;
220 
221 	if (!pmd_present(*pmd))
222 		set_pmd(pmd, *pmd_k);
223 	else
224 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
225 
226 	return pmd_k;
227 }
228 
229 void vmalloc_sync_all(void)
230 {
231 	unsigned long address;
232 
233 	if (SHARED_KERNEL_PMD)
234 		return;
235 
236 	for (address = VMALLOC_START & PMD_MASK;
237 	     address >= TASK_SIZE && address < FIXADDR_TOP;
238 	     address += PMD_SIZE) {
239 		struct page *page;
240 
241 		spin_lock(&pgd_lock);
242 		list_for_each_entry(page, &pgd_list, lru) {
243 			spinlock_t *pgt_lock;
244 			pmd_t *ret;
245 
246 			/* the pgt_lock only for Xen */
247 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
248 
249 			spin_lock(pgt_lock);
250 			ret = vmalloc_sync_one(page_address(page), address);
251 			spin_unlock(pgt_lock);
252 
253 			if (!ret)
254 				break;
255 		}
256 		spin_unlock(&pgd_lock);
257 	}
258 }
259 
260 /*
261  * 32-bit:
262  *
263  *   Handle a fault on the vmalloc or module mapping area
264  */
265 static noinline int vmalloc_fault(unsigned long address)
266 {
267 	unsigned long pgd_paddr;
268 	pmd_t *pmd_k;
269 	pte_t *pte_k;
270 
271 	/* Make sure we are in vmalloc area: */
272 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
273 		return -1;
274 
275 	WARN_ON_ONCE(in_nmi());
276 
277 	/*
278 	 * Synchronize this task's top level page-table
279 	 * with the 'reference' page table.
280 	 *
281 	 * Do _not_ use "current" here. We might be inside
282 	 * an interrupt in the middle of a task switch..
283 	 */
284 	pgd_paddr = read_cr3();
285 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
286 	if (!pmd_k)
287 		return -1;
288 
289 	pte_k = pte_offset_kernel(pmd_k, address);
290 	if (!pte_present(*pte_k))
291 		return -1;
292 
293 	return 0;
294 }
295 NOKPROBE_SYMBOL(vmalloc_fault);
296 
297 /*
298  * Did it hit the DOS screen memory VA from vm86 mode?
299  */
300 static inline void
301 check_v8086_mode(struct pt_regs *regs, unsigned long address,
302 		 struct task_struct *tsk)
303 {
304 	unsigned long bit;
305 
306 	if (!v8086_mode(regs))
307 		return;
308 
309 	bit = (address - 0xA0000) >> PAGE_SHIFT;
310 	if (bit < 32)
311 		tsk->thread.screen_bitmap |= 1 << bit;
312 }
313 
314 static bool low_pfn(unsigned long pfn)
315 {
316 	return pfn < max_low_pfn;
317 }
318 
319 static void dump_pagetable(unsigned long address)
320 {
321 	pgd_t *base = __va(read_cr3());
322 	pgd_t *pgd = &base[pgd_index(address)];
323 	pmd_t *pmd;
324 	pte_t *pte;
325 
326 #ifdef CONFIG_X86_PAE
327 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
328 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
329 		goto out;
330 #endif
331 	pmd = pmd_offset(pud_offset(pgd, address), address);
332 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
333 
334 	/*
335 	 * We must not directly access the pte in the highpte
336 	 * case if the page table is located in highmem.
337 	 * And let's rather not kmap-atomic the pte, just in case
338 	 * it's allocated already:
339 	 */
340 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
341 		goto out;
342 
343 	pte = pte_offset_kernel(pmd, address);
344 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
345 out:
346 	printk("\n");
347 }
348 
349 #else /* CONFIG_X86_64: */
350 
351 void vmalloc_sync_all(void)
352 {
353 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
354 }
355 
356 /*
357  * 64-bit:
358  *
359  *   Handle a fault on the vmalloc area
360  *
361  * This assumes no large pages in there.
362  */
363 static noinline int vmalloc_fault(unsigned long address)
364 {
365 	pgd_t *pgd, *pgd_ref;
366 	pud_t *pud, *pud_ref;
367 	pmd_t *pmd, *pmd_ref;
368 	pte_t *pte, *pte_ref;
369 
370 	/* Make sure we are in vmalloc area: */
371 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
372 		return -1;
373 
374 	WARN_ON_ONCE(in_nmi());
375 
376 	/*
377 	 * Copy kernel mappings over when needed. This can also
378 	 * happen within a race in page table update. In the later
379 	 * case just flush:
380 	 */
381 	pgd = pgd_offset(current->active_mm, address);
382 	pgd_ref = pgd_offset_k(address);
383 	if (pgd_none(*pgd_ref))
384 		return -1;
385 
386 	if (pgd_none(*pgd)) {
387 		set_pgd(pgd, *pgd_ref);
388 		arch_flush_lazy_mmu_mode();
389 	} else {
390 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
391 	}
392 
393 	/*
394 	 * Below here mismatches are bugs because these lower tables
395 	 * are shared:
396 	 */
397 
398 	pud = pud_offset(pgd, address);
399 	pud_ref = pud_offset(pgd_ref, address);
400 	if (pud_none(*pud_ref))
401 		return -1;
402 
403 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
404 		BUG();
405 
406 	pmd = pmd_offset(pud, address);
407 	pmd_ref = pmd_offset(pud_ref, address);
408 	if (pmd_none(*pmd_ref))
409 		return -1;
410 
411 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
412 		BUG();
413 
414 	pte_ref = pte_offset_kernel(pmd_ref, address);
415 	if (!pte_present(*pte_ref))
416 		return -1;
417 
418 	pte = pte_offset_kernel(pmd, address);
419 
420 	/*
421 	 * Don't use pte_page here, because the mappings can point
422 	 * outside mem_map, and the NUMA hash lookup cannot handle
423 	 * that:
424 	 */
425 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
426 		BUG();
427 
428 	return 0;
429 }
430 NOKPROBE_SYMBOL(vmalloc_fault);
431 
432 #ifdef CONFIG_CPU_SUP_AMD
433 static const char errata93_warning[] =
434 KERN_ERR
435 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
436 "******* Working around it, but it may cause SEGVs or burn power.\n"
437 "******* Please consider a BIOS update.\n"
438 "******* Disabling USB legacy in the BIOS may also help.\n";
439 #endif
440 
441 /*
442  * No vm86 mode in 64-bit mode:
443  */
444 static inline void
445 check_v8086_mode(struct pt_regs *regs, unsigned long address,
446 		 struct task_struct *tsk)
447 {
448 }
449 
450 static int bad_address(void *p)
451 {
452 	unsigned long dummy;
453 
454 	return probe_kernel_address((unsigned long *)p, dummy);
455 }
456 
457 static void dump_pagetable(unsigned long address)
458 {
459 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
460 	pgd_t *pgd = base + pgd_index(address);
461 	pud_t *pud;
462 	pmd_t *pmd;
463 	pte_t *pte;
464 
465 	if (bad_address(pgd))
466 		goto bad;
467 
468 	printk("PGD %lx ", pgd_val(*pgd));
469 
470 	if (!pgd_present(*pgd))
471 		goto out;
472 
473 	pud = pud_offset(pgd, address);
474 	if (bad_address(pud))
475 		goto bad;
476 
477 	printk("PUD %lx ", pud_val(*pud));
478 	if (!pud_present(*pud) || pud_large(*pud))
479 		goto out;
480 
481 	pmd = pmd_offset(pud, address);
482 	if (bad_address(pmd))
483 		goto bad;
484 
485 	printk("PMD %lx ", pmd_val(*pmd));
486 	if (!pmd_present(*pmd) || pmd_large(*pmd))
487 		goto out;
488 
489 	pte = pte_offset_kernel(pmd, address);
490 	if (bad_address(pte))
491 		goto bad;
492 
493 	printk("PTE %lx", pte_val(*pte));
494 out:
495 	printk("\n");
496 	return;
497 bad:
498 	printk("BAD\n");
499 }
500 
501 #endif /* CONFIG_X86_64 */
502 
503 /*
504  * Workaround for K8 erratum #93 & buggy BIOS.
505  *
506  * BIOS SMM functions are required to use a specific workaround
507  * to avoid corruption of the 64bit RIP register on C stepping K8.
508  *
509  * A lot of BIOS that didn't get tested properly miss this.
510  *
511  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
512  * Try to work around it here.
513  *
514  * Note we only handle faults in kernel here.
515  * Does nothing on 32-bit.
516  */
517 static int is_errata93(struct pt_regs *regs, unsigned long address)
518 {
519 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
520 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
521 	    || boot_cpu_data.x86 != 0xf)
522 		return 0;
523 
524 	if (address != regs->ip)
525 		return 0;
526 
527 	if ((address >> 32) != 0)
528 		return 0;
529 
530 	address |= 0xffffffffUL << 32;
531 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
532 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
533 		printk_once(errata93_warning);
534 		regs->ip = address;
535 		return 1;
536 	}
537 #endif
538 	return 0;
539 }
540 
541 /*
542  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
543  * to illegal addresses >4GB.
544  *
545  * We catch this in the page fault handler because these addresses
546  * are not reachable. Just detect this case and return.  Any code
547  * segment in LDT is compatibility mode.
548  */
549 static int is_errata100(struct pt_regs *regs, unsigned long address)
550 {
551 #ifdef CONFIG_X86_64
552 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
553 		return 1;
554 #endif
555 	return 0;
556 }
557 
558 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
559 {
560 #ifdef CONFIG_X86_F00F_BUG
561 	unsigned long nr;
562 
563 	/*
564 	 * Pentium F0 0F C7 C8 bug workaround:
565 	 */
566 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
567 		nr = (address - idt_descr.address) >> 3;
568 
569 		if (nr == 6) {
570 			do_invalid_op(regs, 0);
571 			return 1;
572 		}
573 	}
574 #endif
575 	return 0;
576 }
577 
578 static const char nx_warning[] = KERN_CRIT
579 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
580 static const char smep_warning[] = KERN_CRIT
581 "unable to execute userspace code (SMEP?) (uid: %d)\n";
582 
583 static void
584 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
585 		unsigned long address)
586 {
587 	if (!oops_may_print())
588 		return;
589 
590 	if (error_code & PF_INSTR) {
591 		unsigned int level;
592 		pgd_t *pgd;
593 		pte_t *pte;
594 
595 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
596 		pgd += pgd_index(address);
597 
598 		pte = lookup_address_in_pgd(pgd, address, &level);
599 
600 		if (pte && pte_present(*pte) && !pte_exec(*pte))
601 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
602 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
603 				(pgd_flags(*pgd) & _PAGE_USER) &&
604 				(__read_cr4() & X86_CR4_SMEP))
605 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
606 	}
607 
608 	printk(KERN_ALERT "BUG: unable to handle kernel ");
609 	if (address < PAGE_SIZE)
610 		printk(KERN_CONT "NULL pointer dereference");
611 	else
612 		printk(KERN_CONT "paging request");
613 
614 	printk(KERN_CONT " at %p\n", (void *) address);
615 	printk(KERN_ALERT "IP:");
616 	printk_address(regs->ip);
617 
618 	dump_pagetable(address);
619 }
620 
621 static noinline void
622 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
623 	    unsigned long address)
624 {
625 	struct task_struct *tsk;
626 	unsigned long flags;
627 	int sig;
628 
629 	flags = oops_begin();
630 	tsk = current;
631 	sig = SIGKILL;
632 
633 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
634 	       tsk->comm, address);
635 	dump_pagetable(address);
636 
637 	tsk->thread.cr2		= address;
638 	tsk->thread.trap_nr	= X86_TRAP_PF;
639 	tsk->thread.error_code	= error_code;
640 
641 	if (__die("Bad pagetable", regs, error_code))
642 		sig = 0;
643 
644 	oops_end(flags, regs, sig);
645 }
646 
647 static noinline void
648 no_context(struct pt_regs *regs, unsigned long error_code,
649 	   unsigned long address, int signal, int si_code)
650 {
651 	struct task_struct *tsk = current;
652 	unsigned long flags;
653 	int sig;
654 
655 	/* Are we prepared to handle this kernel fault? */
656 	if (fixup_exception(regs)) {
657 		/*
658 		 * Any interrupt that takes a fault gets the fixup. This makes
659 		 * the below recursive fault logic only apply to a faults from
660 		 * task context.
661 		 */
662 		if (in_interrupt())
663 			return;
664 
665 		/*
666 		 * Per the above we're !in_interrupt(), aka. task context.
667 		 *
668 		 * In this case we need to make sure we're not recursively
669 		 * faulting through the emulate_vsyscall() logic.
670 		 */
671 		if (current_thread_info()->sig_on_uaccess_error && signal) {
672 			tsk->thread.trap_nr = X86_TRAP_PF;
673 			tsk->thread.error_code = error_code | PF_USER;
674 			tsk->thread.cr2 = address;
675 
676 			/* XXX: hwpoison faults will set the wrong code. */
677 			force_sig_info_fault(signal, si_code, address, tsk, 0);
678 		}
679 
680 		/*
681 		 * Barring that, we can do the fixup and be happy.
682 		 */
683 		return;
684 	}
685 
686 	/*
687 	 * 32-bit:
688 	 *
689 	 *   Valid to do another page fault here, because if this fault
690 	 *   had been triggered by is_prefetch fixup_exception would have
691 	 *   handled it.
692 	 *
693 	 * 64-bit:
694 	 *
695 	 *   Hall of shame of CPU/BIOS bugs.
696 	 */
697 	if (is_prefetch(regs, error_code, address))
698 		return;
699 
700 	if (is_errata93(regs, address))
701 		return;
702 
703 	/*
704 	 * Oops. The kernel tried to access some bad page. We'll have to
705 	 * terminate things with extreme prejudice:
706 	 */
707 	flags = oops_begin();
708 
709 	show_fault_oops(regs, error_code, address);
710 
711 	if (task_stack_end_corrupted(tsk))
712 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
713 
714 	tsk->thread.cr2		= address;
715 	tsk->thread.trap_nr	= X86_TRAP_PF;
716 	tsk->thread.error_code	= error_code;
717 
718 	sig = SIGKILL;
719 	if (__die("Oops", regs, error_code))
720 		sig = 0;
721 
722 	/* Executive summary in case the body of the oops scrolled away */
723 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
724 
725 	oops_end(flags, regs, sig);
726 }
727 
728 /*
729  * Print out info about fatal segfaults, if the show_unhandled_signals
730  * sysctl is set:
731  */
732 static inline void
733 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
734 		unsigned long address, struct task_struct *tsk)
735 {
736 	if (!unhandled_signal(tsk, SIGSEGV))
737 		return;
738 
739 	if (!printk_ratelimit())
740 		return;
741 
742 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
743 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
744 		tsk->comm, task_pid_nr(tsk), address,
745 		(void *)regs->ip, (void *)regs->sp, error_code);
746 
747 	print_vma_addr(KERN_CONT " in ", regs->ip);
748 
749 	printk(KERN_CONT "\n");
750 }
751 
752 static void
753 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
754 		       unsigned long address, int si_code)
755 {
756 	struct task_struct *tsk = current;
757 
758 	/* User mode accesses just cause a SIGSEGV */
759 	if (error_code & PF_USER) {
760 		/*
761 		 * It's possible to have interrupts off here:
762 		 */
763 		local_irq_enable();
764 
765 		/*
766 		 * Valid to do another page fault here because this one came
767 		 * from user space:
768 		 */
769 		if (is_prefetch(regs, error_code, address))
770 			return;
771 
772 		if (is_errata100(regs, address))
773 			return;
774 
775 #ifdef CONFIG_X86_64
776 		/*
777 		 * Instruction fetch faults in the vsyscall page might need
778 		 * emulation.
779 		 */
780 		if (unlikely((error_code & PF_INSTR) &&
781 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
782 			if (emulate_vsyscall(regs, address))
783 				return;
784 		}
785 #endif
786 		/* Kernel addresses are always protection faults: */
787 		if (address >= TASK_SIZE)
788 			error_code |= PF_PROT;
789 
790 		if (likely(show_unhandled_signals))
791 			show_signal_msg(regs, error_code, address, tsk);
792 
793 		tsk->thread.cr2		= address;
794 		tsk->thread.error_code	= error_code;
795 		tsk->thread.trap_nr	= X86_TRAP_PF;
796 
797 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
798 
799 		return;
800 	}
801 
802 	if (is_f00f_bug(regs, address))
803 		return;
804 
805 	no_context(regs, error_code, address, SIGSEGV, si_code);
806 }
807 
808 static noinline void
809 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
810 		     unsigned long address)
811 {
812 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
813 }
814 
815 static void
816 __bad_area(struct pt_regs *regs, unsigned long error_code,
817 	   unsigned long address, int si_code)
818 {
819 	struct mm_struct *mm = current->mm;
820 
821 	/*
822 	 * Something tried to access memory that isn't in our memory map..
823 	 * Fix it, but check if it's kernel or user first..
824 	 */
825 	up_read(&mm->mmap_sem);
826 
827 	__bad_area_nosemaphore(regs, error_code, address, si_code);
828 }
829 
830 static noinline void
831 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
832 {
833 	__bad_area(regs, error_code, address, SEGV_MAPERR);
834 }
835 
836 static noinline void
837 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
838 		      unsigned long address)
839 {
840 	__bad_area(regs, error_code, address, SEGV_ACCERR);
841 }
842 
843 static void
844 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
845 	  unsigned int fault)
846 {
847 	struct task_struct *tsk = current;
848 	int code = BUS_ADRERR;
849 
850 	/* Kernel mode? Handle exceptions or die: */
851 	if (!(error_code & PF_USER)) {
852 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
853 		return;
854 	}
855 
856 	/* User-space => ok to do another page fault: */
857 	if (is_prefetch(regs, error_code, address))
858 		return;
859 
860 	tsk->thread.cr2		= address;
861 	tsk->thread.error_code	= error_code;
862 	tsk->thread.trap_nr	= X86_TRAP_PF;
863 
864 #ifdef CONFIG_MEMORY_FAILURE
865 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
866 		printk(KERN_ERR
867 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
868 			tsk->comm, tsk->pid, address);
869 		code = BUS_MCEERR_AR;
870 	}
871 #endif
872 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
873 }
874 
875 static noinline void
876 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
877 	       unsigned long address, unsigned int fault)
878 {
879 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
880 		no_context(regs, error_code, address, 0, 0);
881 		return;
882 	}
883 
884 	if (fault & VM_FAULT_OOM) {
885 		/* Kernel mode? Handle exceptions or die: */
886 		if (!(error_code & PF_USER)) {
887 			no_context(regs, error_code, address,
888 				   SIGSEGV, SEGV_MAPERR);
889 			return;
890 		}
891 
892 		/*
893 		 * We ran out of memory, call the OOM killer, and return the
894 		 * userspace (which will retry the fault, or kill us if we got
895 		 * oom-killed):
896 		 */
897 		pagefault_out_of_memory();
898 	} else {
899 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
900 			     VM_FAULT_HWPOISON_LARGE))
901 			do_sigbus(regs, error_code, address, fault);
902 		else if (fault & VM_FAULT_SIGSEGV)
903 			bad_area_nosemaphore(regs, error_code, address);
904 		else
905 			BUG();
906 	}
907 }
908 
909 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
910 {
911 	if ((error_code & PF_WRITE) && !pte_write(*pte))
912 		return 0;
913 
914 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
915 		return 0;
916 
917 	return 1;
918 }
919 
920 /*
921  * Handle a spurious fault caused by a stale TLB entry.
922  *
923  * This allows us to lazily refresh the TLB when increasing the
924  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
925  * eagerly is very expensive since that implies doing a full
926  * cross-processor TLB flush, even if no stale TLB entries exist
927  * on other processors.
928  *
929  * Spurious faults may only occur if the TLB contains an entry with
930  * fewer permission than the page table entry.  Non-present (P = 0)
931  * and reserved bit (R = 1) faults are never spurious.
932  *
933  * There are no security implications to leaving a stale TLB when
934  * increasing the permissions on a page.
935  *
936  * Returns non-zero if a spurious fault was handled, zero otherwise.
937  *
938  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
939  * (Optional Invalidation).
940  */
941 static noinline int
942 spurious_fault(unsigned long error_code, unsigned long address)
943 {
944 	pgd_t *pgd;
945 	pud_t *pud;
946 	pmd_t *pmd;
947 	pte_t *pte;
948 	int ret;
949 
950 	/*
951 	 * Only writes to RO or instruction fetches from NX may cause
952 	 * spurious faults.
953 	 *
954 	 * These could be from user or supervisor accesses but the TLB
955 	 * is only lazily flushed after a kernel mapping protection
956 	 * change, so user accesses are not expected to cause spurious
957 	 * faults.
958 	 */
959 	if (error_code != (PF_WRITE | PF_PROT)
960 	    && error_code != (PF_INSTR | PF_PROT))
961 		return 0;
962 
963 	pgd = init_mm.pgd + pgd_index(address);
964 	if (!pgd_present(*pgd))
965 		return 0;
966 
967 	pud = pud_offset(pgd, address);
968 	if (!pud_present(*pud))
969 		return 0;
970 
971 	if (pud_large(*pud))
972 		return spurious_fault_check(error_code, (pte_t *) pud);
973 
974 	pmd = pmd_offset(pud, address);
975 	if (!pmd_present(*pmd))
976 		return 0;
977 
978 	if (pmd_large(*pmd))
979 		return spurious_fault_check(error_code, (pte_t *) pmd);
980 
981 	pte = pte_offset_kernel(pmd, address);
982 	if (!pte_present(*pte))
983 		return 0;
984 
985 	ret = spurious_fault_check(error_code, pte);
986 	if (!ret)
987 		return 0;
988 
989 	/*
990 	 * Make sure we have permissions in PMD.
991 	 * If not, then there's a bug in the page tables:
992 	 */
993 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
994 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
995 
996 	return ret;
997 }
998 NOKPROBE_SYMBOL(spurious_fault);
999 
1000 int show_unhandled_signals = 1;
1001 
1002 static inline int
1003 access_error(unsigned long error_code, struct vm_area_struct *vma)
1004 {
1005 	if (error_code & PF_WRITE) {
1006 		/* write, present and write, not present: */
1007 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1008 			return 1;
1009 		return 0;
1010 	}
1011 
1012 	/* read, present: */
1013 	if (unlikely(error_code & PF_PROT))
1014 		return 1;
1015 
1016 	/* read, not present: */
1017 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1018 		return 1;
1019 
1020 	return 0;
1021 }
1022 
1023 static int fault_in_kernel_space(unsigned long address)
1024 {
1025 	return address >= TASK_SIZE_MAX;
1026 }
1027 
1028 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1029 {
1030 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1031 		return false;
1032 
1033 	if (!static_cpu_has(X86_FEATURE_SMAP))
1034 		return false;
1035 
1036 	if (error_code & PF_USER)
1037 		return false;
1038 
1039 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1040 		return false;
1041 
1042 	return true;
1043 }
1044 
1045 /*
1046  * This routine handles page faults.  It determines the address,
1047  * and the problem, and then passes it off to one of the appropriate
1048  * routines.
1049  *
1050  * This function must have noinline because both callers
1051  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1052  * guarantees there's a function trace entry.
1053  */
1054 static noinline void
1055 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1056 		unsigned long address)
1057 {
1058 	struct vm_area_struct *vma;
1059 	struct task_struct *tsk;
1060 	struct mm_struct *mm;
1061 	int fault, major = 0;
1062 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1063 
1064 	tsk = current;
1065 	mm = tsk->mm;
1066 
1067 	/*
1068 	 * Detect and handle instructions that would cause a page fault for
1069 	 * both a tracked kernel page and a userspace page.
1070 	 */
1071 	if (kmemcheck_active(regs))
1072 		kmemcheck_hide(regs);
1073 	prefetchw(&mm->mmap_sem);
1074 
1075 	if (unlikely(kmmio_fault(regs, address)))
1076 		return;
1077 
1078 	/*
1079 	 * We fault-in kernel-space virtual memory on-demand. The
1080 	 * 'reference' page table is init_mm.pgd.
1081 	 *
1082 	 * NOTE! We MUST NOT take any locks for this case. We may
1083 	 * be in an interrupt or a critical region, and should
1084 	 * only copy the information from the master page table,
1085 	 * nothing more.
1086 	 *
1087 	 * This verifies that the fault happens in kernel space
1088 	 * (error_code & 4) == 0, and that the fault was not a
1089 	 * protection error (error_code & 9) == 0.
1090 	 */
1091 	if (unlikely(fault_in_kernel_space(address))) {
1092 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1093 			if (vmalloc_fault(address) >= 0)
1094 				return;
1095 
1096 			if (kmemcheck_fault(regs, address, error_code))
1097 				return;
1098 		}
1099 
1100 		/* Can handle a stale RO->RW TLB: */
1101 		if (spurious_fault(error_code, address))
1102 			return;
1103 
1104 		/* kprobes don't want to hook the spurious faults: */
1105 		if (kprobes_fault(regs))
1106 			return;
1107 		/*
1108 		 * Don't take the mm semaphore here. If we fixup a prefetch
1109 		 * fault we could otherwise deadlock:
1110 		 */
1111 		bad_area_nosemaphore(regs, error_code, address);
1112 
1113 		return;
1114 	}
1115 
1116 	/* kprobes don't want to hook the spurious faults: */
1117 	if (unlikely(kprobes_fault(regs)))
1118 		return;
1119 
1120 	if (unlikely(error_code & PF_RSVD))
1121 		pgtable_bad(regs, error_code, address);
1122 
1123 	if (unlikely(smap_violation(error_code, regs))) {
1124 		bad_area_nosemaphore(regs, error_code, address);
1125 		return;
1126 	}
1127 
1128 	/*
1129 	 * If we're in an interrupt, have no user context or are running
1130 	 * in a region with pagefaults disabled then we must not take the fault
1131 	 */
1132 	if (unlikely(faulthandler_disabled() || !mm)) {
1133 		bad_area_nosemaphore(regs, error_code, address);
1134 		return;
1135 	}
1136 
1137 	/*
1138 	 * It's safe to allow irq's after cr2 has been saved and the
1139 	 * vmalloc fault has been handled.
1140 	 *
1141 	 * User-mode registers count as a user access even for any
1142 	 * potential system fault or CPU buglet:
1143 	 */
1144 	if (user_mode(regs)) {
1145 		local_irq_enable();
1146 		error_code |= PF_USER;
1147 		flags |= FAULT_FLAG_USER;
1148 	} else {
1149 		if (regs->flags & X86_EFLAGS_IF)
1150 			local_irq_enable();
1151 	}
1152 
1153 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1154 
1155 	if (error_code & PF_WRITE)
1156 		flags |= FAULT_FLAG_WRITE;
1157 
1158 	/*
1159 	 * When running in the kernel we expect faults to occur only to
1160 	 * addresses in user space.  All other faults represent errors in
1161 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1162 	 * case of an erroneous fault occurring in a code path which already
1163 	 * holds mmap_sem we will deadlock attempting to validate the fault
1164 	 * against the address space.  Luckily the kernel only validly
1165 	 * references user space from well defined areas of code, which are
1166 	 * listed in the exceptions table.
1167 	 *
1168 	 * As the vast majority of faults will be valid we will only perform
1169 	 * the source reference check when there is a possibility of a
1170 	 * deadlock. Attempt to lock the address space, if we cannot we then
1171 	 * validate the source. If this is invalid we can skip the address
1172 	 * space check, thus avoiding the deadlock:
1173 	 */
1174 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1175 		if ((error_code & PF_USER) == 0 &&
1176 		    !search_exception_tables(regs->ip)) {
1177 			bad_area_nosemaphore(regs, error_code, address);
1178 			return;
1179 		}
1180 retry:
1181 		down_read(&mm->mmap_sem);
1182 	} else {
1183 		/*
1184 		 * The above down_read_trylock() might have succeeded in
1185 		 * which case we'll have missed the might_sleep() from
1186 		 * down_read():
1187 		 */
1188 		might_sleep();
1189 	}
1190 
1191 	vma = find_vma(mm, address);
1192 	if (unlikely(!vma)) {
1193 		bad_area(regs, error_code, address);
1194 		return;
1195 	}
1196 	if (likely(vma->vm_start <= address))
1197 		goto good_area;
1198 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1199 		bad_area(regs, error_code, address);
1200 		return;
1201 	}
1202 	if (error_code & PF_USER) {
1203 		/*
1204 		 * Accessing the stack below %sp is always a bug.
1205 		 * The large cushion allows instructions like enter
1206 		 * and pusha to work. ("enter $65535, $31" pushes
1207 		 * 32 pointers and then decrements %sp by 65535.)
1208 		 */
1209 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1210 			bad_area(regs, error_code, address);
1211 			return;
1212 		}
1213 	}
1214 	if (unlikely(expand_stack(vma, address))) {
1215 		bad_area(regs, error_code, address);
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * Ok, we have a good vm_area for this memory access, so
1221 	 * we can handle it..
1222 	 */
1223 good_area:
1224 	if (unlikely(access_error(error_code, vma))) {
1225 		bad_area_access_error(regs, error_code, address);
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * If for any reason at all we couldn't handle the fault,
1231 	 * make sure we exit gracefully rather than endlessly redo
1232 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1233 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1234 	 */
1235 	fault = handle_mm_fault(mm, vma, address, flags);
1236 	major |= fault & VM_FAULT_MAJOR;
1237 
1238 	/*
1239 	 * If we need to retry the mmap_sem has already been released,
1240 	 * and if there is a fatal signal pending there is no guarantee
1241 	 * that we made any progress. Handle this case first.
1242 	 */
1243 	if (unlikely(fault & VM_FAULT_RETRY)) {
1244 		/* Retry at most once */
1245 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1246 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1247 			flags |= FAULT_FLAG_TRIED;
1248 			if (!fatal_signal_pending(tsk))
1249 				goto retry;
1250 		}
1251 
1252 		/* User mode? Just return to handle the fatal exception */
1253 		if (flags & FAULT_FLAG_USER)
1254 			return;
1255 
1256 		/* Not returning to user mode? Handle exceptions or die: */
1257 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1258 		return;
1259 	}
1260 
1261 	up_read(&mm->mmap_sem);
1262 	if (unlikely(fault & VM_FAULT_ERROR)) {
1263 		mm_fault_error(regs, error_code, address, fault);
1264 		return;
1265 	}
1266 
1267 	/*
1268 	 * Major/minor page fault accounting. If any of the events
1269 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1270 	 */
1271 	if (major) {
1272 		tsk->maj_flt++;
1273 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1274 	} else {
1275 		tsk->min_flt++;
1276 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1277 	}
1278 
1279 	check_v8086_mode(regs, address, tsk);
1280 }
1281 NOKPROBE_SYMBOL(__do_page_fault);
1282 
1283 dotraplinkage void notrace
1284 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1285 {
1286 	unsigned long address = read_cr2(); /* Get the faulting address */
1287 	enum ctx_state prev_state;
1288 
1289 	/*
1290 	 * We must have this function tagged with __kprobes, notrace and call
1291 	 * read_cr2() before calling anything else. To avoid calling any kind
1292 	 * of tracing machinery before we've observed the CR2 value.
1293 	 *
1294 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1295 	 */
1296 
1297 	prev_state = exception_enter();
1298 	__do_page_fault(regs, error_code, address);
1299 	exception_exit(prev_state);
1300 }
1301 NOKPROBE_SYMBOL(do_page_fault);
1302 
1303 #ifdef CONFIG_TRACING
1304 static nokprobe_inline void
1305 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1306 			 unsigned long error_code)
1307 {
1308 	if (user_mode(regs))
1309 		trace_page_fault_user(address, regs, error_code);
1310 	else
1311 		trace_page_fault_kernel(address, regs, error_code);
1312 }
1313 
1314 dotraplinkage void notrace
1315 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1316 {
1317 	/*
1318 	 * The exception_enter and tracepoint processing could
1319 	 * trigger another page faults (user space callchain
1320 	 * reading) and destroy the original cr2 value, so read
1321 	 * the faulting address now.
1322 	 */
1323 	unsigned long address = read_cr2();
1324 	enum ctx_state prev_state;
1325 
1326 	prev_state = exception_enter();
1327 	trace_page_fault_entries(address, regs, error_code);
1328 	__do_page_fault(regs, error_code, address);
1329 	exception_exit(prev_state);
1330 }
1331 NOKPROBE_SYMBOL(trace_do_page_fault);
1332 #endif /* CONFIG_TRACING */
1333