xref: /openbmc/linux/arch/x86/mm/fault.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/interrupt.h>
7 #include <linux/mmiotrace.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/kprobes.h>
12 #include <linux/uaccess.h>
13 #include <linux/vmalloc.h>
14 #include <linux/vt_kern.h>
15 #include <linux/signal.h>
16 #include <linux/kernel.h>
17 #include <linux/ptrace.h>
18 #include <linux/string.h>
19 #include <linux/module.h>
20 #include <linux/kdebug.h>
21 #include <linux/errno.h>
22 #include <linux/magic.h>
23 #include <linux/sched.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/mman.h>
27 #include <linux/tty.h>
28 #include <linux/smp.h>
29 #include <linux/mm.h>
30 
31 #include <asm-generic/sections.h>
32 
33 #include <asm/tlbflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/segment.h>
36 #include <asm/system.h>
37 #include <asm/proto.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 
41 /*
42  * Page fault error code bits:
43  *
44  *   bit 0 ==	 0: no page found	1: protection fault
45  *   bit 1 ==	 0: read access		1: write access
46  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
47  *   bit 3 ==				1: use of reserved bit detected
48  *   bit 4 ==				1: fault was an instruction fetch
49  */
50 enum x86_pf_error_code {
51 
52 	PF_PROT		=		1 << 0,
53 	PF_WRITE	=		1 << 1,
54 	PF_USER		=		1 << 2,
55 	PF_RSVD		=		1 << 3,
56 	PF_INSTR	=		1 << 4,
57 };
58 
59 /*
60  * Returns 0 if mmiotrace is disabled, or if the fault is not
61  * handled by mmiotrace:
62  */
63 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
64 {
65 	if (unlikely(is_kmmio_active()))
66 		if (kmmio_handler(regs, addr) == 1)
67 			return -1;
68 	return 0;
69 }
70 
71 static inline int notify_page_fault(struct pt_regs *regs)
72 {
73 	int ret = 0;
74 
75 	/* kprobe_running() needs smp_processor_id() */
76 	if (kprobes_built_in() && !user_mode_vm(regs)) {
77 		preempt_disable();
78 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
79 			ret = 1;
80 		preempt_enable();
81 	}
82 
83 	return ret;
84 }
85 
86 /*
87  * Prefetch quirks:
88  *
89  * 32-bit mode:
90  *
91  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
92  *   Check that here and ignore it.
93  *
94  * 64-bit mode:
95  *
96  *   Sometimes the CPU reports invalid exceptions on prefetch.
97  *   Check that here and ignore it.
98  *
99  * Opcode checker based on code by Richard Brunner.
100  */
101 static inline int
102 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
103 		      unsigned char opcode, int *prefetch)
104 {
105 	unsigned char instr_hi = opcode & 0xf0;
106 	unsigned char instr_lo = opcode & 0x0f;
107 
108 	switch (instr_hi) {
109 	case 0x20:
110 	case 0x30:
111 		/*
112 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
113 		 * In X86_64 long mode, the CPU will signal invalid
114 		 * opcode if some of these prefixes are present so
115 		 * X86_64 will never get here anyway
116 		 */
117 		return ((instr_lo & 7) == 0x6);
118 #ifdef CONFIG_X86_64
119 	case 0x40:
120 		/*
121 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
122 		 * Need to figure out under what instruction mode the
123 		 * instruction was issued. Could check the LDT for lm,
124 		 * but for now it's good enough to assume that long
125 		 * mode only uses well known segments or kernel.
126 		 */
127 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
128 #endif
129 	case 0x60:
130 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
131 		return (instr_lo & 0xC) == 0x4;
132 	case 0xF0:
133 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
134 		return !instr_lo || (instr_lo>>1) == 1;
135 	case 0x00:
136 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
137 		if (probe_kernel_address(instr, opcode))
138 			return 0;
139 
140 		*prefetch = (instr_lo == 0xF) &&
141 			(opcode == 0x0D || opcode == 0x18);
142 		return 0;
143 	default:
144 		return 0;
145 	}
146 }
147 
148 static int
149 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
150 {
151 	unsigned char *max_instr;
152 	unsigned char *instr;
153 	int prefetch = 0;
154 
155 	/*
156 	 * If it was a exec (instruction fetch) fault on NX page, then
157 	 * do not ignore the fault:
158 	 */
159 	if (error_code & PF_INSTR)
160 		return 0;
161 
162 	instr = (void *)convert_ip_to_linear(current, regs);
163 	max_instr = instr + 15;
164 
165 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
166 		return 0;
167 
168 	while (instr < max_instr) {
169 		unsigned char opcode;
170 
171 		if (probe_kernel_address(instr, opcode))
172 			break;
173 
174 		instr++;
175 
176 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
177 			break;
178 	}
179 	return prefetch;
180 }
181 
182 static void
183 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
184 		     struct task_struct *tsk)
185 {
186 	siginfo_t info;
187 
188 	info.si_signo	= si_signo;
189 	info.si_errno	= 0;
190 	info.si_code	= si_code;
191 	info.si_addr	= (void __user *)address;
192 
193 	force_sig_info(si_signo, &info, tsk);
194 }
195 
196 DEFINE_SPINLOCK(pgd_lock);
197 LIST_HEAD(pgd_list);
198 
199 #ifdef CONFIG_X86_32
200 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
201 {
202 	unsigned index = pgd_index(address);
203 	pgd_t *pgd_k;
204 	pud_t *pud, *pud_k;
205 	pmd_t *pmd, *pmd_k;
206 
207 	pgd += index;
208 	pgd_k = init_mm.pgd + index;
209 
210 	if (!pgd_present(*pgd_k))
211 		return NULL;
212 
213 	/*
214 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
215 	 * and redundant with the set_pmd() on non-PAE. As would
216 	 * set_pud.
217 	 */
218 	pud = pud_offset(pgd, address);
219 	pud_k = pud_offset(pgd_k, address);
220 	if (!pud_present(*pud_k))
221 		return NULL;
222 
223 	pmd = pmd_offset(pud, address);
224 	pmd_k = pmd_offset(pud_k, address);
225 	if (!pmd_present(*pmd_k))
226 		return NULL;
227 
228 	if (!pmd_present(*pmd)) {
229 		set_pmd(pmd, *pmd_k);
230 		arch_flush_lazy_mmu_mode();
231 	} else {
232 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
233 	}
234 
235 	return pmd_k;
236 }
237 
238 void vmalloc_sync_all(void)
239 {
240 	unsigned long address;
241 
242 	if (SHARED_KERNEL_PMD)
243 		return;
244 
245 	for (address = VMALLOC_START & PMD_MASK;
246 	     address >= TASK_SIZE && address < FIXADDR_TOP;
247 	     address += PMD_SIZE) {
248 
249 		unsigned long flags;
250 		struct page *page;
251 
252 		spin_lock_irqsave(&pgd_lock, flags);
253 		list_for_each_entry(page, &pgd_list, lru) {
254 			if (!vmalloc_sync_one(page_address(page), address))
255 				break;
256 		}
257 		spin_unlock_irqrestore(&pgd_lock, flags);
258 	}
259 }
260 
261 /*
262  * 32-bit:
263  *
264  *   Handle a fault on the vmalloc or module mapping area
265  */
266 static noinline int vmalloc_fault(unsigned long address)
267 {
268 	unsigned long pgd_paddr;
269 	pmd_t *pmd_k;
270 	pte_t *pte_k;
271 
272 	/* Make sure we are in vmalloc area: */
273 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 		return -1;
275 
276 	/*
277 	 * Synchronize this task's top level page-table
278 	 * with the 'reference' page table.
279 	 *
280 	 * Do _not_ use "current" here. We might be inside
281 	 * an interrupt in the middle of a task switch..
282 	 */
283 	pgd_paddr = read_cr3();
284 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 	if (!pmd_k)
286 		return -1;
287 
288 	pte_k = pte_offset_kernel(pmd_k, address);
289 	if (!pte_present(*pte_k))
290 		return -1;
291 
292 	return 0;
293 }
294 
295 /*
296  * Did it hit the DOS screen memory VA from vm86 mode?
297  */
298 static inline void
299 check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 		 struct task_struct *tsk)
301 {
302 	unsigned long bit;
303 
304 	if (!v8086_mode(regs))
305 		return;
306 
307 	bit = (address - 0xA0000) >> PAGE_SHIFT;
308 	if (bit < 32)
309 		tsk->thread.screen_bitmap |= 1 << bit;
310 }
311 
312 static void dump_pagetable(unsigned long address)
313 {
314 	__typeof__(pte_val(__pte(0))) page;
315 
316 	page = read_cr3();
317 	page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
318 
319 #ifdef CONFIG_X86_PAE
320 	printk("*pdpt = %016Lx ", page);
321 	if ((page >> PAGE_SHIFT) < max_low_pfn
322 	    && page & _PAGE_PRESENT) {
323 		page &= PAGE_MASK;
324 		page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
325 							& (PTRS_PER_PMD - 1)];
326 		printk(KERN_CONT "*pde = %016Lx ", page);
327 		page &= ~_PAGE_NX;
328 	}
329 #else
330 	printk("*pde = %08lx ", page);
331 #endif
332 
333 	/*
334 	 * We must not directly access the pte in the highpte
335 	 * case if the page table is located in highmem.
336 	 * And let's rather not kmap-atomic the pte, just in case
337 	 * it's allocated already:
338 	 */
339 	if ((page >> PAGE_SHIFT) < max_low_pfn
340 	    && (page & _PAGE_PRESENT)
341 	    && !(page & _PAGE_PSE)) {
342 
343 		page &= PAGE_MASK;
344 		page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
345 							& (PTRS_PER_PTE - 1)];
346 		printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
347 	}
348 
349 	printk("\n");
350 }
351 
352 #else /* CONFIG_X86_64: */
353 
354 void vmalloc_sync_all(void)
355 {
356 	unsigned long address;
357 
358 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
359 	     address += PGDIR_SIZE) {
360 
361 		const pgd_t *pgd_ref = pgd_offset_k(address);
362 		unsigned long flags;
363 		struct page *page;
364 
365 		if (pgd_none(*pgd_ref))
366 			continue;
367 
368 		spin_lock_irqsave(&pgd_lock, flags);
369 		list_for_each_entry(page, &pgd_list, lru) {
370 			pgd_t *pgd;
371 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
372 			if (pgd_none(*pgd))
373 				set_pgd(pgd, *pgd_ref);
374 			else
375 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
376 		}
377 		spin_unlock_irqrestore(&pgd_lock, flags);
378 	}
379 }
380 
381 /*
382  * 64-bit:
383  *
384  *   Handle a fault on the vmalloc area
385  *
386  * This assumes no large pages in there.
387  */
388 static noinline int vmalloc_fault(unsigned long address)
389 {
390 	pgd_t *pgd, *pgd_ref;
391 	pud_t *pud, *pud_ref;
392 	pmd_t *pmd, *pmd_ref;
393 	pte_t *pte, *pte_ref;
394 
395 	/* Make sure we are in vmalloc area: */
396 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
397 		return -1;
398 
399 	/*
400 	 * Copy kernel mappings over when needed. This can also
401 	 * happen within a race in page table update. In the later
402 	 * case just flush:
403 	 */
404 	pgd = pgd_offset(current->active_mm, address);
405 	pgd_ref = pgd_offset_k(address);
406 	if (pgd_none(*pgd_ref))
407 		return -1;
408 
409 	if (pgd_none(*pgd))
410 		set_pgd(pgd, *pgd_ref);
411 	else
412 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
413 
414 	/*
415 	 * Below here mismatches are bugs because these lower tables
416 	 * are shared:
417 	 */
418 
419 	pud = pud_offset(pgd, address);
420 	pud_ref = pud_offset(pgd_ref, address);
421 	if (pud_none(*pud_ref))
422 		return -1;
423 
424 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
425 		BUG();
426 
427 	pmd = pmd_offset(pud, address);
428 	pmd_ref = pmd_offset(pud_ref, address);
429 	if (pmd_none(*pmd_ref))
430 		return -1;
431 
432 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
433 		BUG();
434 
435 	pte_ref = pte_offset_kernel(pmd_ref, address);
436 	if (!pte_present(*pte_ref))
437 		return -1;
438 
439 	pte = pte_offset_kernel(pmd, address);
440 
441 	/*
442 	 * Don't use pte_page here, because the mappings can point
443 	 * outside mem_map, and the NUMA hash lookup cannot handle
444 	 * that:
445 	 */
446 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
447 		BUG();
448 
449 	return 0;
450 }
451 
452 static const char errata93_warning[] =
453 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
454 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
455 KERN_ERR "******* Please consider a BIOS update.\n"
456 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
457 
458 /*
459  * No vm86 mode in 64-bit mode:
460  */
461 static inline void
462 check_v8086_mode(struct pt_regs *regs, unsigned long address,
463 		 struct task_struct *tsk)
464 {
465 }
466 
467 static int bad_address(void *p)
468 {
469 	unsigned long dummy;
470 
471 	return probe_kernel_address((unsigned long *)p, dummy);
472 }
473 
474 static void dump_pagetable(unsigned long address)
475 {
476 	pgd_t *pgd;
477 	pud_t *pud;
478 	pmd_t *pmd;
479 	pte_t *pte;
480 
481 	pgd = (pgd_t *)read_cr3();
482 
483 	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
484 
485 	pgd += pgd_index(address);
486 	if (bad_address(pgd))
487 		goto bad;
488 
489 	printk("PGD %lx ", pgd_val(*pgd));
490 
491 	if (!pgd_present(*pgd))
492 		goto out;
493 
494 	pud = pud_offset(pgd, address);
495 	if (bad_address(pud))
496 		goto bad;
497 
498 	printk("PUD %lx ", pud_val(*pud));
499 	if (!pud_present(*pud) || pud_large(*pud))
500 		goto out;
501 
502 	pmd = pmd_offset(pud, address);
503 	if (bad_address(pmd))
504 		goto bad;
505 
506 	printk("PMD %lx ", pmd_val(*pmd));
507 	if (!pmd_present(*pmd) || pmd_large(*pmd))
508 		goto out;
509 
510 	pte = pte_offset_kernel(pmd, address);
511 	if (bad_address(pte))
512 		goto bad;
513 
514 	printk("PTE %lx", pte_val(*pte));
515 out:
516 	printk("\n");
517 	return;
518 bad:
519 	printk("BAD\n");
520 }
521 
522 #endif /* CONFIG_X86_64 */
523 
524 /*
525  * Workaround for K8 erratum #93 & buggy BIOS.
526  *
527  * BIOS SMM functions are required to use a specific workaround
528  * to avoid corruption of the 64bit RIP register on C stepping K8.
529  *
530  * A lot of BIOS that didn't get tested properly miss this.
531  *
532  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
533  * Try to work around it here.
534  *
535  * Note we only handle faults in kernel here.
536  * Does nothing on 32-bit.
537  */
538 static int is_errata93(struct pt_regs *regs, unsigned long address)
539 {
540 #ifdef CONFIG_X86_64
541 	static int once;
542 
543 	if (address != regs->ip)
544 		return 0;
545 
546 	if ((address >> 32) != 0)
547 		return 0;
548 
549 	address |= 0xffffffffUL << 32;
550 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
551 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
552 		if (!once) {
553 			printk(errata93_warning);
554 			once = 1;
555 		}
556 		regs->ip = address;
557 		return 1;
558 	}
559 #endif
560 	return 0;
561 }
562 
563 /*
564  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
565  * to illegal addresses >4GB.
566  *
567  * We catch this in the page fault handler because these addresses
568  * are not reachable. Just detect this case and return.  Any code
569  * segment in LDT is compatibility mode.
570  */
571 static int is_errata100(struct pt_regs *regs, unsigned long address)
572 {
573 #ifdef CONFIG_X86_64
574 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
575 		return 1;
576 #endif
577 	return 0;
578 }
579 
580 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
581 {
582 #ifdef CONFIG_X86_F00F_BUG
583 	unsigned long nr;
584 
585 	/*
586 	 * Pentium F0 0F C7 C8 bug workaround:
587 	 */
588 	if (boot_cpu_data.f00f_bug) {
589 		nr = (address - idt_descr.address) >> 3;
590 
591 		if (nr == 6) {
592 			do_invalid_op(regs, 0);
593 			return 1;
594 		}
595 	}
596 #endif
597 	return 0;
598 }
599 
600 static const char nx_warning[] = KERN_CRIT
601 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
602 
603 static void
604 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
605 		unsigned long address)
606 {
607 	if (!oops_may_print())
608 		return;
609 
610 	if (error_code & PF_INSTR) {
611 		unsigned int level;
612 
613 		pte_t *pte = lookup_address(address, &level);
614 
615 		if (pte && pte_present(*pte) && !pte_exec(*pte))
616 			printk(nx_warning, current_uid());
617 	}
618 
619 	printk(KERN_ALERT "BUG: unable to handle kernel ");
620 	if (address < PAGE_SIZE)
621 		printk(KERN_CONT "NULL pointer dereference");
622 	else
623 		printk(KERN_CONT "paging request");
624 
625 	printk(KERN_CONT " at %p\n", (void *) address);
626 	printk(KERN_ALERT "IP:");
627 	printk_address(regs->ip, 1);
628 
629 	dump_pagetable(address);
630 }
631 
632 static noinline void
633 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
634 	    unsigned long address)
635 {
636 	struct task_struct *tsk;
637 	unsigned long flags;
638 	int sig;
639 
640 	flags = oops_begin();
641 	tsk = current;
642 	sig = SIGKILL;
643 
644 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
645 	       tsk->comm, address);
646 	dump_pagetable(address);
647 
648 	tsk->thread.cr2		= address;
649 	tsk->thread.trap_no	= 14;
650 	tsk->thread.error_code	= error_code;
651 
652 	if (__die("Bad pagetable", regs, error_code))
653 		sig = 0;
654 
655 	oops_end(flags, regs, sig);
656 }
657 
658 static noinline void
659 no_context(struct pt_regs *regs, unsigned long error_code,
660 	   unsigned long address)
661 {
662 	struct task_struct *tsk = current;
663 	unsigned long *stackend;
664 	unsigned long flags;
665 	int sig;
666 
667 	/* Are we prepared to handle this kernel fault? */
668 	if (fixup_exception(regs))
669 		return;
670 
671 	/*
672 	 * 32-bit:
673 	 *
674 	 *   Valid to do another page fault here, because if this fault
675 	 *   had been triggered by is_prefetch fixup_exception would have
676 	 *   handled it.
677 	 *
678 	 * 64-bit:
679 	 *
680 	 *   Hall of shame of CPU/BIOS bugs.
681 	 */
682 	if (is_prefetch(regs, error_code, address))
683 		return;
684 
685 	if (is_errata93(regs, address))
686 		return;
687 
688 	/*
689 	 * Oops. The kernel tried to access some bad page. We'll have to
690 	 * terminate things with extreme prejudice:
691 	 */
692 	flags = oops_begin();
693 
694 	show_fault_oops(regs, error_code, address);
695 
696 	stackend = end_of_stack(tsk);
697 	if (*stackend != STACK_END_MAGIC)
698 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
699 
700 	tsk->thread.cr2		= address;
701 	tsk->thread.trap_no	= 14;
702 	tsk->thread.error_code	= error_code;
703 
704 	sig = SIGKILL;
705 	if (__die("Oops", regs, error_code))
706 		sig = 0;
707 
708 	/* Executive summary in case the body of the oops scrolled away */
709 	printk(KERN_EMERG "CR2: %016lx\n", address);
710 
711 	oops_end(flags, regs, sig);
712 }
713 
714 /*
715  * Print out info about fatal segfaults, if the show_unhandled_signals
716  * sysctl is set:
717  */
718 static inline void
719 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
720 		unsigned long address, struct task_struct *tsk)
721 {
722 	if (!unhandled_signal(tsk, SIGSEGV))
723 		return;
724 
725 	if (!printk_ratelimit())
726 		return;
727 
728 	printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
729 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
730 		tsk->comm, task_pid_nr(tsk), address,
731 		(void *)regs->ip, (void *)regs->sp, error_code);
732 
733 	print_vma_addr(KERN_CONT " in ", regs->ip);
734 
735 	printk(KERN_CONT "\n");
736 }
737 
738 static void
739 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
740 		       unsigned long address, int si_code)
741 {
742 	struct task_struct *tsk = current;
743 
744 	/* User mode accesses just cause a SIGSEGV */
745 	if (error_code & PF_USER) {
746 		/*
747 		 * It's possible to have interrupts off here:
748 		 */
749 		local_irq_enable();
750 
751 		/*
752 		 * Valid to do another page fault here because this one came
753 		 * from user space:
754 		 */
755 		if (is_prefetch(regs, error_code, address))
756 			return;
757 
758 		if (is_errata100(regs, address))
759 			return;
760 
761 		if (unlikely(show_unhandled_signals))
762 			show_signal_msg(regs, error_code, address, tsk);
763 
764 		/* Kernel addresses are always protection faults: */
765 		tsk->thread.cr2		= address;
766 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
767 		tsk->thread.trap_no	= 14;
768 
769 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
770 
771 		return;
772 	}
773 
774 	if (is_f00f_bug(regs, address))
775 		return;
776 
777 	no_context(regs, error_code, address);
778 }
779 
780 static noinline void
781 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
782 		     unsigned long address)
783 {
784 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
785 }
786 
787 static void
788 __bad_area(struct pt_regs *regs, unsigned long error_code,
789 	   unsigned long address, int si_code)
790 {
791 	struct mm_struct *mm = current->mm;
792 
793 	/*
794 	 * Something tried to access memory that isn't in our memory map..
795 	 * Fix it, but check if it's kernel or user first..
796 	 */
797 	up_read(&mm->mmap_sem);
798 
799 	__bad_area_nosemaphore(regs, error_code, address, si_code);
800 }
801 
802 static noinline void
803 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
804 {
805 	__bad_area(regs, error_code, address, SEGV_MAPERR);
806 }
807 
808 static noinline void
809 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
810 		      unsigned long address)
811 {
812 	__bad_area(regs, error_code, address, SEGV_ACCERR);
813 }
814 
815 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
816 static void
817 out_of_memory(struct pt_regs *regs, unsigned long error_code,
818 	      unsigned long address)
819 {
820 	/*
821 	 * We ran out of memory, call the OOM killer, and return the userspace
822 	 * (which will retry the fault, or kill us if we got oom-killed):
823 	 */
824 	up_read(&current->mm->mmap_sem);
825 
826 	pagefault_out_of_memory();
827 }
828 
829 static void
830 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
831 {
832 	struct task_struct *tsk = current;
833 	struct mm_struct *mm = tsk->mm;
834 
835 	up_read(&mm->mmap_sem);
836 
837 	/* Kernel mode? Handle exceptions or die: */
838 	if (!(error_code & PF_USER))
839 		no_context(regs, error_code, address);
840 
841 	/* User-space => ok to do another page fault: */
842 	if (is_prefetch(regs, error_code, address))
843 		return;
844 
845 	tsk->thread.cr2		= address;
846 	tsk->thread.error_code	= error_code;
847 	tsk->thread.trap_no	= 14;
848 
849 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
850 }
851 
852 static noinline void
853 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
854 	       unsigned long address, unsigned int fault)
855 {
856 	if (fault & VM_FAULT_OOM) {
857 		out_of_memory(regs, error_code, address);
858 	} else {
859 		if (fault & VM_FAULT_SIGBUS)
860 			do_sigbus(regs, error_code, address);
861 		else
862 			BUG();
863 	}
864 }
865 
866 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
867 {
868 	if ((error_code & PF_WRITE) && !pte_write(*pte))
869 		return 0;
870 
871 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
872 		return 0;
873 
874 	return 1;
875 }
876 
877 /*
878  * Handle a spurious fault caused by a stale TLB entry.
879  *
880  * This allows us to lazily refresh the TLB when increasing the
881  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
882  * eagerly is very expensive since that implies doing a full
883  * cross-processor TLB flush, even if no stale TLB entries exist
884  * on other processors.
885  *
886  * There are no security implications to leaving a stale TLB when
887  * increasing the permissions on a page.
888  */
889 static noinline int
890 spurious_fault(unsigned long error_code, unsigned long address)
891 {
892 	pgd_t *pgd;
893 	pud_t *pud;
894 	pmd_t *pmd;
895 	pte_t *pte;
896 	int ret;
897 
898 	/* Reserved-bit violation or user access to kernel space? */
899 	if (error_code & (PF_USER | PF_RSVD))
900 		return 0;
901 
902 	pgd = init_mm.pgd + pgd_index(address);
903 	if (!pgd_present(*pgd))
904 		return 0;
905 
906 	pud = pud_offset(pgd, address);
907 	if (!pud_present(*pud))
908 		return 0;
909 
910 	if (pud_large(*pud))
911 		return spurious_fault_check(error_code, (pte_t *) pud);
912 
913 	pmd = pmd_offset(pud, address);
914 	if (!pmd_present(*pmd))
915 		return 0;
916 
917 	if (pmd_large(*pmd))
918 		return spurious_fault_check(error_code, (pte_t *) pmd);
919 
920 	pte = pte_offset_kernel(pmd, address);
921 	if (!pte_present(*pte))
922 		return 0;
923 
924 	ret = spurious_fault_check(error_code, pte);
925 	if (!ret)
926 		return 0;
927 
928 	/*
929 	 * Make sure we have permissions in PMD.
930 	 * If not, then there's a bug in the page tables:
931 	 */
932 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
933 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
934 
935 	return ret;
936 }
937 
938 int show_unhandled_signals = 1;
939 
940 static inline int
941 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
942 {
943 	if (write) {
944 		/* write, present and write, not present: */
945 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
946 			return 1;
947 		return 0;
948 	}
949 
950 	/* read, present: */
951 	if (unlikely(error_code & PF_PROT))
952 		return 1;
953 
954 	/* read, not present: */
955 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
956 		return 1;
957 
958 	return 0;
959 }
960 
961 static int fault_in_kernel_space(unsigned long address)
962 {
963 	return address >= TASK_SIZE_MAX;
964 }
965 
966 /*
967  * This routine handles page faults.  It determines the address,
968  * and the problem, and then passes it off to one of the appropriate
969  * routines.
970  */
971 dotraplinkage void __kprobes
972 do_page_fault(struct pt_regs *regs, unsigned long error_code)
973 {
974 	struct vm_area_struct *vma;
975 	struct task_struct *tsk;
976 	unsigned long address;
977 	struct mm_struct *mm;
978 	int write;
979 	int fault;
980 
981 	tsk = current;
982 	mm = tsk->mm;
983 
984 	prefetchw(&mm->mmap_sem);
985 
986 	/* Get the faulting address: */
987 	address = read_cr2();
988 
989 	if (unlikely(kmmio_fault(regs, address)))
990 		return;
991 
992 	/*
993 	 * We fault-in kernel-space virtual memory on-demand. The
994 	 * 'reference' page table is init_mm.pgd.
995 	 *
996 	 * NOTE! We MUST NOT take any locks for this case. We may
997 	 * be in an interrupt or a critical region, and should
998 	 * only copy the information from the master page table,
999 	 * nothing more.
1000 	 *
1001 	 * This verifies that the fault happens in kernel space
1002 	 * (error_code & 4) == 0, and that the fault was not a
1003 	 * protection error (error_code & 9) == 0.
1004 	 */
1005 	if (unlikely(fault_in_kernel_space(address))) {
1006 		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
1007 		    vmalloc_fault(address) >= 0)
1008 			return;
1009 
1010 		/* Can handle a stale RO->RW TLB: */
1011 		if (spurious_fault(error_code, address))
1012 			return;
1013 
1014 		/* kprobes don't want to hook the spurious faults: */
1015 		if (notify_page_fault(regs))
1016 			return;
1017 		/*
1018 		 * Don't take the mm semaphore here. If we fixup a prefetch
1019 		 * fault we could otherwise deadlock:
1020 		 */
1021 		bad_area_nosemaphore(regs, error_code, address);
1022 
1023 		return;
1024 	}
1025 
1026 	/* kprobes don't want to hook the spurious faults: */
1027 	if (unlikely(notify_page_fault(regs)))
1028 		return;
1029 	/*
1030 	 * It's safe to allow irq's after cr2 has been saved and the
1031 	 * vmalloc fault has been handled.
1032 	 *
1033 	 * User-mode registers count as a user access even for any
1034 	 * potential system fault or CPU buglet:
1035 	 */
1036 	if (user_mode_vm(regs)) {
1037 		local_irq_enable();
1038 		error_code |= PF_USER;
1039 	} else {
1040 		if (regs->flags & X86_EFLAGS_IF)
1041 			local_irq_enable();
1042 	}
1043 
1044 	if (unlikely(error_code & PF_RSVD))
1045 		pgtable_bad(regs, error_code, address);
1046 
1047 	/*
1048 	 * If we're in an interrupt, have no user context or are running
1049 	 * in an atomic region then we must not take the fault:
1050 	 */
1051 	if (unlikely(in_atomic() || !mm)) {
1052 		bad_area_nosemaphore(regs, error_code, address);
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * When running in the kernel we expect faults to occur only to
1058 	 * addresses in user space.  All other faults represent errors in
1059 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1060 	 * case of an erroneous fault occurring in a code path which already
1061 	 * holds mmap_sem we will deadlock attempting to validate the fault
1062 	 * against the address space.  Luckily the kernel only validly
1063 	 * references user space from well defined areas of code, which are
1064 	 * listed in the exceptions table.
1065 	 *
1066 	 * As the vast majority of faults will be valid we will only perform
1067 	 * the source reference check when there is a possibility of a
1068 	 * deadlock. Attempt to lock the address space, if we cannot we then
1069 	 * validate the source. If this is invalid we can skip the address
1070 	 * space check, thus avoiding the deadlock:
1071 	 */
1072 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1073 		if ((error_code & PF_USER) == 0 &&
1074 		    !search_exception_tables(regs->ip)) {
1075 			bad_area_nosemaphore(regs, error_code, address);
1076 			return;
1077 		}
1078 		down_read(&mm->mmap_sem);
1079 	} else {
1080 		/*
1081 		 * The above down_read_trylock() might have succeeded in
1082 		 * which case we'll have missed the might_sleep() from
1083 		 * down_read():
1084 		 */
1085 		might_sleep();
1086 	}
1087 
1088 	vma = find_vma(mm, address);
1089 	if (unlikely(!vma)) {
1090 		bad_area(regs, error_code, address);
1091 		return;
1092 	}
1093 	if (likely(vma->vm_start <= address))
1094 		goto good_area;
1095 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1096 		bad_area(regs, error_code, address);
1097 		return;
1098 	}
1099 	if (error_code & PF_USER) {
1100 		/*
1101 		 * Accessing the stack below %sp is always a bug.
1102 		 * The large cushion allows instructions like enter
1103 		 * and pusha to work. ("enter $65535, $31" pushes
1104 		 * 32 pointers and then decrements %sp by 65535.)
1105 		 */
1106 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1107 			bad_area(regs, error_code, address);
1108 			return;
1109 		}
1110 	}
1111 	if (unlikely(expand_stack(vma, address))) {
1112 		bad_area(regs, error_code, address);
1113 		return;
1114 	}
1115 
1116 	/*
1117 	 * Ok, we have a good vm_area for this memory access, so
1118 	 * we can handle it..
1119 	 */
1120 good_area:
1121 	write = error_code & PF_WRITE;
1122 
1123 	if (unlikely(access_error(error_code, write, vma))) {
1124 		bad_area_access_error(regs, error_code, address);
1125 		return;
1126 	}
1127 
1128 	/*
1129 	 * If for any reason at all we couldn't handle the fault,
1130 	 * make sure we exit gracefully rather than endlessly redo
1131 	 * the fault:
1132 	 */
1133 	fault = handle_mm_fault(mm, vma, address, write);
1134 
1135 	if (unlikely(fault & VM_FAULT_ERROR)) {
1136 		mm_fault_error(regs, error_code, address, fault);
1137 		return;
1138 	}
1139 
1140 	if (fault & VM_FAULT_MAJOR)
1141 		tsk->maj_flt++;
1142 	else
1143 		tsk->min_flt++;
1144 
1145 	check_v8086_mode(regs, address, tsk);
1146 
1147 	up_read(&mm->mmap_sem);
1148 }
1149