1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/interrupt.h> 7 #include <linux/mmiotrace.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/kprobes.h> 12 #include <linux/uaccess.h> 13 #include <linux/vmalloc.h> 14 #include <linux/vt_kern.h> 15 #include <linux/signal.h> 16 #include <linux/kernel.h> 17 #include <linux/ptrace.h> 18 #include <linux/string.h> 19 #include <linux/module.h> 20 #include <linux/kdebug.h> 21 #include <linux/errno.h> 22 #include <linux/magic.h> 23 #include <linux/sched.h> 24 #include <linux/types.h> 25 #include <linux/init.h> 26 #include <linux/mman.h> 27 #include <linux/tty.h> 28 #include <linux/smp.h> 29 #include <linux/mm.h> 30 31 #include <asm-generic/sections.h> 32 33 #include <asm/tlbflush.h> 34 #include <asm/pgalloc.h> 35 #include <asm/segment.h> 36 #include <asm/system.h> 37 #include <asm/proto.h> 38 #include <asm/traps.h> 39 #include <asm/desc.h> 40 41 /* 42 * Page fault error code bits: 43 * 44 * bit 0 == 0: no page found 1: protection fault 45 * bit 1 == 0: read access 1: write access 46 * bit 2 == 0: kernel-mode access 1: user-mode access 47 * bit 3 == 1: use of reserved bit detected 48 * bit 4 == 1: fault was an instruction fetch 49 */ 50 enum x86_pf_error_code { 51 52 PF_PROT = 1 << 0, 53 PF_WRITE = 1 << 1, 54 PF_USER = 1 << 2, 55 PF_RSVD = 1 << 3, 56 PF_INSTR = 1 << 4, 57 }; 58 59 /* 60 * Returns 0 if mmiotrace is disabled, or if the fault is not 61 * handled by mmiotrace: 62 */ 63 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) 64 { 65 if (unlikely(is_kmmio_active())) 66 if (kmmio_handler(regs, addr) == 1) 67 return -1; 68 return 0; 69 } 70 71 static inline int notify_page_fault(struct pt_regs *regs) 72 { 73 int ret = 0; 74 75 /* kprobe_running() needs smp_processor_id() */ 76 if (kprobes_built_in() && !user_mode_vm(regs)) { 77 preempt_disable(); 78 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 79 ret = 1; 80 preempt_enable(); 81 } 82 83 return ret; 84 } 85 86 /* 87 * Prefetch quirks: 88 * 89 * 32-bit mode: 90 * 91 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 92 * Check that here and ignore it. 93 * 94 * 64-bit mode: 95 * 96 * Sometimes the CPU reports invalid exceptions on prefetch. 97 * Check that here and ignore it. 98 * 99 * Opcode checker based on code by Richard Brunner. 100 */ 101 static inline int 102 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 103 unsigned char opcode, int *prefetch) 104 { 105 unsigned char instr_hi = opcode & 0xf0; 106 unsigned char instr_lo = opcode & 0x0f; 107 108 switch (instr_hi) { 109 case 0x20: 110 case 0x30: 111 /* 112 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 113 * In X86_64 long mode, the CPU will signal invalid 114 * opcode if some of these prefixes are present so 115 * X86_64 will never get here anyway 116 */ 117 return ((instr_lo & 7) == 0x6); 118 #ifdef CONFIG_X86_64 119 case 0x40: 120 /* 121 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 122 * Need to figure out under what instruction mode the 123 * instruction was issued. Could check the LDT for lm, 124 * but for now it's good enough to assume that long 125 * mode only uses well known segments or kernel. 126 */ 127 return (!user_mode(regs)) || (regs->cs == __USER_CS); 128 #endif 129 case 0x60: 130 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 131 return (instr_lo & 0xC) == 0x4; 132 case 0xF0: 133 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 134 return !instr_lo || (instr_lo>>1) == 1; 135 case 0x00: 136 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 137 if (probe_kernel_address(instr, opcode)) 138 return 0; 139 140 *prefetch = (instr_lo == 0xF) && 141 (opcode == 0x0D || opcode == 0x18); 142 return 0; 143 default: 144 return 0; 145 } 146 } 147 148 static int 149 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 150 { 151 unsigned char *max_instr; 152 unsigned char *instr; 153 int prefetch = 0; 154 155 /* 156 * If it was a exec (instruction fetch) fault on NX page, then 157 * do not ignore the fault: 158 */ 159 if (error_code & PF_INSTR) 160 return 0; 161 162 instr = (void *)convert_ip_to_linear(current, regs); 163 max_instr = instr + 15; 164 165 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 166 return 0; 167 168 while (instr < max_instr) { 169 unsigned char opcode; 170 171 if (probe_kernel_address(instr, opcode)) 172 break; 173 174 instr++; 175 176 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 177 break; 178 } 179 return prefetch; 180 } 181 182 static void 183 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 184 struct task_struct *tsk) 185 { 186 siginfo_t info; 187 188 info.si_signo = si_signo; 189 info.si_errno = 0; 190 info.si_code = si_code; 191 info.si_addr = (void __user *)address; 192 193 force_sig_info(si_signo, &info, tsk); 194 } 195 196 DEFINE_SPINLOCK(pgd_lock); 197 LIST_HEAD(pgd_list); 198 199 #ifdef CONFIG_X86_32 200 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 201 { 202 unsigned index = pgd_index(address); 203 pgd_t *pgd_k; 204 pud_t *pud, *pud_k; 205 pmd_t *pmd, *pmd_k; 206 207 pgd += index; 208 pgd_k = init_mm.pgd + index; 209 210 if (!pgd_present(*pgd_k)) 211 return NULL; 212 213 /* 214 * set_pgd(pgd, *pgd_k); here would be useless on PAE 215 * and redundant with the set_pmd() on non-PAE. As would 216 * set_pud. 217 */ 218 pud = pud_offset(pgd, address); 219 pud_k = pud_offset(pgd_k, address); 220 if (!pud_present(*pud_k)) 221 return NULL; 222 223 pmd = pmd_offset(pud, address); 224 pmd_k = pmd_offset(pud_k, address); 225 if (!pmd_present(*pmd_k)) 226 return NULL; 227 228 if (!pmd_present(*pmd)) { 229 set_pmd(pmd, *pmd_k); 230 arch_flush_lazy_mmu_mode(); 231 } else { 232 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 233 } 234 235 return pmd_k; 236 } 237 238 void vmalloc_sync_all(void) 239 { 240 unsigned long address; 241 242 if (SHARED_KERNEL_PMD) 243 return; 244 245 for (address = VMALLOC_START & PMD_MASK; 246 address >= TASK_SIZE && address < FIXADDR_TOP; 247 address += PMD_SIZE) { 248 249 unsigned long flags; 250 struct page *page; 251 252 spin_lock_irqsave(&pgd_lock, flags); 253 list_for_each_entry(page, &pgd_list, lru) { 254 if (!vmalloc_sync_one(page_address(page), address)) 255 break; 256 } 257 spin_unlock_irqrestore(&pgd_lock, flags); 258 } 259 } 260 261 /* 262 * 32-bit: 263 * 264 * Handle a fault on the vmalloc or module mapping area 265 */ 266 static noinline int vmalloc_fault(unsigned long address) 267 { 268 unsigned long pgd_paddr; 269 pmd_t *pmd_k; 270 pte_t *pte_k; 271 272 /* Make sure we are in vmalloc area: */ 273 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 274 return -1; 275 276 /* 277 * Synchronize this task's top level page-table 278 * with the 'reference' page table. 279 * 280 * Do _not_ use "current" here. We might be inside 281 * an interrupt in the middle of a task switch.. 282 */ 283 pgd_paddr = read_cr3(); 284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 285 if (!pmd_k) 286 return -1; 287 288 pte_k = pte_offset_kernel(pmd_k, address); 289 if (!pte_present(*pte_k)) 290 return -1; 291 292 return 0; 293 } 294 295 /* 296 * Did it hit the DOS screen memory VA from vm86 mode? 297 */ 298 static inline void 299 check_v8086_mode(struct pt_regs *regs, unsigned long address, 300 struct task_struct *tsk) 301 { 302 unsigned long bit; 303 304 if (!v8086_mode(regs)) 305 return; 306 307 bit = (address - 0xA0000) >> PAGE_SHIFT; 308 if (bit < 32) 309 tsk->thread.screen_bitmap |= 1 << bit; 310 } 311 312 static void dump_pagetable(unsigned long address) 313 { 314 __typeof__(pte_val(__pte(0))) page; 315 316 page = read_cr3(); 317 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; 318 319 #ifdef CONFIG_X86_PAE 320 printk("*pdpt = %016Lx ", page); 321 if ((page >> PAGE_SHIFT) < max_low_pfn 322 && page & _PAGE_PRESENT) { 323 page &= PAGE_MASK; 324 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) 325 & (PTRS_PER_PMD - 1)]; 326 printk(KERN_CONT "*pde = %016Lx ", page); 327 page &= ~_PAGE_NX; 328 } 329 #else 330 printk("*pde = %08lx ", page); 331 #endif 332 333 /* 334 * We must not directly access the pte in the highpte 335 * case if the page table is located in highmem. 336 * And let's rather not kmap-atomic the pte, just in case 337 * it's allocated already: 338 */ 339 if ((page >> PAGE_SHIFT) < max_low_pfn 340 && (page & _PAGE_PRESENT) 341 && !(page & _PAGE_PSE)) { 342 343 page &= PAGE_MASK; 344 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) 345 & (PTRS_PER_PTE - 1)]; 346 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); 347 } 348 349 printk("\n"); 350 } 351 352 #else /* CONFIG_X86_64: */ 353 354 void vmalloc_sync_all(void) 355 { 356 unsigned long address; 357 358 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; 359 address += PGDIR_SIZE) { 360 361 const pgd_t *pgd_ref = pgd_offset_k(address); 362 unsigned long flags; 363 struct page *page; 364 365 if (pgd_none(*pgd_ref)) 366 continue; 367 368 spin_lock_irqsave(&pgd_lock, flags); 369 list_for_each_entry(page, &pgd_list, lru) { 370 pgd_t *pgd; 371 pgd = (pgd_t *)page_address(page) + pgd_index(address); 372 if (pgd_none(*pgd)) 373 set_pgd(pgd, *pgd_ref); 374 else 375 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 376 } 377 spin_unlock_irqrestore(&pgd_lock, flags); 378 } 379 } 380 381 /* 382 * 64-bit: 383 * 384 * Handle a fault on the vmalloc area 385 * 386 * This assumes no large pages in there. 387 */ 388 static noinline int vmalloc_fault(unsigned long address) 389 { 390 pgd_t *pgd, *pgd_ref; 391 pud_t *pud, *pud_ref; 392 pmd_t *pmd, *pmd_ref; 393 pte_t *pte, *pte_ref; 394 395 /* Make sure we are in vmalloc area: */ 396 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 397 return -1; 398 399 /* 400 * Copy kernel mappings over when needed. This can also 401 * happen within a race in page table update. In the later 402 * case just flush: 403 */ 404 pgd = pgd_offset(current->active_mm, address); 405 pgd_ref = pgd_offset_k(address); 406 if (pgd_none(*pgd_ref)) 407 return -1; 408 409 if (pgd_none(*pgd)) 410 set_pgd(pgd, *pgd_ref); 411 else 412 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 413 414 /* 415 * Below here mismatches are bugs because these lower tables 416 * are shared: 417 */ 418 419 pud = pud_offset(pgd, address); 420 pud_ref = pud_offset(pgd_ref, address); 421 if (pud_none(*pud_ref)) 422 return -1; 423 424 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 425 BUG(); 426 427 pmd = pmd_offset(pud, address); 428 pmd_ref = pmd_offset(pud_ref, address); 429 if (pmd_none(*pmd_ref)) 430 return -1; 431 432 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 433 BUG(); 434 435 pte_ref = pte_offset_kernel(pmd_ref, address); 436 if (!pte_present(*pte_ref)) 437 return -1; 438 439 pte = pte_offset_kernel(pmd, address); 440 441 /* 442 * Don't use pte_page here, because the mappings can point 443 * outside mem_map, and the NUMA hash lookup cannot handle 444 * that: 445 */ 446 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 447 BUG(); 448 449 return 0; 450 } 451 452 static const char errata93_warning[] = 453 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 454 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" 455 KERN_ERR "******* Please consider a BIOS update.\n" 456 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; 457 458 /* 459 * No vm86 mode in 64-bit mode: 460 */ 461 static inline void 462 check_v8086_mode(struct pt_regs *regs, unsigned long address, 463 struct task_struct *tsk) 464 { 465 } 466 467 static int bad_address(void *p) 468 { 469 unsigned long dummy; 470 471 return probe_kernel_address((unsigned long *)p, dummy); 472 } 473 474 static void dump_pagetable(unsigned long address) 475 { 476 pgd_t *pgd; 477 pud_t *pud; 478 pmd_t *pmd; 479 pte_t *pte; 480 481 pgd = (pgd_t *)read_cr3(); 482 483 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 484 485 pgd += pgd_index(address); 486 if (bad_address(pgd)) 487 goto bad; 488 489 printk("PGD %lx ", pgd_val(*pgd)); 490 491 if (!pgd_present(*pgd)) 492 goto out; 493 494 pud = pud_offset(pgd, address); 495 if (bad_address(pud)) 496 goto bad; 497 498 printk("PUD %lx ", pud_val(*pud)); 499 if (!pud_present(*pud) || pud_large(*pud)) 500 goto out; 501 502 pmd = pmd_offset(pud, address); 503 if (bad_address(pmd)) 504 goto bad; 505 506 printk("PMD %lx ", pmd_val(*pmd)); 507 if (!pmd_present(*pmd) || pmd_large(*pmd)) 508 goto out; 509 510 pte = pte_offset_kernel(pmd, address); 511 if (bad_address(pte)) 512 goto bad; 513 514 printk("PTE %lx", pte_val(*pte)); 515 out: 516 printk("\n"); 517 return; 518 bad: 519 printk("BAD\n"); 520 } 521 522 #endif /* CONFIG_X86_64 */ 523 524 /* 525 * Workaround for K8 erratum #93 & buggy BIOS. 526 * 527 * BIOS SMM functions are required to use a specific workaround 528 * to avoid corruption of the 64bit RIP register on C stepping K8. 529 * 530 * A lot of BIOS that didn't get tested properly miss this. 531 * 532 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 533 * Try to work around it here. 534 * 535 * Note we only handle faults in kernel here. 536 * Does nothing on 32-bit. 537 */ 538 static int is_errata93(struct pt_regs *regs, unsigned long address) 539 { 540 #ifdef CONFIG_X86_64 541 static int once; 542 543 if (address != regs->ip) 544 return 0; 545 546 if ((address >> 32) != 0) 547 return 0; 548 549 address |= 0xffffffffUL << 32; 550 if ((address >= (u64)_stext && address <= (u64)_etext) || 551 (address >= MODULES_VADDR && address <= MODULES_END)) { 552 if (!once) { 553 printk(errata93_warning); 554 once = 1; 555 } 556 regs->ip = address; 557 return 1; 558 } 559 #endif 560 return 0; 561 } 562 563 /* 564 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 565 * to illegal addresses >4GB. 566 * 567 * We catch this in the page fault handler because these addresses 568 * are not reachable. Just detect this case and return. Any code 569 * segment in LDT is compatibility mode. 570 */ 571 static int is_errata100(struct pt_regs *regs, unsigned long address) 572 { 573 #ifdef CONFIG_X86_64 574 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 575 return 1; 576 #endif 577 return 0; 578 } 579 580 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 581 { 582 #ifdef CONFIG_X86_F00F_BUG 583 unsigned long nr; 584 585 /* 586 * Pentium F0 0F C7 C8 bug workaround: 587 */ 588 if (boot_cpu_data.f00f_bug) { 589 nr = (address - idt_descr.address) >> 3; 590 591 if (nr == 6) { 592 do_invalid_op(regs, 0); 593 return 1; 594 } 595 } 596 #endif 597 return 0; 598 } 599 600 static const char nx_warning[] = KERN_CRIT 601 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 602 603 static void 604 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 605 unsigned long address) 606 { 607 if (!oops_may_print()) 608 return; 609 610 if (error_code & PF_INSTR) { 611 unsigned int level; 612 613 pte_t *pte = lookup_address(address, &level); 614 615 if (pte && pte_present(*pte) && !pte_exec(*pte)) 616 printk(nx_warning, current_uid()); 617 } 618 619 printk(KERN_ALERT "BUG: unable to handle kernel "); 620 if (address < PAGE_SIZE) 621 printk(KERN_CONT "NULL pointer dereference"); 622 else 623 printk(KERN_CONT "paging request"); 624 625 printk(KERN_CONT " at %p\n", (void *) address); 626 printk(KERN_ALERT "IP:"); 627 printk_address(regs->ip, 1); 628 629 dump_pagetable(address); 630 } 631 632 static noinline void 633 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 634 unsigned long address) 635 { 636 struct task_struct *tsk; 637 unsigned long flags; 638 int sig; 639 640 flags = oops_begin(); 641 tsk = current; 642 sig = SIGKILL; 643 644 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 645 tsk->comm, address); 646 dump_pagetable(address); 647 648 tsk->thread.cr2 = address; 649 tsk->thread.trap_no = 14; 650 tsk->thread.error_code = error_code; 651 652 if (__die("Bad pagetable", regs, error_code)) 653 sig = 0; 654 655 oops_end(flags, regs, sig); 656 } 657 658 static noinline void 659 no_context(struct pt_regs *regs, unsigned long error_code, 660 unsigned long address) 661 { 662 struct task_struct *tsk = current; 663 unsigned long *stackend; 664 unsigned long flags; 665 int sig; 666 667 /* Are we prepared to handle this kernel fault? */ 668 if (fixup_exception(regs)) 669 return; 670 671 /* 672 * 32-bit: 673 * 674 * Valid to do another page fault here, because if this fault 675 * had been triggered by is_prefetch fixup_exception would have 676 * handled it. 677 * 678 * 64-bit: 679 * 680 * Hall of shame of CPU/BIOS bugs. 681 */ 682 if (is_prefetch(regs, error_code, address)) 683 return; 684 685 if (is_errata93(regs, address)) 686 return; 687 688 /* 689 * Oops. The kernel tried to access some bad page. We'll have to 690 * terminate things with extreme prejudice: 691 */ 692 flags = oops_begin(); 693 694 show_fault_oops(regs, error_code, address); 695 696 stackend = end_of_stack(tsk); 697 if (*stackend != STACK_END_MAGIC) 698 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 699 700 tsk->thread.cr2 = address; 701 tsk->thread.trap_no = 14; 702 tsk->thread.error_code = error_code; 703 704 sig = SIGKILL; 705 if (__die("Oops", regs, error_code)) 706 sig = 0; 707 708 /* Executive summary in case the body of the oops scrolled away */ 709 printk(KERN_EMERG "CR2: %016lx\n", address); 710 711 oops_end(flags, regs, sig); 712 } 713 714 /* 715 * Print out info about fatal segfaults, if the show_unhandled_signals 716 * sysctl is set: 717 */ 718 static inline void 719 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 720 unsigned long address, struct task_struct *tsk) 721 { 722 if (!unhandled_signal(tsk, SIGSEGV)) 723 return; 724 725 if (!printk_ratelimit()) 726 return; 727 728 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 729 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 730 tsk->comm, task_pid_nr(tsk), address, 731 (void *)regs->ip, (void *)regs->sp, error_code); 732 733 print_vma_addr(KERN_CONT " in ", regs->ip); 734 735 printk(KERN_CONT "\n"); 736 } 737 738 static void 739 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 740 unsigned long address, int si_code) 741 { 742 struct task_struct *tsk = current; 743 744 /* User mode accesses just cause a SIGSEGV */ 745 if (error_code & PF_USER) { 746 /* 747 * It's possible to have interrupts off here: 748 */ 749 local_irq_enable(); 750 751 /* 752 * Valid to do another page fault here because this one came 753 * from user space: 754 */ 755 if (is_prefetch(regs, error_code, address)) 756 return; 757 758 if (is_errata100(regs, address)) 759 return; 760 761 if (unlikely(show_unhandled_signals)) 762 show_signal_msg(regs, error_code, address, tsk); 763 764 /* Kernel addresses are always protection faults: */ 765 tsk->thread.cr2 = address; 766 tsk->thread.error_code = error_code | (address >= TASK_SIZE); 767 tsk->thread.trap_no = 14; 768 769 force_sig_info_fault(SIGSEGV, si_code, address, tsk); 770 771 return; 772 } 773 774 if (is_f00f_bug(regs, address)) 775 return; 776 777 no_context(regs, error_code, address); 778 } 779 780 static noinline void 781 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 782 unsigned long address) 783 { 784 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 785 } 786 787 static void 788 __bad_area(struct pt_regs *regs, unsigned long error_code, 789 unsigned long address, int si_code) 790 { 791 struct mm_struct *mm = current->mm; 792 793 /* 794 * Something tried to access memory that isn't in our memory map.. 795 * Fix it, but check if it's kernel or user first.. 796 */ 797 up_read(&mm->mmap_sem); 798 799 __bad_area_nosemaphore(regs, error_code, address, si_code); 800 } 801 802 static noinline void 803 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 804 { 805 __bad_area(regs, error_code, address, SEGV_MAPERR); 806 } 807 808 static noinline void 809 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 810 unsigned long address) 811 { 812 __bad_area(regs, error_code, address, SEGV_ACCERR); 813 } 814 815 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 816 static void 817 out_of_memory(struct pt_regs *regs, unsigned long error_code, 818 unsigned long address) 819 { 820 /* 821 * We ran out of memory, call the OOM killer, and return the userspace 822 * (which will retry the fault, or kill us if we got oom-killed): 823 */ 824 up_read(¤t->mm->mmap_sem); 825 826 pagefault_out_of_memory(); 827 } 828 829 static void 830 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) 831 { 832 struct task_struct *tsk = current; 833 struct mm_struct *mm = tsk->mm; 834 835 up_read(&mm->mmap_sem); 836 837 /* Kernel mode? Handle exceptions or die: */ 838 if (!(error_code & PF_USER)) 839 no_context(regs, error_code, address); 840 841 /* User-space => ok to do another page fault: */ 842 if (is_prefetch(regs, error_code, address)) 843 return; 844 845 tsk->thread.cr2 = address; 846 tsk->thread.error_code = error_code; 847 tsk->thread.trap_no = 14; 848 849 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); 850 } 851 852 static noinline void 853 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 854 unsigned long address, unsigned int fault) 855 { 856 if (fault & VM_FAULT_OOM) { 857 out_of_memory(regs, error_code, address); 858 } else { 859 if (fault & VM_FAULT_SIGBUS) 860 do_sigbus(regs, error_code, address); 861 else 862 BUG(); 863 } 864 } 865 866 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 867 { 868 if ((error_code & PF_WRITE) && !pte_write(*pte)) 869 return 0; 870 871 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 872 return 0; 873 874 return 1; 875 } 876 877 /* 878 * Handle a spurious fault caused by a stale TLB entry. 879 * 880 * This allows us to lazily refresh the TLB when increasing the 881 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 882 * eagerly is very expensive since that implies doing a full 883 * cross-processor TLB flush, even if no stale TLB entries exist 884 * on other processors. 885 * 886 * There are no security implications to leaving a stale TLB when 887 * increasing the permissions on a page. 888 */ 889 static noinline int 890 spurious_fault(unsigned long error_code, unsigned long address) 891 { 892 pgd_t *pgd; 893 pud_t *pud; 894 pmd_t *pmd; 895 pte_t *pte; 896 int ret; 897 898 /* Reserved-bit violation or user access to kernel space? */ 899 if (error_code & (PF_USER | PF_RSVD)) 900 return 0; 901 902 pgd = init_mm.pgd + pgd_index(address); 903 if (!pgd_present(*pgd)) 904 return 0; 905 906 pud = pud_offset(pgd, address); 907 if (!pud_present(*pud)) 908 return 0; 909 910 if (pud_large(*pud)) 911 return spurious_fault_check(error_code, (pte_t *) pud); 912 913 pmd = pmd_offset(pud, address); 914 if (!pmd_present(*pmd)) 915 return 0; 916 917 if (pmd_large(*pmd)) 918 return spurious_fault_check(error_code, (pte_t *) pmd); 919 920 pte = pte_offset_kernel(pmd, address); 921 if (!pte_present(*pte)) 922 return 0; 923 924 ret = spurious_fault_check(error_code, pte); 925 if (!ret) 926 return 0; 927 928 /* 929 * Make sure we have permissions in PMD. 930 * If not, then there's a bug in the page tables: 931 */ 932 ret = spurious_fault_check(error_code, (pte_t *) pmd); 933 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 934 935 return ret; 936 } 937 938 int show_unhandled_signals = 1; 939 940 static inline int 941 access_error(unsigned long error_code, int write, struct vm_area_struct *vma) 942 { 943 if (write) { 944 /* write, present and write, not present: */ 945 if (unlikely(!(vma->vm_flags & VM_WRITE))) 946 return 1; 947 return 0; 948 } 949 950 /* read, present: */ 951 if (unlikely(error_code & PF_PROT)) 952 return 1; 953 954 /* read, not present: */ 955 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 956 return 1; 957 958 return 0; 959 } 960 961 static int fault_in_kernel_space(unsigned long address) 962 { 963 return address >= TASK_SIZE_MAX; 964 } 965 966 /* 967 * This routine handles page faults. It determines the address, 968 * and the problem, and then passes it off to one of the appropriate 969 * routines. 970 */ 971 dotraplinkage void __kprobes 972 do_page_fault(struct pt_regs *regs, unsigned long error_code) 973 { 974 struct vm_area_struct *vma; 975 struct task_struct *tsk; 976 unsigned long address; 977 struct mm_struct *mm; 978 int write; 979 int fault; 980 981 tsk = current; 982 mm = tsk->mm; 983 984 prefetchw(&mm->mmap_sem); 985 986 /* Get the faulting address: */ 987 address = read_cr2(); 988 989 if (unlikely(kmmio_fault(regs, address))) 990 return; 991 992 /* 993 * We fault-in kernel-space virtual memory on-demand. The 994 * 'reference' page table is init_mm.pgd. 995 * 996 * NOTE! We MUST NOT take any locks for this case. We may 997 * be in an interrupt or a critical region, and should 998 * only copy the information from the master page table, 999 * nothing more. 1000 * 1001 * This verifies that the fault happens in kernel space 1002 * (error_code & 4) == 0, and that the fault was not a 1003 * protection error (error_code & 9) == 0. 1004 */ 1005 if (unlikely(fault_in_kernel_space(address))) { 1006 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && 1007 vmalloc_fault(address) >= 0) 1008 return; 1009 1010 /* Can handle a stale RO->RW TLB: */ 1011 if (spurious_fault(error_code, address)) 1012 return; 1013 1014 /* kprobes don't want to hook the spurious faults: */ 1015 if (notify_page_fault(regs)) 1016 return; 1017 /* 1018 * Don't take the mm semaphore here. If we fixup a prefetch 1019 * fault we could otherwise deadlock: 1020 */ 1021 bad_area_nosemaphore(regs, error_code, address); 1022 1023 return; 1024 } 1025 1026 /* kprobes don't want to hook the spurious faults: */ 1027 if (unlikely(notify_page_fault(regs))) 1028 return; 1029 /* 1030 * It's safe to allow irq's after cr2 has been saved and the 1031 * vmalloc fault has been handled. 1032 * 1033 * User-mode registers count as a user access even for any 1034 * potential system fault or CPU buglet: 1035 */ 1036 if (user_mode_vm(regs)) { 1037 local_irq_enable(); 1038 error_code |= PF_USER; 1039 } else { 1040 if (regs->flags & X86_EFLAGS_IF) 1041 local_irq_enable(); 1042 } 1043 1044 if (unlikely(error_code & PF_RSVD)) 1045 pgtable_bad(regs, error_code, address); 1046 1047 /* 1048 * If we're in an interrupt, have no user context or are running 1049 * in an atomic region then we must not take the fault: 1050 */ 1051 if (unlikely(in_atomic() || !mm)) { 1052 bad_area_nosemaphore(regs, error_code, address); 1053 return; 1054 } 1055 1056 /* 1057 * When running in the kernel we expect faults to occur only to 1058 * addresses in user space. All other faults represent errors in 1059 * the kernel and should generate an OOPS. Unfortunately, in the 1060 * case of an erroneous fault occurring in a code path which already 1061 * holds mmap_sem we will deadlock attempting to validate the fault 1062 * against the address space. Luckily the kernel only validly 1063 * references user space from well defined areas of code, which are 1064 * listed in the exceptions table. 1065 * 1066 * As the vast majority of faults will be valid we will only perform 1067 * the source reference check when there is a possibility of a 1068 * deadlock. Attempt to lock the address space, if we cannot we then 1069 * validate the source. If this is invalid we can skip the address 1070 * space check, thus avoiding the deadlock: 1071 */ 1072 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1073 if ((error_code & PF_USER) == 0 && 1074 !search_exception_tables(regs->ip)) { 1075 bad_area_nosemaphore(regs, error_code, address); 1076 return; 1077 } 1078 down_read(&mm->mmap_sem); 1079 } else { 1080 /* 1081 * The above down_read_trylock() might have succeeded in 1082 * which case we'll have missed the might_sleep() from 1083 * down_read(): 1084 */ 1085 might_sleep(); 1086 } 1087 1088 vma = find_vma(mm, address); 1089 if (unlikely(!vma)) { 1090 bad_area(regs, error_code, address); 1091 return; 1092 } 1093 if (likely(vma->vm_start <= address)) 1094 goto good_area; 1095 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1096 bad_area(regs, error_code, address); 1097 return; 1098 } 1099 if (error_code & PF_USER) { 1100 /* 1101 * Accessing the stack below %sp is always a bug. 1102 * The large cushion allows instructions like enter 1103 * and pusha to work. ("enter $65535, $31" pushes 1104 * 32 pointers and then decrements %sp by 65535.) 1105 */ 1106 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1107 bad_area(regs, error_code, address); 1108 return; 1109 } 1110 } 1111 if (unlikely(expand_stack(vma, address))) { 1112 bad_area(regs, error_code, address); 1113 return; 1114 } 1115 1116 /* 1117 * Ok, we have a good vm_area for this memory access, so 1118 * we can handle it.. 1119 */ 1120 good_area: 1121 write = error_code & PF_WRITE; 1122 1123 if (unlikely(access_error(error_code, write, vma))) { 1124 bad_area_access_error(regs, error_code, address); 1125 return; 1126 } 1127 1128 /* 1129 * If for any reason at all we couldn't handle the fault, 1130 * make sure we exit gracefully rather than endlessly redo 1131 * the fault: 1132 */ 1133 fault = handle_mm_fault(mm, vma, address, write); 1134 1135 if (unlikely(fault & VM_FAULT_ERROR)) { 1136 mm_fault_error(regs, error_code, address, fault); 1137 return; 1138 } 1139 1140 if (fault & VM_FAULT_MAJOR) 1141 tsk->maj_flt++; 1142 else 1143 tsk->min_flt++; 1144 1145 check_v8086_mode(regs, address, tsk); 1146 1147 up_read(&mm->mmap_sem); 1148 } 1149