1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/memblock.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/ 20 #include <linux/mm_types.h> 21 22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 23 #include <asm/traps.h> /* dotraplinkage, ... */ 24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 25 #include <asm/vsyscall.h> /* emulate_vsyscall */ 26 #include <asm/vm86.h> /* struct vm86 */ 27 #include <asm/mmu_context.h> /* vma_pkey() */ 28 #include <asm/efi.h> /* efi_recover_from_page_fault()*/ 29 #include <asm/desc.h> /* store_idt(), ... */ 30 #include <asm/cpu_entry_area.h> /* exception stack */ 31 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ 32 #include <asm/kvm_para.h> /* kvm_handle_async_pf */ 33 34 #define CREATE_TRACE_POINTS 35 #include <asm/trace/exceptions.h> 36 37 /* 38 * Returns 0 if mmiotrace is disabled, or if the fault is not 39 * handled by mmiotrace: 40 */ 41 static nokprobe_inline int 42 kmmio_fault(struct pt_regs *regs, unsigned long addr) 43 { 44 if (unlikely(is_kmmio_active())) 45 if (kmmio_handler(regs, addr) == 1) 46 return -1; 47 return 0; 48 } 49 50 /* 51 * Prefetch quirks: 52 * 53 * 32-bit mode: 54 * 55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 56 * Check that here and ignore it. 57 * 58 * 64-bit mode: 59 * 60 * Sometimes the CPU reports invalid exceptions on prefetch. 61 * Check that here and ignore it. 62 * 63 * Opcode checker based on code by Richard Brunner. 64 */ 65 static inline int 66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 67 unsigned char opcode, int *prefetch) 68 { 69 unsigned char instr_hi = opcode & 0xf0; 70 unsigned char instr_lo = opcode & 0x0f; 71 72 switch (instr_hi) { 73 case 0x20: 74 case 0x30: 75 /* 76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 77 * In X86_64 long mode, the CPU will signal invalid 78 * opcode if some of these prefixes are present so 79 * X86_64 will never get here anyway 80 */ 81 return ((instr_lo & 7) == 0x6); 82 #ifdef CONFIG_X86_64 83 case 0x40: 84 /* 85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 86 * Need to figure out under what instruction mode the 87 * instruction was issued. Could check the LDT for lm, 88 * but for now it's good enough to assume that long 89 * mode only uses well known segments or kernel. 90 */ 91 return (!user_mode(regs) || user_64bit_mode(regs)); 92 #endif 93 case 0x60: 94 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 95 return (instr_lo & 0xC) == 0x4; 96 case 0xF0: 97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 98 return !instr_lo || (instr_lo>>1) == 1; 99 case 0x00: 100 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 101 if (get_kernel_nofault(opcode, instr)) 102 return 0; 103 104 *prefetch = (instr_lo == 0xF) && 105 (opcode == 0x0D || opcode == 0x18); 106 return 0; 107 default: 108 return 0; 109 } 110 } 111 112 static int 113 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 114 { 115 unsigned char *max_instr; 116 unsigned char *instr; 117 int prefetch = 0; 118 119 /* 120 * If it was a exec (instruction fetch) fault on NX page, then 121 * do not ignore the fault: 122 */ 123 if (error_code & X86_PF_INSTR) 124 return 0; 125 126 instr = (void *)convert_ip_to_linear(current, regs); 127 max_instr = instr + 15; 128 129 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 130 return 0; 131 132 while (instr < max_instr) { 133 unsigned char opcode; 134 135 if (get_kernel_nofault(opcode, instr)) 136 break; 137 138 instr++; 139 140 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 141 break; 142 } 143 return prefetch; 144 } 145 146 DEFINE_SPINLOCK(pgd_lock); 147 LIST_HEAD(pgd_list); 148 149 #ifdef CONFIG_X86_32 150 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 151 { 152 unsigned index = pgd_index(address); 153 pgd_t *pgd_k; 154 p4d_t *p4d, *p4d_k; 155 pud_t *pud, *pud_k; 156 pmd_t *pmd, *pmd_k; 157 158 pgd += index; 159 pgd_k = init_mm.pgd + index; 160 161 if (!pgd_present(*pgd_k)) 162 return NULL; 163 164 /* 165 * set_pgd(pgd, *pgd_k); here would be useless on PAE 166 * and redundant with the set_pmd() on non-PAE. As would 167 * set_p4d/set_pud. 168 */ 169 p4d = p4d_offset(pgd, address); 170 p4d_k = p4d_offset(pgd_k, address); 171 if (!p4d_present(*p4d_k)) 172 return NULL; 173 174 pud = pud_offset(p4d, address); 175 pud_k = pud_offset(p4d_k, address); 176 if (!pud_present(*pud_k)) 177 return NULL; 178 179 pmd = pmd_offset(pud, address); 180 pmd_k = pmd_offset(pud_k, address); 181 182 if (pmd_present(*pmd) != pmd_present(*pmd_k)) 183 set_pmd(pmd, *pmd_k); 184 185 if (!pmd_present(*pmd_k)) 186 return NULL; 187 else 188 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); 189 190 return pmd_k; 191 } 192 193 void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 194 { 195 unsigned long addr; 196 197 for (addr = start & PMD_MASK; 198 addr >= TASK_SIZE_MAX && addr < VMALLOC_END; 199 addr += PMD_SIZE) { 200 struct page *page; 201 202 spin_lock(&pgd_lock); 203 list_for_each_entry(page, &pgd_list, lru) { 204 spinlock_t *pgt_lock; 205 206 /* the pgt_lock only for Xen */ 207 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 208 209 spin_lock(pgt_lock); 210 vmalloc_sync_one(page_address(page), addr); 211 spin_unlock(pgt_lock); 212 } 213 spin_unlock(&pgd_lock); 214 } 215 } 216 217 /* 218 * Did it hit the DOS screen memory VA from vm86 mode? 219 */ 220 static inline void 221 check_v8086_mode(struct pt_regs *regs, unsigned long address, 222 struct task_struct *tsk) 223 { 224 #ifdef CONFIG_VM86 225 unsigned long bit; 226 227 if (!v8086_mode(regs) || !tsk->thread.vm86) 228 return; 229 230 bit = (address - 0xA0000) >> PAGE_SHIFT; 231 if (bit < 32) 232 tsk->thread.vm86->screen_bitmap |= 1 << bit; 233 #endif 234 } 235 236 static bool low_pfn(unsigned long pfn) 237 { 238 return pfn < max_low_pfn; 239 } 240 241 static void dump_pagetable(unsigned long address) 242 { 243 pgd_t *base = __va(read_cr3_pa()); 244 pgd_t *pgd = &base[pgd_index(address)]; 245 p4d_t *p4d; 246 pud_t *pud; 247 pmd_t *pmd; 248 pte_t *pte; 249 250 #ifdef CONFIG_X86_PAE 251 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 252 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 253 goto out; 254 #define pr_pde pr_cont 255 #else 256 #define pr_pde pr_info 257 #endif 258 p4d = p4d_offset(pgd, address); 259 pud = pud_offset(p4d, address); 260 pmd = pmd_offset(pud, address); 261 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 262 #undef pr_pde 263 264 /* 265 * We must not directly access the pte in the highpte 266 * case if the page table is located in highmem. 267 * And let's rather not kmap-atomic the pte, just in case 268 * it's allocated already: 269 */ 270 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 271 goto out; 272 273 pte = pte_offset_kernel(pmd, address); 274 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 275 out: 276 pr_cont("\n"); 277 } 278 279 #else /* CONFIG_X86_64: */ 280 281 #ifdef CONFIG_CPU_SUP_AMD 282 static const char errata93_warning[] = 283 KERN_ERR 284 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 285 "******* Working around it, but it may cause SEGVs or burn power.\n" 286 "******* Please consider a BIOS update.\n" 287 "******* Disabling USB legacy in the BIOS may also help.\n"; 288 #endif 289 290 /* 291 * No vm86 mode in 64-bit mode: 292 */ 293 static inline void 294 check_v8086_mode(struct pt_regs *regs, unsigned long address, 295 struct task_struct *tsk) 296 { 297 } 298 299 static int bad_address(void *p) 300 { 301 unsigned long dummy; 302 303 return get_kernel_nofault(dummy, (unsigned long *)p); 304 } 305 306 static void dump_pagetable(unsigned long address) 307 { 308 pgd_t *base = __va(read_cr3_pa()); 309 pgd_t *pgd = base + pgd_index(address); 310 p4d_t *p4d; 311 pud_t *pud; 312 pmd_t *pmd; 313 pte_t *pte; 314 315 if (bad_address(pgd)) 316 goto bad; 317 318 pr_info("PGD %lx ", pgd_val(*pgd)); 319 320 if (!pgd_present(*pgd)) 321 goto out; 322 323 p4d = p4d_offset(pgd, address); 324 if (bad_address(p4d)) 325 goto bad; 326 327 pr_cont("P4D %lx ", p4d_val(*p4d)); 328 if (!p4d_present(*p4d) || p4d_large(*p4d)) 329 goto out; 330 331 pud = pud_offset(p4d, address); 332 if (bad_address(pud)) 333 goto bad; 334 335 pr_cont("PUD %lx ", pud_val(*pud)); 336 if (!pud_present(*pud) || pud_large(*pud)) 337 goto out; 338 339 pmd = pmd_offset(pud, address); 340 if (bad_address(pmd)) 341 goto bad; 342 343 pr_cont("PMD %lx ", pmd_val(*pmd)); 344 if (!pmd_present(*pmd) || pmd_large(*pmd)) 345 goto out; 346 347 pte = pte_offset_kernel(pmd, address); 348 if (bad_address(pte)) 349 goto bad; 350 351 pr_cont("PTE %lx", pte_val(*pte)); 352 out: 353 pr_cont("\n"); 354 return; 355 bad: 356 pr_info("BAD\n"); 357 } 358 359 #endif /* CONFIG_X86_64 */ 360 361 /* 362 * Workaround for K8 erratum #93 & buggy BIOS. 363 * 364 * BIOS SMM functions are required to use a specific workaround 365 * to avoid corruption of the 64bit RIP register on C stepping K8. 366 * 367 * A lot of BIOS that didn't get tested properly miss this. 368 * 369 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 370 * Try to work around it here. 371 * 372 * Note we only handle faults in kernel here. 373 * Does nothing on 32-bit. 374 */ 375 static int is_errata93(struct pt_regs *regs, unsigned long address) 376 { 377 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 378 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 379 || boot_cpu_data.x86 != 0xf) 380 return 0; 381 382 if (address != regs->ip) 383 return 0; 384 385 if ((address >> 32) != 0) 386 return 0; 387 388 address |= 0xffffffffUL << 32; 389 if ((address >= (u64)_stext && address <= (u64)_etext) || 390 (address >= MODULES_VADDR && address <= MODULES_END)) { 391 printk_once(errata93_warning); 392 regs->ip = address; 393 return 1; 394 } 395 #endif 396 return 0; 397 } 398 399 /* 400 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 401 * to illegal addresses >4GB. 402 * 403 * We catch this in the page fault handler because these addresses 404 * are not reachable. Just detect this case and return. Any code 405 * segment in LDT is compatibility mode. 406 */ 407 static int is_errata100(struct pt_regs *regs, unsigned long address) 408 { 409 #ifdef CONFIG_X86_64 410 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 411 return 1; 412 #endif 413 return 0; 414 } 415 416 /* Pentium F0 0F C7 C8 bug workaround: */ 417 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 418 { 419 #ifdef CONFIG_X86_F00F_BUG 420 if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) { 421 handle_invalid_op(regs); 422 return 1; 423 } 424 #endif 425 return 0; 426 } 427 428 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 429 { 430 u32 offset = (index >> 3) * sizeof(struct desc_struct); 431 unsigned long addr; 432 struct ldttss_desc desc; 433 434 if (index == 0) { 435 pr_alert("%s: NULL\n", name); 436 return; 437 } 438 439 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 440 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 441 return; 442 } 443 444 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), 445 sizeof(struct ldttss_desc))) { 446 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 447 name, index); 448 return; 449 } 450 451 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 452 #ifdef CONFIG_X86_64 453 addr |= ((u64)desc.base3 << 32); 454 #endif 455 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 456 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 457 } 458 459 static void 460 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 461 { 462 if (!oops_may_print()) 463 return; 464 465 if (error_code & X86_PF_INSTR) { 466 unsigned int level; 467 pgd_t *pgd; 468 pte_t *pte; 469 470 pgd = __va(read_cr3_pa()); 471 pgd += pgd_index(address); 472 473 pte = lookup_address_in_pgd(pgd, address, &level); 474 475 if (pte && pte_present(*pte) && !pte_exec(*pte)) 476 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 477 from_kuid(&init_user_ns, current_uid())); 478 if (pte && pte_present(*pte) && pte_exec(*pte) && 479 (pgd_flags(*pgd) & _PAGE_USER) && 480 (__read_cr4() & X86_CR4_SMEP)) 481 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 482 from_kuid(&init_user_ns, current_uid())); 483 } 484 485 if (address < PAGE_SIZE && !user_mode(regs)) 486 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", 487 (void *)address); 488 else 489 pr_alert("BUG: unable to handle page fault for address: %px\n", 490 (void *)address); 491 492 pr_alert("#PF: %s %s in %s mode\n", 493 (error_code & X86_PF_USER) ? "user" : "supervisor", 494 (error_code & X86_PF_INSTR) ? "instruction fetch" : 495 (error_code & X86_PF_WRITE) ? "write access" : 496 "read access", 497 user_mode(regs) ? "user" : "kernel"); 498 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, 499 !(error_code & X86_PF_PROT) ? "not-present page" : 500 (error_code & X86_PF_RSVD) ? "reserved bit violation" : 501 (error_code & X86_PF_PK) ? "protection keys violation" : 502 "permissions violation"); 503 504 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 505 struct desc_ptr idt, gdt; 506 u16 ldtr, tr; 507 508 /* 509 * This can happen for quite a few reasons. The more obvious 510 * ones are faults accessing the GDT, or LDT. Perhaps 511 * surprisingly, if the CPU tries to deliver a benign or 512 * contributory exception from user code and gets a page fault 513 * during delivery, the page fault can be delivered as though 514 * it originated directly from user code. This could happen 515 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 516 * kernel or IST stack. 517 */ 518 store_idt(&idt); 519 520 /* Usable even on Xen PV -- it's just slow. */ 521 native_store_gdt(&gdt); 522 523 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 524 idt.address, idt.size, gdt.address, gdt.size); 525 526 store_ldt(ldtr); 527 show_ldttss(&gdt, "LDTR", ldtr); 528 529 store_tr(tr); 530 show_ldttss(&gdt, "TR", tr); 531 } 532 533 dump_pagetable(address); 534 } 535 536 static noinline void 537 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 538 unsigned long address) 539 { 540 struct task_struct *tsk; 541 unsigned long flags; 542 int sig; 543 544 flags = oops_begin(); 545 tsk = current; 546 sig = SIGKILL; 547 548 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 549 tsk->comm, address); 550 dump_pagetable(address); 551 552 if (__die("Bad pagetable", regs, error_code)) 553 sig = 0; 554 555 oops_end(flags, regs, sig); 556 } 557 558 static void set_signal_archinfo(unsigned long address, 559 unsigned long error_code) 560 { 561 struct task_struct *tsk = current; 562 563 /* 564 * To avoid leaking information about the kernel page 565 * table layout, pretend that user-mode accesses to 566 * kernel addresses are always protection faults. 567 * 568 * NB: This means that failed vsyscalls with vsyscall=none 569 * will have the PROT bit. This doesn't leak any 570 * information and does not appear to cause any problems. 571 */ 572 if (address >= TASK_SIZE_MAX) 573 error_code |= X86_PF_PROT; 574 575 tsk->thread.trap_nr = X86_TRAP_PF; 576 tsk->thread.error_code = error_code | X86_PF_USER; 577 tsk->thread.cr2 = address; 578 } 579 580 static noinline void 581 no_context(struct pt_regs *regs, unsigned long error_code, 582 unsigned long address, int signal, int si_code) 583 { 584 struct task_struct *tsk = current; 585 unsigned long flags; 586 int sig; 587 588 if (user_mode(regs)) { 589 /* 590 * This is an implicit supervisor-mode access from user 591 * mode. Bypass all the kernel-mode recovery code and just 592 * OOPS. 593 */ 594 goto oops; 595 } 596 597 /* Are we prepared to handle this kernel fault? */ 598 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 599 /* 600 * Any interrupt that takes a fault gets the fixup. This makes 601 * the below recursive fault logic only apply to a faults from 602 * task context. 603 */ 604 if (in_interrupt()) 605 return; 606 607 /* 608 * Per the above we're !in_interrupt(), aka. task context. 609 * 610 * In this case we need to make sure we're not recursively 611 * faulting through the emulate_vsyscall() logic. 612 */ 613 if (current->thread.sig_on_uaccess_err && signal) { 614 set_signal_archinfo(address, error_code); 615 616 /* XXX: hwpoison faults will set the wrong code. */ 617 force_sig_fault(signal, si_code, (void __user *)address); 618 } 619 620 /* 621 * Barring that, we can do the fixup and be happy. 622 */ 623 return; 624 } 625 626 #ifdef CONFIG_VMAP_STACK 627 /* 628 * Stack overflow? During boot, we can fault near the initial 629 * stack in the direct map, but that's not an overflow -- check 630 * that we're in vmalloc space to avoid this. 631 */ 632 if (is_vmalloc_addr((void *)address) && 633 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 634 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 635 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *); 636 /* 637 * We're likely to be running with very little stack space 638 * left. It's plausible that we'd hit this condition but 639 * double-fault even before we get this far, in which case 640 * we're fine: the double-fault handler will deal with it. 641 * 642 * We don't want to make it all the way into the oops code 643 * and then double-fault, though, because we're likely to 644 * break the console driver and lose most of the stack dump. 645 */ 646 asm volatile ("movq %[stack], %%rsp\n\t" 647 "call handle_stack_overflow\n\t" 648 "1: jmp 1b" 649 : ASM_CALL_CONSTRAINT 650 : "D" ("kernel stack overflow (page fault)"), 651 "S" (regs), "d" (address), 652 [stack] "rm" (stack)); 653 unreachable(); 654 } 655 #endif 656 657 /* 658 * 32-bit: 659 * 660 * Valid to do another page fault here, because if this fault 661 * had been triggered by is_prefetch fixup_exception would have 662 * handled it. 663 * 664 * 64-bit: 665 * 666 * Hall of shame of CPU/BIOS bugs. 667 */ 668 if (is_prefetch(regs, error_code, address)) 669 return; 670 671 if (is_errata93(regs, address)) 672 return; 673 674 /* 675 * Buggy firmware could access regions which might page fault, try to 676 * recover from such faults. 677 */ 678 if (IS_ENABLED(CONFIG_EFI)) 679 efi_recover_from_page_fault(address); 680 681 oops: 682 /* 683 * Oops. The kernel tried to access some bad page. We'll have to 684 * terminate things with extreme prejudice: 685 */ 686 flags = oops_begin(); 687 688 show_fault_oops(regs, error_code, address); 689 690 if (task_stack_end_corrupted(tsk)) 691 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 692 693 sig = SIGKILL; 694 if (__die("Oops", regs, error_code)) 695 sig = 0; 696 697 /* Executive summary in case the body of the oops scrolled away */ 698 printk(KERN_DEFAULT "CR2: %016lx\n", address); 699 700 oops_end(flags, regs, sig); 701 } 702 703 /* 704 * Print out info about fatal segfaults, if the show_unhandled_signals 705 * sysctl is set: 706 */ 707 static inline void 708 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 709 unsigned long address, struct task_struct *tsk) 710 { 711 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 712 713 if (!unhandled_signal(tsk, SIGSEGV)) 714 return; 715 716 if (!printk_ratelimit()) 717 return; 718 719 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 720 loglvl, tsk->comm, task_pid_nr(tsk), address, 721 (void *)regs->ip, (void *)regs->sp, error_code); 722 723 print_vma_addr(KERN_CONT " in ", regs->ip); 724 725 printk(KERN_CONT "\n"); 726 727 show_opcodes(regs, loglvl); 728 } 729 730 /* 731 * The (legacy) vsyscall page is the long page in the kernel portion 732 * of the address space that has user-accessible permissions. 733 */ 734 static bool is_vsyscall_vaddr(unsigned long vaddr) 735 { 736 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 737 } 738 739 static void 740 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 741 unsigned long address, u32 pkey, int si_code) 742 { 743 struct task_struct *tsk = current; 744 745 /* User mode accesses just cause a SIGSEGV */ 746 if (user_mode(regs) && (error_code & X86_PF_USER)) { 747 /* 748 * It's possible to have interrupts off here: 749 */ 750 local_irq_enable(); 751 752 /* 753 * Valid to do another page fault here because this one came 754 * from user space: 755 */ 756 if (is_prefetch(regs, error_code, address)) 757 return; 758 759 if (is_errata100(regs, address)) 760 return; 761 762 /* 763 * To avoid leaking information about the kernel page table 764 * layout, pretend that user-mode accesses to kernel addresses 765 * are always protection faults. 766 */ 767 if (address >= TASK_SIZE_MAX) 768 error_code |= X86_PF_PROT; 769 770 if (likely(show_unhandled_signals)) 771 show_signal_msg(regs, error_code, address, tsk); 772 773 set_signal_archinfo(address, error_code); 774 775 if (si_code == SEGV_PKUERR) 776 force_sig_pkuerr((void __user *)address, pkey); 777 778 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 779 780 local_irq_disable(); 781 782 return; 783 } 784 785 if (is_f00f_bug(regs, address)) 786 return; 787 788 no_context(regs, error_code, address, SIGSEGV, si_code); 789 } 790 791 static noinline void 792 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 793 unsigned long address) 794 { 795 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 796 } 797 798 static void 799 __bad_area(struct pt_regs *regs, unsigned long error_code, 800 unsigned long address, u32 pkey, int si_code) 801 { 802 struct mm_struct *mm = current->mm; 803 /* 804 * Something tried to access memory that isn't in our memory map.. 805 * Fix it, but check if it's kernel or user first.. 806 */ 807 mmap_read_unlock(mm); 808 809 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 810 } 811 812 static noinline void 813 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 814 { 815 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 816 } 817 818 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 819 struct vm_area_struct *vma) 820 { 821 /* This code is always called on the current mm */ 822 bool foreign = false; 823 824 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 825 return false; 826 if (error_code & X86_PF_PK) 827 return true; 828 /* this checks permission keys on the VMA: */ 829 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 830 (error_code & X86_PF_INSTR), foreign)) 831 return true; 832 return false; 833 } 834 835 static noinline void 836 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 837 unsigned long address, struct vm_area_struct *vma) 838 { 839 /* 840 * This OSPKE check is not strictly necessary at runtime. 841 * But, doing it this way allows compiler optimizations 842 * if pkeys are compiled out. 843 */ 844 if (bad_area_access_from_pkeys(error_code, vma)) { 845 /* 846 * A protection key fault means that the PKRU value did not allow 847 * access to some PTE. Userspace can figure out what PKRU was 848 * from the XSAVE state. This function captures the pkey from 849 * the vma and passes it to userspace so userspace can discover 850 * which protection key was set on the PTE. 851 * 852 * If we get here, we know that the hardware signaled a X86_PF_PK 853 * fault and that there was a VMA once we got in the fault 854 * handler. It does *not* guarantee that the VMA we find here 855 * was the one that we faulted on. 856 * 857 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 858 * 2. T1 : set PKRU to deny access to pkey=4, touches page 859 * 3. T1 : faults... 860 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 861 * 5. T1 : enters fault handler, takes mmap_lock, etc... 862 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 863 * faulted on a pte with its pkey=4. 864 */ 865 u32 pkey = vma_pkey(vma); 866 867 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 868 } else { 869 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 870 } 871 } 872 873 static void 874 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 875 vm_fault_t fault) 876 { 877 /* Kernel mode? Handle exceptions or die: */ 878 if (!(error_code & X86_PF_USER)) { 879 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 880 return; 881 } 882 883 /* User-space => ok to do another page fault: */ 884 if (is_prefetch(regs, error_code, address)) 885 return; 886 887 set_signal_archinfo(address, error_code); 888 889 #ifdef CONFIG_MEMORY_FAILURE 890 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 891 struct task_struct *tsk = current; 892 unsigned lsb = 0; 893 894 pr_err( 895 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 896 tsk->comm, tsk->pid, address); 897 if (fault & VM_FAULT_HWPOISON_LARGE) 898 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 899 if (fault & VM_FAULT_HWPOISON) 900 lsb = PAGE_SHIFT; 901 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 902 return; 903 } 904 #endif 905 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 906 } 907 908 static noinline void 909 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 910 unsigned long address, vm_fault_t fault) 911 { 912 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { 913 no_context(regs, error_code, address, 0, 0); 914 return; 915 } 916 917 if (fault & VM_FAULT_OOM) { 918 /* Kernel mode? Handle exceptions or die: */ 919 if (!(error_code & X86_PF_USER)) { 920 no_context(regs, error_code, address, 921 SIGSEGV, SEGV_MAPERR); 922 return; 923 } 924 925 /* 926 * We ran out of memory, call the OOM killer, and return the 927 * userspace (which will retry the fault, or kill us if we got 928 * oom-killed): 929 */ 930 pagefault_out_of_memory(); 931 } else { 932 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 933 VM_FAULT_HWPOISON_LARGE)) 934 do_sigbus(regs, error_code, address, fault); 935 else if (fault & VM_FAULT_SIGSEGV) 936 bad_area_nosemaphore(regs, error_code, address); 937 else 938 BUG(); 939 } 940 } 941 942 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 943 { 944 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 945 return 0; 946 947 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 948 return 0; 949 950 return 1; 951 } 952 953 /* 954 * Handle a spurious fault caused by a stale TLB entry. 955 * 956 * This allows us to lazily refresh the TLB when increasing the 957 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 958 * eagerly is very expensive since that implies doing a full 959 * cross-processor TLB flush, even if no stale TLB entries exist 960 * on other processors. 961 * 962 * Spurious faults may only occur if the TLB contains an entry with 963 * fewer permission than the page table entry. Non-present (P = 0) 964 * and reserved bit (R = 1) faults are never spurious. 965 * 966 * There are no security implications to leaving a stale TLB when 967 * increasing the permissions on a page. 968 * 969 * Returns non-zero if a spurious fault was handled, zero otherwise. 970 * 971 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 972 * (Optional Invalidation). 973 */ 974 static noinline int 975 spurious_kernel_fault(unsigned long error_code, unsigned long address) 976 { 977 pgd_t *pgd; 978 p4d_t *p4d; 979 pud_t *pud; 980 pmd_t *pmd; 981 pte_t *pte; 982 int ret; 983 984 /* 985 * Only writes to RO or instruction fetches from NX may cause 986 * spurious faults. 987 * 988 * These could be from user or supervisor accesses but the TLB 989 * is only lazily flushed after a kernel mapping protection 990 * change, so user accesses are not expected to cause spurious 991 * faults. 992 */ 993 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 994 error_code != (X86_PF_INSTR | X86_PF_PROT)) 995 return 0; 996 997 pgd = init_mm.pgd + pgd_index(address); 998 if (!pgd_present(*pgd)) 999 return 0; 1000 1001 p4d = p4d_offset(pgd, address); 1002 if (!p4d_present(*p4d)) 1003 return 0; 1004 1005 if (p4d_large(*p4d)) 1006 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1007 1008 pud = pud_offset(p4d, address); 1009 if (!pud_present(*pud)) 1010 return 0; 1011 1012 if (pud_large(*pud)) 1013 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1014 1015 pmd = pmd_offset(pud, address); 1016 if (!pmd_present(*pmd)) 1017 return 0; 1018 1019 if (pmd_large(*pmd)) 1020 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1021 1022 pte = pte_offset_kernel(pmd, address); 1023 if (!pte_present(*pte)) 1024 return 0; 1025 1026 ret = spurious_kernel_fault_check(error_code, pte); 1027 if (!ret) 1028 return 0; 1029 1030 /* 1031 * Make sure we have permissions in PMD. 1032 * If not, then there's a bug in the page tables: 1033 */ 1034 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1035 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1036 1037 return ret; 1038 } 1039 NOKPROBE_SYMBOL(spurious_kernel_fault); 1040 1041 int show_unhandled_signals = 1; 1042 1043 static inline int 1044 access_error(unsigned long error_code, struct vm_area_struct *vma) 1045 { 1046 /* This is only called for the current mm, so: */ 1047 bool foreign = false; 1048 1049 /* 1050 * Read or write was blocked by protection keys. This is 1051 * always an unconditional error and can never result in 1052 * a follow-up action to resolve the fault, like a COW. 1053 */ 1054 if (error_code & X86_PF_PK) 1055 return 1; 1056 1057 /* 1058 * Make sure to check the VMA so that we do not perform 1059 * faults just to hit a X86_PF_PK as soon as we fill in a 1060 * page. 1061 */ 1062 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1063 (error_code & X86_PF_INSTR), foreign)) 1064 return 1; 1065 1066 if (error_code & X86_PF_WRITE) { 1067 /* write, present and write, not present: */ 1068 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1069 return 1; 1070 return 0; 1071 } 1072 1073 /* read, present: */ 1074 if (unlikely(error_code & X86_PF_PROT)) 1075 return 1; 1076 1077 /* read, not present: */ 1078 if (unlikely(!vma_is_accessible(vma))) 1079 return 1; 1080 1081 return 0; 1082 } 1083 1084 static int fault_in_kernel_space(unsigned long address) 1085 { 1086 /* 1087 * On 64-bit systems, the vsyscall page is at an address above 1088 * TASK_SIZE_MAX, but is not considered part of the kernel 1089 * address space. 1090 */ 1091 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1092 return false; 1093 1094 return address >= TASK_SIZE_MAX; 1095 } 1096 1097 /* 1098 * Called for all faults where 'address' is part of the kernel address 1099 * space. Might get called for faults that originate from *code* that 1100 * ran in userspace or the kernel. 1101 */ 1102 static void 1103 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1104 unsigned long address) 1105 { 1106 /* 1107 * Protection keys exceptions only happen on user pages. We 1108 * have no user pages in the kernel portion of the address 1109 * space, so do not expect them here. 1110 */ 1111 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1112 1113 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1114 if (spurious_kernel_fault(hw_error_code, address)) 1115 return; 1116 1117 /* kprobes don't want to hook the spurious faults: */ 1118 if (kprobe_page_fault(regs, X86_TRAP_PF)) 1119 return; 1120 1121 /* 1122 * Note, despite being a "bad area", there are quite a few 1123 * acceptable reasons to get here, such as erratum fixups 1124 * and handling kernel code that can fault, like get_user(). 1125 * 1126 * Don't take the mm semaphore here. If we fixup a prefetch 1127 * fault we could otherwise deadlock: 1128 */ 1129 bad_area_nosemaphore(regs, hw_error_code, address); 1130 } 1131 NOKPROBE_SYMBOL(do_kern_addr_fault); 1132 1133 /* Handle faults in the user portion of the address space */ 1134 static inline 1135 void do_user_addr_fault(struct pt_regs *regs, 1136 unsigned long hw_error_code, 1137 unsigned long address) 1138 { 1139 struct vm_area_struct *vma; 1140 struct task_struct *tsk; 1141 struct mm_struct *mm; 1142 vm_fault_t fault; 1143 unsigned int flags = FAULT_FLAG_DEFAULT; 1144 1145 tsk = current; 1146 mm = tsk->mm; 1147 1148 /* kprobes don't want to hook the spurious faults: */ 1149 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF))) 1150 return; 1151 1152 /* 1153 * Reserved bits are never expected to be set on 1154 * entries in the user portion of the page tables. 1155 */ 1156 if (unlikely(hw_error_code & X86_PF_RSVD)) 1157 pgtable_bad(regs, hw_error_code, address); 1158 1159 /* 1160 * If SMAP is on, check for invalid kernel (supervisor) access to user 1161 * pages in the user address space. The odd case here is WRUSS, 1162 * which, according to the preliminary documentation, does not respect 1163 * SMAP and will have the USER bit set so, in all cases, SMAP 1164 * enforcement appears to be consistent with the USER bit. 1165 */ 1166 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1167 !(hw_error_code & X86_PF_USER) && 1168 !(regs->flags & X86_EFLAGS_AC))) 1169 { 1170 bad_area_nosemaphore(regs, hw_error_code, address); 1171 return; 1172 } 1173 1174 /* 1175 * If we're in an interrupt, have no user context or are running 1176 * in a region with pagefaults disabled then we must not take the fault 1177 */ 1178 if (unlikely(faulthandler_disabled() || !mm)) { 1179 bad_area_nosemaphore(regs, hw_error_code, address); 1180 return; 1181 } 1182 1183 /* 1184 * It's safe to allow irq's after cr2 has been saved and the 1185 * vmalloc fault has been handled. 1186 * 1187 * User-mode registers count as a user access even for any 1188 * potential system fault or CPU buglet: 1189 */ 1190 if (user_mode(regs)) { 1191 local_irq_enable(); 1192 flags |= FAULT_FLAG_USER; 1193 } else { 1194 if (regs->flags & X86_EFLAGS_IF) 1195 local_irq_enable(); 1196 } 1197 1198 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1199 1200 if (hw_error_code & X86_PF_WRITE) 1201 flags |= FAULT_FLAG_WRITE; 1202 if (hw_error_code & X86_PF_INSTR) 1203 flags |= FAULT_FLAG_INSTRUCTION; 1204 1205 #ifdef CONFIG_X86_64 1206 /* 1207 * Faults in the vsyscall page might need emulation. The 1208 * vsyscall page is at a high address (>PAGE_OFFSET), but is 1209 * considered to be part of the user address space. 1210 * 1211 * The vsyscall page does not have a "real" VMA, so do this 1212 * emulation before we go searching for VMAs. 1213 * 1214 * PKRU never rejects instruction fetches, so we don't need 1215 * to consider the PF_PK bit. 1216 */ 1217 if (is_vsyscall_vaddr(address)) { 1218 if (emulate_vsyscall(hw_error_code, regs, address)) 1219 return; 1220 } 1221 #endif 1222 1223 /* 1224 * Kernel-mode access to the user address space should only occur 1225 * on well-defined single instructions listed in the exception 1226 * tables. But, an erroneous kernel fault occurring outside one of 1227 * those areas which also holds mmap_lock might deadlock attempting 1228 * to validate the fault against the address space. 1229 * 1230 * Only do the expensive exception table search when we might be at 1231 * risk of a deadlock. This happens if we 1232 * 1. Failed to acquire mmap_lock, and 1233 * 2. The access did not originate in userspace. 1234 */ 1235 if (unlikely(!mmap_read_trylock(mm))) { 1236 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1237 /* 1238 * Fault from code in kernel from 1239 * which we do not expect faults. 1240 */ 1241 bad_area_nosemaphore(regs, hw_error_code, address); 1242 return; 1243 } 1244 retry: 1245 mmap_read_lock(mm); 1246 } else { 1247 /* 1248 * The above down_read_trylock() might have succeeded in 1249 * which case we'll have missed the might_sleep() from 1250 * down_read(): 1251 */ 1252 might_sleep(); 1253 } 1254 1255 vma = find_vma(mm, address); 1256 if (unlikely(!vma)) { 1257 bad_area(regs, hw_error_code, address); 1258 return; 1259 } 1260 if (likely(vma->vm_start <= address)) 1261 goto good_area; 1262 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1263 bad_area(regs, hw_error_code, address); 1264 return; 1265 } 1266 if (unlikely(expand_stack(vma, address))) { 1267 bad_area(regs, hw_error_code, address); 1268 return; 1269 } 1270 1271 /* 1272 * Ok, we have a good vm_area for this memory access, so 1273 * we can handle it.. 1274 */ 1275 good_area: 1276 if (unlikely(access_error(hw_error_code, vma))) { 1277 bad_area_access_error(regs, hw_error_code, address, vma); 1278 return; 1279 } 1280 1281 /* 1282 * If for any reason at all we couldn't handle the fault, 1283 * make sure we exit gracefully rather than endlessly redo 1284 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1285 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. 1286 * 1287 * Note that handle_userfault() may also release and reacquire mmap_lock 1288 * (and not return with VM_FAULT_RETRY), when returning to userland to 1289 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1290 * (potentially after handling any pending signal during the return to 1291 * userland). The return to userland is identified whenever 1292 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1293 */ 1294 fault = handle_mm_fault(vma, address, flags, regs); 1295 1296 /* Quick path to respond to signals */ 1297 if (fault_signal_pending(fault, regs)) { 1298 if (!user_mode(regs)) 1299 no_context(regs, hw_error_code, address, SIGBUS, 1300 BUS_ADRERR); 1301 return; 1302 } 1303 1304 /* 1305 * If we need to retry the mmap_lock has already been released, 1306 * and if there is a fatal signal pending there is no guarantee 1307 * that we made any progress. Handle this case first. 1308 */ 1309 if (unlikely((fault & VM_FAULT_RETRY) && 1310 (flags & FAULT_FLAG_ALLOW_RETRY))) { 1311 flags |= FAULT_FLAG_TRIED; 1312 goto retry; 1313 } 1314 1315 mmap_read_unlock(mm); 1316 if (unlikely(fault & VM_FAULT_ERROR)) { 1317 mm_fault_error(regs, hw_error_code, address, fault); 1318 return; 1319 } 1320 1321 check_v8086_mode(regs, address, tsk); 1322 } 1323 NOKPROBE_SYMBOL(do_user_addr_fault); 1324 1325 static __always_inline void 1326 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, 1327 unsigned long address) 1328 { 1329 if (!trace_pagefault_enabled()) 1330 return; 1331 1332 if (user_mode(regs)) 1333 trace_page_fault_user(address, regs, error_code); 1334 else 1335 trace_page_fault_kernel(address, regs, error_code); 1336 } 1337 1338 static __always_inline void 1339 handle_page_fault(struct pt_regs *regs, unsigned long error_code, 1340 unsigned long address) 1341 { 1342 trace_page_fault_entries(regs, error_code, address); 1343 1344 if (unlikely(kmmio_fault(regs, address))) 1345 return; 1346 1347 /* Was the fault on kernel-controlled part of the address space? */ 1348 if (unlikely(fault_in_kernel_space(address))) { 1349 do_kern_addr_fault(regs, error_code, address); 1350 } else { 1351 do_user_addr_fault(regs, error_code, address); 1352 /* 1353 * User address page fault handling might have reenabled 1354 * interrupts. Fixing up all potential exit points of 1355 * do_user_addr_fault() and its leaf functions is just not 1356 * doable w/o creating an unholy mess or turning the code 1357 * upside down. 1358 */ 1359 local_irq_disable(); 1360 } 1361 } 1362 1363 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) 1364 { 1365 unsigned long address = read_cr2(); 1366 irqentry_state_t state; 1367 1368 prefetchw(¤t->mm->mmap_lock); 1369 1370 /* 1371 * KVM has two types of events that are, logically, interrupts, but 1372 * are unfortunately delivered using the #PF vector. These events are 1373 * "you just accessed valid memory, but the host doesn't have it right 1374 * now, so I'll put you to sleep if you continue" and "that memory 1375 * you tried to access earlier is available now." 1376 * 1377 * We are relying on the interrupted context being sane (valid RSP, 1378 * relevant locks not held, etc.), which is fine as long as the 1379 * interrupted context had IF=1. We are also relying on the KVM 1380 * async pf type field and CR2 being read consistently instead of 1381 * getting values from real and async page faults mixed up. 1382 * 1383 * Fingers crossed. 1384 * 1385 * The async #PF handling code takes care of idtentry handling 1386 * itself. 1387 */ 1388 if (kvm_handle_async_pf(regs, (u32)address)) 1389 return; 1390 1391 /* 1392 * Entry handling for valid #PF from kernel mode is slightly 1393 * different: RCU is already watching and rcu_irq_enter() must not 1394 * be invoked because a kernel fault on a user space address might 1395 * sleep. 1396 * 1397 * In case the fault hit a RCU idle region the conditional entry 1398 * code reenabled RCU to avoid subsequent wreckage which helps 1399 * debugability. 1400 */ 1401 state = irqentry_enter(regs); 1402 1403 instrumentation_begin(); 1404 handle_page_fault(regs, error_code, address); 1405 instrumentation_end(); 1406 1407 irqentry_exit(regs, state); 1408 } 1409