xref: /openbmc/linux/arch/x86/mm/fault.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Returns 0 if mmiotrace is disabled, or if the fault is not
33  * handled by mmiotrace:
34  */
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
37 {
38 	if (unlikely(is_kmmio_active()))
39 		if (kmmio_handler(regs, addr) == 1)
40 			return -1;
41 	return 0;
42 }
43 
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45 {
46 	int ret = 0;
47 
48 	/* kprobe_running() needs smp_processor_id() */
49 	if (kprobes_built_in() && !user_mode(regs)) {
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 
59 /*
60  * Prefetch quirks:
61  *
62  * 32-bit mode:
63  *
64  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65  *   Check that here and ignore it.
66  *
67  * 64-bit mode:
68  *
69  *   Sometimes the CPU reports invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * Opcode checker based on code by Richard Brunner.
73  */
74 static inline int
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 		      unsigned char opcode, int *prefetch)
77 {
78 	unsigned char instr_hi = opcode & 0xf0;
79 	unsigned char instr_lo = opcode & 0x0f;
80 
81 	switch (instr_hi) {
82 	case 0x20:
83 	case 0x30:
84 		/*
85 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 		 * In X86_64 long mode, the CPU will signal invalid
87 		 * opcode if some of these prefixes are present so
88 		 * X86_64 will never get here anyway
89 		 */
90 		return ((instr_lo & 7) == 0x6);
91 #ifdef CONFIG_X86_64
92 	case 0x40:
93 		/*
94 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 		 * Need to figure out under what instruction mode the
96 		 * instruction was issued. Could check the LDT for lm,
97 		 * but for now it's good enough to assume that long
98 		 * mode only uses well known segments or kernel.
99 		 */
100 		return (!user_mode(regs) || user_64bit_mode(regs));
101 #endif
102 	case 0x60:
103 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
104 		return (instr_lo & 0xC) == 0x4;
105 	case 0xF0:
106 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 		return !instr_lo || (instr_lo>>1) == 1;
108 	case 0x00:
109 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
110 		if (probe_kernel_address(instr, opcode))
111 			return 0;
112 
113 		*prefetch = (instr_lo == 0xF) &&
114 			(opcode == 0x0D || opcode == 0x18);
115 		return 0;
116 	default:
117 		return 0;
118 	}
119 }
120 
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 	unsigned char *max_instr;
125 	unsigned char *instr;
126 	int prefetch = 0;
127 
128 	/*
129 	 * If it was a exec (instruction fetch) fault on NX page, then
130 	 * do not ignore the fault:
131 	 */
132 	if (error_code & X86_PF_INSTR)
133 		return 0;
134 
135 	instr = (void *)convert_ip_to_linear(current, regs);
136 	max_instr = instr + 15;
137 
138 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 		return 0;
140 
141 	while (instr < max_instr) {
142 		unsigned char opcode;
143 
144 		if (probe_kernel_address(instr, opcode))
145 			break;
146 
147 		instr++;
148 
149 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 			break;
151 	}
152 	return prefetch;
153 }
154 
155 /*
156  * A protection key fault means that the PKRU value did not allow
157  * access to some PTE.  Userspace can figure out what PKRU was
158  * from the XSAVE state, and this function fills out a field in
159  * siginfo so userspace can discover which protection key was set
160  * on the PTE.
161  *
162  * If we get here, we know that the hardware signaled a X86_PF_PK
163  * fault and that there was a VMA once we got in the fault
164  * handler.  It does *not* guarantee that the VMA we find here
165  * was the one that we faulted on.
166  *
167  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
168  * 2. T1   : set PKRU to deny access to pkey=4, touches page
169  * 3. T1   : faults...
170  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171  * 5. T1   : enters fault handler, takes mmap_sem, etc...
172  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
173  *	     faulted on a pte with its pkey=4.
174  */
175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 		u32 *pkey)
177 {
178 	/* This is effectively an #ifdef */
179 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 		return;
181 
182 	/* Fault not from Protection Keys: nothing to do */
183 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 		return;
185 	/*
186 	 * force_sig_info_fault() is called from a number of
187 	 * contexts, some of which have a VMA and some of which
188 	 * do not.  The X86_PF_PK handing happens after we have a
189 	 * valid VMA, so we should never reach this without a
190 	 * valid VMA.
191 	 */
192 	if (!pkey) {
193 		WARN_ONCE(1, "PKU fault with no VMA passed in");
194 		info->si_pkey = 0;
195 		return;
196 	}
197 	/*
198 	 * si_pkey should be thought of as a strong hint, but not
199 	 * absolutely guranteed to be 100% accurate because of
200 	 * the race explained above.
201 	 */
202 	info->si_pkey = *pkey;
203 }
204 
205 static void
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 		     struct task_struct *tsk, u32 *pkey, int fault)
208 {
209 	unsigned lsb = 0;
210 	siginfo_t info;
211 
212 	info.si_signo	= si_signo;
213 	info.si_errno	= 0;
214 	info.si_code	= si_code;
215 	info.si_addr	= (void __user *)address;
216 	if (fault & VM_FAULT_HWPOISON_LARGE)
217 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
218 	if (fault & VM_FAULT_HWPOISON)
219 		lsb = PAGE_SHIFT;
220 	info.si_addr_lsb = lsb;
221 
222 	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
223 
224 	force_sig_info(si_signo, &info, tsk);
225 }
226 
227 DEFINE_SPINLOCK(pgd_lock);
228 LIST_HEAD(pgd_list);
229 
230 #ifdef CONFIG_X86_32
231 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
232 {
233 	unsigned index = pgd_index(address);
234 	pgd_t *pgd_k;
235 	p4d_t *p4d, *p4d_k;
236 	pud_t *pud, *pud_k;
237 	pmd_t *pmd, *pmd_k;
238 
239 	pgd += index;
240 	pgd_k = init_mm.pgd + index;
241 
242 	if (!pgd_present(*pgd_k))
243 		return NULL;
244 
245 	/*
246 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 	 * and redundant with the set_pmd() on non-PAE. As would
248 	 * set_p4d/set_pud.
249 	 */
250 	p4d = p4d_offset(pgd, address);
251 	p4d_k = p4d_offset(pgd_k, address);
252 	if (!p4d_present(*p4d_k))
253 		return NULL;
254 
255 	pud = pud_offset(p4d, address);
256 	pud_k = pud_offset(p4d_k, address);
257 	if (!pud_present(*pud_k))
258 		return NULL;
259 
260 	pmd = pmd_offset(pud, address);
261 	pmd_k = pmd_offset(pud_k, address);
262 	if (!pmd_present(*pmd_k))
263 		return NULL;
264 
265 	if (!pmd_present(*pmd))
266 		set_pmd(pmd, *pmd_k);
267 	else
268 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
269 
270 	return pmd_k;
271 }
272 
273 void vmalloc_sync_all(void)
274 {
275 	unsigned long address;
276 
277 	if (SHARED_KERNEL_PMD)
278 		return;
279 
280 	for (address = VMALLOC_START & PMD_MASK;
281 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
282 	     address += PMD_SIZE) {
283 		struct page *page;
284 
285 		spin_lock(&pgd_lock);
286 		list_for_each_entry(page, &pgd_list, lru) {
287 			spinlock_t *pgt_lock;
288 			pmd_t *ret;
289 
290 			/* the pgt_lock only for Xen */
291 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
292 
293 			spin_lock(pgt_lock);
294 			ret = vmalloc_sync_one(page_address(page), address);
295 			spin_unlock(pgt_lock);
296 
297 			if (!ret)
298 				break;
299 		}
300 		spin_unlock(&pgd_lock);
301 	}
302 }
303 
304 /*
305  * 32-bit:
306  *
307  *   Handle a fault on the vmalloc or module mapping area
308  */
309 static noinline int vmalloc_fault(unsigned long address)
310 {
311 	unsigned long pgd_paddr;
312 	pmd_t *pmd_k;
313 	pte_t *pte_k;
314 
315 	/* Make sure we are in vmalloc area: */
316 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
317 		return -1;
318 
319 	WARN_ON_ONCE(in_nmi());
320 
321 	/*
322 	 * Synchronize this task's top level page-table
323 	 * with the 'reference' page table.
324 	 *
325 	 * Do _not_ use "current" here. We might be inside
326 	 * an interrupt in the middle of a task switch..
327 	 */
328 	pgd_paddr = read_cr3_pa();
329 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 	if (!pmd_k)
331 		return -1;
332 
333 	if (pmd_large(*pmd_k))
334 		return 0;
335 
336 	pte_k = pte_offset_kernel(pmd_k, address);
337 	if (!pte_present(*pte_k))
338 		return -1;
339 
340 	return 0;
341 }
342 NOKPROBE_SYMBOL(vmalloc_fault);
343 
344 /*
345  * Did it hit the DOS screen memory VA from vm86 mode?
346  */
347 static inline void
348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 		 struct task_struct *tsk)
350 {
351 #ifdef CONFIG_VM86
352 	unsigned long bit;
353 
354 	if (!v8086_mode(regs) || !tsk->thread.vm86)
355 		return;
356 
357 	bit = (address - 0xA0000) >> PAGE_SHIFT;
358 	if (bit < 32)
359 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
360 #endif
361 }
362 
363 static bool low_pfn(unsigned long pfn)
364 {
365 	return pfn < max_low_pfn;
366 }
367 
368 static void dump_pagetable(unsigned long address)
369 {
370 	pgd_t *base = __va(read_cr3_pa());
371 	pgd_t *pgd = &base[pgd_index(address)];
372 	p4d_t *p4d;
373 	pud_t *pud;
374 	pmd_t *pmd;
375 	pte_t *pte;
376 
377 #ifdef CONFIG_X86_PAE
378 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 		goto out;
381 #define pr_pde pr_cont
382 #else
383 #define pr_pde pr_info
384 #endif
385 	p4d = p4d_offset(pgd, address);
386 	pud = pud_offset(p4d, address);
387 	pmd = pmd_offset(pud, address);
388 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389 #undef pr_pde
390 
391 	/*
392 	 * We must not directly access the pte in the highpte
393 	 * case if the page table is located in highmem.
394 	 * And let's rather not kmap-atomic the pte, just in case
395 	 * it's allocated already:
396 	 */
397 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 		goto out;
399 
400 	pte = pte_offset_kernel(pmd, address);
401 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402 out:
403 	pr_cont("\n");
404 }
405 
406 #else /* CONFIG_X86_64: */
407 
408 void vmalloc_sync_all(void)
409 {
410 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411 }
412 
413 /*
414  * 64-bit:
415  *
416  *   Handle a fault on the vmalloc area
417  */
418 static noinline int vmalloc_fault(unsigned long address)
419 {
420 	pgd_t *pgd, *pgd_k;
421 	p4d_t *p4d, *p4d_k;
422 	pud_t *pud;
423 	pmd_t *pmd;
424 	pte_t *pte;
425 
426 	/* Make sure we are in vmalloc area: */
427 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 		return -1;
429 
430 	WARN_ON_ONCE(in_nmi());
431 
432 	/*
433 	 * Copy kernel mappings over when needed. This can also
434 	 * happen within a race in page table update. In the later
435 	 * case just flush:
436 	 */
437 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 	pgd_k = pgd_offset_k(address);
439 	if (pgd_none(*pgd_k))
440 		return -1;
441 
442 	if (pgtable_l5_enabled) {
443 		if (pgd_none(*pgd)) {
444 			set_pgd(pgd, *pgd_k);
445 			arch_flush_lazy_mmu_mode();
446 		} else {
447 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
448 		}
449 	}
450 
451 	/* With 4-level paging, copying happens on the p4d level. */
452 	p4d = p4d_offset(pgd, address);
453 	p4d_k = p4d_offset(pgd_k, address);
454 	if (p4d_none(*p4d_k))
455 		return -1;
456 
457 	if (p4d_none(*p4d) && !pgtable_l5_enabled) {
458 		set_p4d(p4d, *p4d_k);
459 		arch_flush_lazy_mmu_mode();
460 	} else {
461 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
462 	}
463 
464 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
465 
466 	pud = pud_offset(p4d, address);
467 	if (pud_none(*pud))
468 		return -1;
469 
470 	if (pud_large(*pud))
471 		return 0;
472 
473 	pmd = pmd_offset(pud, address);
474 	if (pmd_none(*pmd))
475 		return -1;
476 
477 	if (pmd_large(*pmd))
478 		return 0;
479 
480 	pte = pte_offset_kernel(pmd, address);
481 	if (!pte_present(*pte))
482 		return -1;
483 
484 	return 0;
485 }
486 NOKPROBE_SYMBOL(vmalloc_fault);
487 
488 #ifdef CONFIG_CPU_SUP_AMD
489 static const char errata93_warning[] =
490 KERN_ERR
491 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
492 "******* Working around it, but it may cause SEGVs or burn power.\n"
493 "******* Please consider a BIOS update.\n"
494 "******* Disabling USB legacy in the BIOS may also help.\n";
495 #endif
496 
497 /*
498  * No vm86 mode in 64-bit mode:
499  */
500 static inline void
501 check_v8086_mode(struct pt_regs *regs, unsigned long address,
502 		 struct task_struct *tsk)
503 {
504 }
505 
506 static int bad_address(void *p)
507 {
508 	unsigned long dummy;
509 
510 	return probe_kernel_address((unsigned long *)p, dummy);
511 }
512 
513 static void dump_pagetable(unsigned long address)
514 {
515 	pgd_t *base = __va(read_cr3_pa());
516 	pgd_t *pgd = base + pgd_index(address);
517 	p4d_t *p4d;
518 	pud_t *pud;
519 	pmd_t *pmd;
520 	pte_t *pte;
521 
522 	if (bad_address(pgd))
523 		goto bad;
524 
525 	pr_info("PGD %lx ", pgd_val(*pgd));
526 
527 	if (!pgd_present(*pgd))
528 		goto out;
529 
530 	p4d = p4d_offset(pgd, address);
531 	if (bad_address(p4d))
532 		goto bad;
533 
534 	pr_cont("P4D %lx ", p4d_val(*p4d));
535 	if (!p4d_present(*p4d) || p4d_large(*p4d))
536 		goto out;
537 
538 	pud = pud_offset(p4d, address);
539 	if (bad_address(pud))
540 		goto bad;
541 
542 	pr_cont("PUD %lx ", pud_val(*pud));
543 	if (!pud_present(*pud) || pud_large(*pud))
544 		goto out;
545 
546 	pmd = pmd_offset(pud, address);
547 	if (bad_address(pmd))
548 		goto bad;
549 
550 	pr_cont("PMD %lx ", pmd_val(*pmd));
551 	if (!pmd_present(*pmd) || pmd_large(*pmd))
552 		goto out;
553 
554 	pte = pte_offset_kernel(pmd, address);
555 	if (bad_address(pte))
556 		goto bad;
557 
558 	pr_cont("PTE %lx", pte_val(*pte));
559 out:
560 	pr_cont("\n");
561 	return;
562 bad:
563 	pr_info("BAD\n");
564 }
565 
566 #endif /* CONFIG_X86_64 */
567 
568 /*
569  * Workaround for K8 erratum #93 & buggy BIOS.
570  *
571  * BIOS SMM functions are required to use a specific workaround
572  * to avoid corruption of the 64bit RIP register on C stepping K8.
573  *
574  * A lot of BIOS that didn't get tested properly miss this.
575  *
576  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
577  * Try to work around it here.
578  *
579  * Note we only handle faults in kernel here.
580  * Does nothing on 32-bit.
581  */
582 static int is_errata93(struct pt_regs *regs, unsigned long address)
583 {
584 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
585 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
586 	    || boot_cpu_data.x86 != 0xf)
587 		return 0;
588 
589 	if (address != regs->ip)
590 		return 0;
591 
592 	if ((address >> 32) != 0)
593 		return 0;
594 
595 	address |= 0xffffffffUL << 32;
596 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
597 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
598 		printk_once(errata93_warning);
599 		regs->ip = address;
600 		return 1;
601 	}
602 #endif
603 	return 0;
604 }
605 
606 /*
607  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
608  * to illegal addresses >4GB.
609  *
610  * We catch this in the page fault handler because these addresses
611  * are not reachable. Just detect this case and return.  Any code
612  * segment in LDT is compatibility mode.
613  */
614 static int is_errata100(struct pt_regs *regs, unsigned long address)
615 {
616 #ifdef CONFIG_X86_64
617 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
618 		return 1;
619 #endif
620 	return 0;
621 }
622 
623 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
624 {
625 #ifdef CONFIG_X86_F00F_BUG
626 	unsigned long nr;
627 
628 	/*
629 	 * Pentium F0 0F C7 C8 bug workaround:
630 	 */
631 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
632 		nr = (address - idt_descr.address) >> 3;
633 
634 		if (nr == 6) {
635 			do_invalid_op(regs, 0);
636 			return 1;
637 		}
638 	}
639 #endif
640 	return 0;
641 }
642 
643 static const char nx_warning[] = KERN_CRIT
644 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
645 static const char smep_warning[] = KERN_CRIT
646 "unable to execute userspace code (SMEP?) (uid: %d)\n";
647 
648 static void
649 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
650 		unsigned long address)
651 {
652 	if (!oops_may_print())
653 		return;
654 
655 	if (error_code & X86_PF_INSTR) {
656 		unsigned int level;
657 		pgd_t *pgd;
658 		pte_t *pte;
659 
660 		pgd = __va(read_cr3_pa());
661 		pgd += pgd_index(address);
662 
663 		pte = lookup_address_in_pgd(pgd, address, &level);
664 
665 		if (pte && pte_present(*pte) && !pte_exec(*pte))
666 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
667 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
668 				(pgd_flags(*pgd) & _PAGE_USER) &&
669 				(__read_cr4() & X86_CR4_SMEP))
670 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
671 	}
672 
673 	printk(KERN_ALERT "BUG: unable to handle kernel ");
674 	if (address < PAGE_SIZE)
675 		printk(KERN_CONT "NULL pointer dereference");
676 	else
677 		printk(KERN_CONT "paging request");
678 
679 	printk(KERN_CONT " at %px\n", (void *) address);
680 
681 	dump_pagetable(address);
682 }
683 
684 static noinline void
685 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
686 	    unsigned long address)
687 {
688 	struct task_struct *tsk;
689 	unsigned long flags;
690 	int sig;
691 
692 	flags = oops_begin();
693 	tsk = current;
694 	sig = SIGKILL;
695 
696 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
697 	       tsk->comm, address);
698 	dump_pagetable(address);
699 
700 	tsk->thread.cr2		= address;
701 	tsk->thread.trap_nr	= X86_TRAP_PF;
702 	tsk->thread.error_code	= error_code;
703 
704 	if (__die("Bad pagetable", regs, error_code))
705 		sig = 0;
706 
707 	oops_end(flags, regs, sig);
708 }
709 
710 static noinline void
711 no_context(struct pt_regs *regs, unsigned long error_code,
712 	   unsigned long address, int signal, int si_code)
713 {
714 	struct task_struct *tsk = current;
715 	unsigned long flags;
716 	int sig;
717 
718 	/* Are we prepared to handle this kernel fault? */
719 	if (fixup_exception(regs, X86_TRAP_PF)) {
720 		/*
721 		 * Any interrupt that takes a fault gets the fixup. This makes
722 		 * the below recursive fault logic only apply to a faults from
723 		 * task context.
724 		 */
725 		if (in_interrupt())
726 			return;
727 
728 		/*
729 		 * Per the above we're !in_interrupt(), aka. task context.
730 		 *
731 		 * In this case we need to make sure we're not recursively
732 		 * faulting through the emulate_vsyscall() logic.
733 		 */
734 		if (current->thread.sig_on_uaccess_err && signal) {
735 			tsk->thread.trap_nr = X86_TRAP_PF;
736 			tsk->thread.error_code = error_code | X86_PF_USER;
737 			tsk->thread.cr2 = address;
738 
739 			/* XXX: hwpoison faults will set the wrong code. */
740 			force_sig_info_fault(signal, si_code, address,
741 					     tsk, NULL, 0);
742 		}
743 
744 		/*
745 		 * Barring that, we can do the fixup and be happy.
746 		 */
747 		return;
748 	}
749 
750 #ifdef CONFIG_VMAP_STACK
751 	/*
752 	 * Stack overflow?  During boot, we can fault near the initial
753 	 * stack in the direct map, but that's not an overflow -- check
754 	 * that we're in vmalloc space to avoid this.
755 	 */
756 	if (is_vmalloc_addr((void *)address) &&
757 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
758 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
759 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
760 		/*
761 		 * We're likely to be running with very little stack space
762 		 * left.  It's plausible that we'd hit this condition but
763 		 * double-fault even before we get this far, in which case
764 		 * we're fine: the double-fault handler will deal with it.
765 		 *
766 		 * We don't want to make it all the way into the oops code
767 		 * and then double-fault, though, because we're likely to
768 		 * break the console driver and lose most of the stack dump.
769 		 */
770 		asm volatile ("movq %[stack], %%rsp\n\t"
771 			      "call handle_stack_overflow\n\t"
772 			      "1: jmp 1b"
773 			      : ASM_CALL_CONSTRAINT
774 			      : "D" ("kernel stack overflow (page fault)"),
775 				"S" (regs), "d" (address),
776 				[stack] "rm" (stack));
777 		unreachable();
778 	}
779 #endif
780 
781 	/*
782 	 * 32-bit:
783 	 *
784 	 *   Valid to do another page fault here, because if this fault
785 	 *   had been triggered by is_prefetch fixup_exception would have
786 	 *   handled it.
787 	 *
788 	 * 64-bit:
789 	 *
790 	 *   Hall of shame of CPU/BIOS bugs.
791 	 */
792 	if (is_prefetch(regs, error_code, address))
793 		return;
794 
795 	if (is_errata93(regs, address))
796 		return;
797 
798 	/*
799 	 * Oops. The kernel tried to access some bad page. We'll have to
800 	 * terminate things with extreme prejudice:
801 	 */
802 	flags = oops_begin();
803 
804 	show_fault_oops(regs, error_code, address);
805 
806 	if (task_stack_end_corrupted(tsk))
807 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
808 
809 	tsk->thread.cr2		= address;
810 	tsk->thread.trap_nr	= X86_TRAP_PF;
811 	tsk->thread.error_code	= error_code;
812 
813 	sig = SIGKILL;
814 	if (__die("Oops", regs, error_code))
815 		sig = 0;
816 
817 	/* Executive summary in case the body of the oops scrolled away */
818 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
819 
820 	oops_end(flags, regs, sig);
821 }
822 
823 /*
824  * Print out info about fatal segfaults, if the show_unhandled_signals
825  * sysctl is set:
826  */
827 static inline void
828 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
829 		unsigned long address, struct task_struct *tsk)
830 {
831 	if (!unhandled_signal(tsk, SIGSEGV))
832 		return;
833 
834 	if (!printk_ratelimit())
835 		return;
836 
837 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
838 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
839 		tsk->comm, task_pid_nr(tsk), address,
840 		(void *)regs->ip, (void *)regs->sp, error_code);
841 
842 	print_vma_addr(KERN_CONT " in ", regs->ip);
843 
844 	printk(KERN_CONT "\n");
845 }
846 
847 static void
848 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
849 		       unsigned long address, u32 *pkey, int si_code)
850 {
851 	struct task_struct *tsk = current;
852 
853 	/* User mode accesses just cause a SIGSEGV */
854 	if (error_code & X86_PF_USER) {
855 		/*
856 		 * It's possible to have interrupts off here:
857 		 */
858 		local_irq_enable();
859 
860 		/*
861 		 * Valid to do another page fault here because this one came
862 		 * from user space:
863 		 */
864 		if (is_prefetch(regs, error_code, address))
865 			return;
866 
867 		if (is_errata100(regs, address))
868 			return;
869 
870 #ifdef CONFIG_X86_64
871 		/*
872 		 * Instruction fetch faults in the vsyscall page might need
873 		 * emulation.
874 		 */
875 		if (unlikely((error_code & X86_PF_INSTR) &&
876 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
877 			if (emulate_vsyscall(regs, address))
878 				return;
879 		}
880 #endif
881 
882 		/*
883 		 * To avoid leaking information about the kernel page table
884 		 * layout, pretend that user-mode accesses to kernel addresses
885 		 * are always protection faults.
886 		 */
887 		if (address >= TASK_SIZE_MAX)
888 			error_code |= X86_PF_PROT;
889 
890 		if (likely(show_unhandled_signals))
891 			show_signal_msg(regs, error_code, address, tsk);
892 
893 		tsk->thread.cr2		= address;
894 		tsk->thread.error_code	= error_code;
895 		tsk->thread.trap_nr	= X86_TRAP_PF;
896 
897 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
898 
899 		return;
900 	}
901 
902 	if (is_f00f_bug(regs, address))
903 		return;
904 
905 	no_context(regs, error_code, address, SIGSEGV, si_code);
906 }
907 
908 static noinline void
909 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
910 		     unsigned long address, u32 *pkey)
911 {
912 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
913 }
914 
915 static void
916 __bad_area(struct pt_regs *regs, unsigned long error_code,
917 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
918 {
919 	struct mm_struct *mm = current->mm;
920 	u32 pkey;
921 
922 	if (vma)
923 		pkey = vma_pkey(vma);
924 
925 	/*
926 	 * Something tried to access memory that isn't in our memory map..
927 	 * Fix it, but check if it's kernel or user first..
928 	 */
929 	up_read(&mm->mmap_sem);
930 
931 	__bad_area_nosemaphore(regs, error_code, address,
932 			       (vma) ? &pkey : NULL, si_code);
933 }
934 
935 static noinline void
936 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
937 {
938 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
939 }
940 
941 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
942 		struct vm_area_struct *vma)
943 {
944 	/* This code is always called on the current mm */
945 	bool foreign = false;
946 
947 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
948 		return false;
949 	if (error_code & X86_PF_PK)
950 		return true;
951 	/* this checks permission keys on the VMA: */
952 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
953 				       (error_code & X86_PF_INSTR), foreign))
954 		return true;
955 	return false;
956 }
957 
958 static noinline void
959 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
960 		      unsigned long address, struct vm_area_struct *vma)
961 {
962 	/*
963 	 * This OSPKE check is not strictly necessary at runtime.
964 	 * But, doing it this way allows compiler optimizations
965 	 * if pkeys are compiled out.
966 	 */
967 	if (bad_area_access_from_pkeys(error_code, vma))
968 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
969 	else
970 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
971 }
972 
973 static void
974 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
975 	  u32 *pkey, unsigned int fault)
976 {
977 	struct task_struct *tsk = current;
978 	int code = BUS_ADRERR;
979 
980 	/* Kernel mode? Handle exceptions or die: */
981 	if (!(error_code & X86_PF_USER)) {
982 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
983 		return;
984 	}
985 
986 	/* User-space => ok to do another page fault: */
987 	if (is_prefetch(regs, error_code, address))
988 		return;
989 
990 	tsk->thread.cr2		= address;
991 	tsk->thread.error_code	= error_code;
992 	tsk->thread.trap_nr	= X86_TRAP_PF;
993 
994 #ifdef CONFIG_MEMORY_FAILURE
995 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
996 		printk(KERN_ERR
997 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
998 			tsk->comm, tsk->pid, address);
999 		code = BUS_MCEERR_AR;
1000 	}
1001 #endif
1002 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1003 }
1004 
1005 static noinline void
1006 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1007 	       unsigned long address, u32 *pkey, unsigned int fault)
1008 {
1009 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1010 		no_context(regs, error_code, address, 0, 0);
1011 		return;
1012 	}
1013 
1014 	if (fault & VM_FAULT_OOM) {
1015 		/* Kernel mode? Handle exceptions or die: */
1016 		if (!(error_code & X86_PF_USER)) {
1017 			no_context(regs, error_code, address,
1018 				   SIGSEGV, SEGV_MAPERR);
1019 			return;
1020 		}
1021 
1022 		/*
1023 		 * We ran out of memory, call the OOM killer, and return the
1024 		 * userspace (which will retry the fault, or kill us if we got
1025 		 * oom-killed):
1026 		 */
1027 		pagefault_out_of_memory();
1028 	} else {
1029 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1030 			     VM_FAULT_HWPOISON_LARGE))
1031 			do_sigbus(regs, error_code, address, pkey, fault);
1032 		else if (fault & VM_FAULT_SIGSEGV)
1033 			bad_area_nosemaphore(regs, error_code, address, pkey);
1034 		else
1035 			BUG();
1036 	}
1037 }
1038 
1039 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1040 {
1041 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1042 		return 0;
1043 
1044 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1045 		return 0;
1046 	/*
1047 	 * Note: We do not do lazy flushing on protection key
1048 	 * changes, so no spurious fault will ever set X86_PF_PK.
1049 	 */
1050 	if ((error_code & X86_PF_PK))
1051 		return 1;
1052 
1053 	return 1;
1054 }
1055 
1056 /*
1057  * Handle a spurious fault caused by a stale TLB entry.
1058  *
1059  * This allows us to lazily refresh the TLB when increasing the
1060  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1061  * eagerly is very expensive since that implies doing a full
1062  * cross-processor TLB flush, even if no stale TLB entries exist
1063  * on other processors.
1064  *
1065  * Spurious faults may only occur if the TLB contains an entry with
1066  * fewer permission than the page table entry.  Non-present (P = 0)
1067  * and reserved bit (R = 1) faults are never spurious.
1068  *
1069  * There are no security implications to leaving a stale TLB when
1070  * increasing the permissions on a page.
1071  *
1072  * Returns non-zero if a spurious fault was handled, zero otherwise.
1073  *
1074  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1075  * (Optional Invalidation).
1076  */
1077 static noinline int
1078 spurious_fault(unsigned long error_code, unsigned long address)
1079 {
1080 	pgd_t *pgd;
1081 	p4d_t *p4d;
1082 	pud_t *pud;
1083 	pmd_t *pmd;
1084 	pte_t *pte;
1085 	int ret;
1086 
1087 	/*
1088 	 * Only writes to RO or instruction fetches from NX may cause
1089 	 * spurious faults.
1090 	 *
1091 	 * These could be from user or supervisor accesses but the TLB
1092 	 * is only lazily flushed after a kernel mapping protection
1093 	 * change, so user accesses are not expected to cause spurious
1094 	 * faults.
1095 	 */
1096 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1097 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1098 		return 0;
1099 
1100 	pgd = init_mm.pgd + pgd_index(address);
1101 	if (!pgd_present(*pgd))
1102 		return 0;
1103 
1104 	p4d = p4d_offset(pgd, address);
1105 	if (!p4d_present(*p4d))
1106 		return 0;
1107 
1108 	if (p4d_large(*p4d))
1109 		return spurious_fault_check(error_code, (pte_t *) p4d);
1110 
1111 	pud = pud_offset(p4d, address);
1112 	if (!pud_present(*pud))
1113 		return 0;
1114 
1115 	if (pud_large(*pud))
1116 		return spurious_fault_check(error_code, (pte_t *) pud);
1117 
1118 	pmd = pmd_offset(pud, address);
1119 	if (!pmd_present(*pmd))
1120 		return 0;
1121 
1122 	if (pmd_large(*pmd))
1123 		return spurious_fault_check(error_code, (pte_t *) pmd);
1124 
1125 	pte = pte_offset_kernel(pmd, address);
1126 	if (!pte_present(*pte))
1127 		return 0;
1128 
1129 	ret = spurious_fault_check(error_code, pte);
1130 	if (!ret)
1131 		return 0;
1132 
1133 	/*
1134 	 * Make sure we have permissions in PMD.
1135 	 * If not, then there's a bug in the page tables:
1136 	 */
1137 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1138 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1139 
1140 	return ret;
1141 }
1142 NOKPROBE_SYMBOL(spurious_fault);
1143 
1144 int show_unhandled_signals = 1;
1145 
1146 static inline int
1147 access_error(unsigned long error_code, struct vm_area_struct *vma)
1148 {
1149 	/* This is only called for the current mm, so: */
1150 	bool foreign = false;
1151 
1152 	/*
1153 	 * Read or write was blocked by protection keys.  This is
1154 	 * always an unconditional error and can never result in
1155 	 * a follow-up action to resolve the fault, like a COW.
1156 	 */
1157 	if (error_code & X86_PF_PK)
1158 		return 1;
1159 
1160 	/*
1161 	 * Make sure to check the VMA so that we do not perform
1162 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1163 	 * page.
1164 	 */
1165 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1166 				       (error_code & X86_PF_INSTR), foreign))
1167 		return 1;
1168 
1169 	if (error_code & X86_PF_WRITE) {
1170 		/* write, present and write, not present: */
1171 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1172 			return 1;
1173 		return 0;
1174 	}
1175 
1176 	/* read, present: */
1177 	if (unlikely(error_code & X86_PF_PROT))
1178 		return 1;
1179 
1180 	/* read, not present: */
1181 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1182 		return 1;
1183 
1184 	return 0;
1185 }
1186 
1187 static int fault_in_kernel_space(unsigned long address)
1188 {
1189 	return address >= TASK_SIZE_MAX;
1190 }
1191 
1192 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1193 {
1194 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1195 		return false;
1196 
1197 	if (!static_cpu_has(X86_FEATURE_SMAP))
1198 		return false;
1199 
1200 	if (error_code & X86_PF_USER)
1201 		return false;
1202 
1203 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1204 		return false;
1205 
1206 	return true;
1207 }
1208 
1209 /*
1210  * This routine handles page faults.  It determines the address,
1211  * and the problem, and then passes it off to one of the appropriate
1212  * routines.
1213  */
1214 static noinline void
1215 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216 		unsigned long address)
1217 {
1218 	struct vm_area_struct *vma;
1219 	struct task_struct *tsk;
1220 	struct mm_struct *mm;
1221 	int fault, major = 0;
1222 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1223 	u32 pkey;
1224 
1225 	tsk = current;
1226 	mm = tsk->mm;
1227 
1228 	prefetchw(&mm->mmap_sem);
1229 
1230 	if (unlikely(kmmio_fault(regs, address)))
1231 		return;
1232 
1233 	/*
1234 	 * We fault-in kernel-space virtual memory on-demand. The
1235 	 * 'reference' page table is init_mm.pgd.
1236 	 *
1237 	 * NOTE! We MUST NOT take any locks for this case. We may
1238 	 * be in an interrupt or a critical region, and should
1239 	 * only copy the information from the master page table,
1240 	 * nothing more.
1241 	 *
1242 	 * This verifies that the fault happens in kernel space
1243 	 * (error_code & 4) == 0, and that the fault was not a
1244 	 * protection error (error_code & 9) == 0.
1245 	 */
1246 	if (unlikely(fault_in_kernel_space(address))) {
1247 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1248 			if (vmalloc_fault(address) >= 0)
1249 				return;
1250 		}
1251 
1252 		/* Can handle a stale RO->RW TLB: */
1253 		if (spurious_fault(error_code, address))
1254 			return;
1255 
1256 		/* kprobes don't want to hook the spurious faults: */
1257 		if (kprobes_fault(regs))
1258 			return;
1259 		/*
1260 		 * Don't take the mm semaphore here. If we fixup a prefetch
1261 		 * fault we could otherwise deadlock:
1262 		 */
1263 		bad_area_nosemaphore(regs, error_code, address, NULL);
1264 
1265 		return;
1266 	}
1267 
1268 	/* kprobes don't want to hook the spurious faults: */
1269 	if (unlikely(kprobes_fault(regs)))
1270 		return;
1271 
1272 	if (unlikely(error_code & X86_PF_RSVD))
1273 		pgtable_bad(regs, error_code, address);
1274 
1275 	if (unlikely(smap_violation(error_code, regs))) {
1276 		bad_area_nosemaphore(regs, error_code, address, NULL);
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * If we're in an interrupt, have no user context or are running
1282 	 * in a region with pagefaults disabled then we must not take the fault
1283 	 */
1284 	if (unlikely(faulthandler_disabled() || !mm)) {
1285 		bad_area_nosemaphore(regs, error_code, address, NULL);
1286 		return;
1287 	}
1288 
1289 	/*
1290 	 * It's safe to allow irq's after cr2 has been saved and the
1291 	 * vmalloc fault has been handled.
1292 	 *
1293 	 * User-mode registers count as a user access even for any
1294 	 * potential system fault or CPU buglet:
1295 	 */
1296 	if (user_mode(regs)) {
1297 		local_irq_enable();
1298 		error_code |= X86_PF_USER;
1299 		flags |= FAULT_FLAG_USER;
1300 	} else {
1301 		if (regs->flags & X86_EFLAGS_IF)
1302 			local_irq_enable();
1303 	}
1304 
1305 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1306 
1307 	if (error_code & X86_PF_WRITE)
1308 		flags |= FAULT_FLAG_WRITE;
1309 	if (error_code & X86_PF_INSTR)
1310 		flags |= FAULT_FLAG_INSTRUCTION;
1311 
1312 	/*
1313 	 * When running in the kernel we expect faults to occur only to
1314 	 * addresses in user space.  All other faults represent errors in
1315 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1316 	 * case of an erroneous fault occurring in a code path which already
1317 	 * holds mmap_sem we will deadlock attempting to validate the fault
1318 	 * against the address space.  Luckily the kernel only validly
1319 	 * references user space from well defined areas of code, which are
1320 	 * listed in the exceptions table.
1321 	 *
1322 	 * As the vast majority of faults will be valid we will only perform
1323 	 * the source reference check when there is a possibility of a
1324 	 * deadlock. Attempt to lock the address space, if we cannot we then
1325 	 * validate the source. If this is invalid we can skip the address
1326 	 * space check, thus avoiding the deadlock:
1327 	 */
1328 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1329 		if (!(error_code & X86_PF_USER) &&
1330 		    !search_exception_tables(regs->ip)) {
1331 			bad_area_nosemaphore(regs, error_code, address, NULL);
1332 			return;
1333 		}
1334 retry:
1335 		down_read(&mm->mmap_sem);
1336 	} else {
1337 		/*
1338 		 * The above down_read_trylock() might have succeeded in
1339 		 * which case we'll have missed the might_sleep() from
1340 		 * down_read():
1341 		 */
1342 		might_sleep();
1343 	}
1344 
1345 	vma = find_vma(mm, address);
1346 	if (unlikely(!vma)) {
1347 		bad_area(regs, error_code, address);
1348 		return;
1349 	}
1350 	if (likely(vma->vm_start <= address))
1351 		goto good_area;
1352 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1353 		bad_area(regs, error_code, address);
1354 		return;
1355 	}
1356 	if (error_code & X86_PF_USER) {
1357 		/*
1358 		 * Accessing the stack below %sp is always a bug.
1359 		 * The large cushion allows instructions like enter
1360 		 * and pusha to work. ("enter $65535, $31" pushes
1361 		 * 32 pointers and then decrements %sp by 65535.)
1362 		 */
1363 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1364 			bad_area(regs, error_code, address);
1365 			return;
1366 		}
1367 	}
1368 	if (unlikely(expand_stack(vma, address))) {
1369 		bad_area(regs, error_code, address);
1370 		return;
1371 	}
1372 
1373 	/*
1374 	 * Ok, we have a good vm_area for this memory access, so
1375 	 * we can handle it..
1376 	 */
1377 good_area:
1378 	if (unlikely(access_error(error_code, vma))) {
1379 		bad_area_access_error(regs, error_code, address, vma);
1380 		return;
1381 	}
1382 
1383 	/*
1384 	 * If for any reason at all we couldn't handle the fault,
1385 	 * make sure we exit gracefully rather than endlessly redo
1386 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1387 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1388 	 *
1389 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1390 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1391 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1392 	 * (potentially after handling any pending signal during the return to
1393 	 * userland). The return to userland is identified whenever
1394 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1395 	 * Thus we have to be careful about not touching vma after handling the
1396 	 * fault, so we read the pkey beforehand.
1397 	 */
1398 	pkey = vma_pkey(vma);
1399 	fault = handle_mm_fault(vma, address, flags);
1400 	major |= fault & VM_FAULT_MAJOR;
1401 
1402 	/*
1403 	 * If we need to retry the mmap_sem has already been released,
1404 	 * and if there is a fatal signal pending there is no guarantee
1405 	 * that we made any progress. Handle this case first.
1406 	 */
1407 	if (unlikely(fault & VM_FAULT_RETRY)) {
1408 		/* Retry at most once */
1409 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1410 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1411 			flags |= FAULT_FLAG_TRIED;
1412 			if (!fatal_signal_pending(tsk))
1413 				goto retry;
1414 		}
1415 
1416 		/* User mode? Just return to handle the fatal exception */
1417 		if (flags & FAULT_FLAG_USER)
1418 			return;
1419 
1420 		/* Not returning to user mode? Handle exceptions or die: */
1421 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1422 		return;
1423 	}
1424 
1425 	up_read(&mm->mmap_sem);
1426 	if (unlikely(fault & VM_FAULT_ERROR)) {
1427 		mm_fault_error(regs, error_code, address, &pkey, fault);
1428 		return;
1429 	}
1430 
1431 	/*
1432 	 * Major/minor page fault accounting. If any of the events
1433 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1434 	 */
1435 	if (major) {
1436 		tsk->maj_flt++;
1437 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1438 	} else {
1439 		tsk->min_flt++;
1440 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1441 	}
1442 
1443 	check_v8086_mode(regs, address, tsk);
1444 }
1445 NOKPROBE_SYMBOL(__do_page_fault);
1446 
1447 static nokprobe_inline void
1448 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1449 			 unsigned long error_code)
1450 {
1451 	if (user_mode(regs))
1452 		trace_page_fault_user(address, regs, error_code);
1453 	else
1454 		trace_page_fault_kernel(address, regs, error_code);
1455 }
1456 
1457 /*
1458  * We must have this function blacklisted from kprobes, tagged with notrace
1459  * and call read_cr2() before calling anything else. To avoid calling any
1460  * kind of tracing machinery before we've observed the CR2 value.
1461  *
1462  * exception_{enter,exit}() contains all sorts of tracepoints.
1463  */
1464 dotraplinkage void notrace
1465 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1466 {
1467 	unsigned long address = read_cr2(); /* Get the faulting address */
1468 	enum ctx_state prev_state;
1469 
1470 	prev_state = exception_enter();
1471 	if (trace_pagefault_enabled())
1472 		trace_page_fault_entries(address, regs, error_code);
1473 
1474 	__do_page_fault(regs, error_code, address);
1475 	exception_exit(prev_state);
1476 }
1477 NOKPROBE_SYMBOL(do_page_fault);
1478