xref: /openbmc/linux/arch/x86/mm/fault.c (revision aac5987a)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/extable.h>		/* search_exception_tables	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 #include <linux/prefetch.h>		/* prefetchw			*/
16 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
18 
19 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
20 #include <asm/traps.h>			/* dotraplinkage, ...		*/
21 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
22 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Page fault error code bits:
33  *
34  *   bit 0 ==	 0: no page found	1: protection fault
35  *   bit 1 ==	 0: read access		1: write access
36  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
37  *   bit 3 ==				1: use of reserved bit detected
38  *   bit 4 ==				1: fault was an instruction fetch
39  *   bit 5 ==				1: protection keys block access
40  */
41 enum x86_pf_error_code {
42 
43 	PF_PROT		=		1 << 0,
44 	PF_WRITE	=		1 << 1,
45 	PF_USER		=		1 << 2,
46 	PF_RSVD		=		1 << 3,
47 	PF_INSTR	=		1 << 4,
48 	PF_PK		=		1 << 5,
49 };
50 
51 /*
52  * Returns 0 if mmiotrace is disabled, or if the fault is not
53  * handled by mmiotrace:
54  */
55 static nokprobe_inline int
56 kmmio_fault(struct pt_regs *regs, unsigned long addr)
57 {
58 	if (unlikely(is_kmmio_active()))
59 		if (kmmio_handler(regs, addr) == 1)
60 			return -1;
61 	return 0;
62 }
63 
64 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65 {
66 	int ret = 0;
67 
68 	/* kprobe_running() needs smp_processor_id() */
69 	if (kprobes_built_in() && !user_mode(regs)) {
70 		preempt_disable();
71 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 			ret = 1;
73 		preempt_enable();
74 	}
75 
76 	return ret;
77 }
78 
79 /*
80  * Prefetch quirks:
81  *
82  * 32-bit mode:
83  *
84  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85  *   Check that here and ignore it.
86  *
87  * 64-bit mode:
88  *
89  *   Sometimes the CPU reports invalid exceptions on prefetch.
90  *   Check that here and ignore it.
91  *
92  * Opcode checker based on code by Richard Brunner.
93  */
94 static inline int
95 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 		      unsigned char opcode, int *prefetch)
97 {
98 	unsigned char instr_hi = opcode & 0xf0;
99 	unsigned char instr_lo = opcode & 0x0f;
100 
101 	switch (instr_hi) {
102 	case 0x20:
103 	case 0x30:
104 		/*
105 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 		 * In X86_64 long mode, the CPU will signal invalid
107 		 * opcode if some of these prefixes are present so
108 		 * X86_64 will never get here anyway
109 		 */
110 		return ((instr_lo & 7) == 0x6);
111 #ifdef CONFIG_X86_64
112 	case 0x40:
113 		/*
114 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 		 * Need to figure out under what instruction mode the
116 		 * instruction was issued. Could check the LDT for lm,
117 		 * but for now it's good enough to assume that long
118 		 * mode only uses well known segments or kernel.
119 		 */
120 		return (!user_mode(regs) || user_64bit_mode(regs));
121 #endif
122 	case 0x60:
123 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
124 		return (instr_lo & 0xC) == 0x4;
125 	case 0xF0:
126 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 		return !instr_lo || (instr_lo>>1) == 1;
128 	case 0x00:
129 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
130 		if (probe_kernel_address(instr, opcode))
131 			return 0;
132 
133 		*prefetch = (instr_lo == 0xF) &&
134 			(opcode == 0x0D || opcode == 0x18);
135 		return 0;
136 	default:
137 		return 0;
138 	}
139 }
140 
141 static int
142 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143 {
144 	unsigned char *max_instr;
145 	unsigned char *instr;
146 	int prefetch = 0;
147 
148 	/*
149 	 * If it was a exec (instruction fetch) fault on NX page, then
150 	 * do not ignore the fault:
151 	 */
152 	if (error_code & PF_INSTR)
153 		return 0;
154 
155 	instr = (void *)convert_ip_to_linear(current, regs);
156 	max_instr = instr + 15;
157 
158 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
159 		return 0;
160 
161 	while (instr < max_instr) {
162 		unsigned char opcode;
163 
164 		if (probe_kernel_address(instr, opcode))
165 			break;
166 
167 		instr++;
168 
169 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
170 			break;
171 	}
172 	return prefetch;
173 }
174 
175 /*
176  * A protection key fault means that the PKRU value did not allow
177  * access to some PTE.  Userspace can figure out what PKRU was
178  * from the XSAVE state, and this function fills out a field in
179  * siginfo so userspace can discover which protection key was set
180  * on the PTE.
181  *
182  * If we get here, we know that the hardware signaled a PF_PK
183  * fault and that there was a VMA once we got in the fault
184  * handler.  It does *not* guarantee that the VMA we find here
185  * was the one that we faulted on.
186  *
187  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
188  * 2. T1   : set PKRU to deny access to pkey=4, touches page
189  * 3. T1   : faults...
190  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191  * 5. T1   : enters fault handler, takes mmap_sem, etc...
192  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
193  *	     faulted on a pte with its pkey=4.
194  */
195 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 		struct vm_area_struct *vma)
197 {
198 	/* This is effectively an #ifdef */
199 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 		return;
201 
202 	/* Fault not from Protection Keys: nothing to do */
203 	if (si_code != SEGV_PKUERR)
204 		return;
205 	/*
206 	 * force_sig_info_fault() is called from a number of
207 	 * contexts, some of which have a VMA and some of which
208 	 * do not.  The PF_PK handing happens after we have a
209 	 * valid VMA, so we should never reach this without a
210 	 * valid VMA.
211 	 */
212 	if (!vma) {
213 		WARN_ONCE(1, "PKU fault with no VMA passed in");
214 		info->si_pkey = 0;
215 		return;
216 	}
217 	/*
218 	 * si_pkey should be thought of as a strong hint, but not
219 	 * absolutely guranteed to be 100% accurate because of
220 	 * the race explained above.
221 	 */
222 	info->si_pkey = vma_pkey(vma);
223 }
224 
225 static void
226 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 		     struct task_struct *tsk, struct vm_area_struct *vma,
228 		     int fault)
229 {
230 	unsigned lsb = 0;
231 	siginfo_t info;
232 
233 	info.si_signo	= si_signo;
234 	info.si_errno	= 0;
235 	info.si_code	= si_code;
236 	info.si_addr	= (void __user *)address;
237 	if (fault & VM_FAULT_HWPOISON_LARGE)
238 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 	if (fault & VM_FAULT_HWPOISON)
240 		lsb = PAGE_SHIFT;
241 	info.si_addr_lsb = lsb;
242 
243 	fill_sig_info_pkey(si_code, &info, vma);
244 
245 	force_sig_info(si_signo, &info, tsk);
246 }
247 
248 DEFINE_SPINLOCK(pgd_lock);
249 LIST_HEAD(pgd_list);
250 
251 #ifdef CONFIG_X86_32
252 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253 {
254 	unsigned index = pgd_index(address);
255 	pgd_t *pgd_k;
256 	pud_t *pud, *pud_k;
257 	pmd_t *pmd, *pmd_k;
258 
259 	pgd += index;
260 	pgd_k = init_mm.pgd + index;
261 
262 	if (!pgd_present(*pgd_k))
263 		return NULL;
264 
265 	/*
266 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 	 * and redundant with the set_pmd() on non-PAE. As would
268 	 * set_pud.
269 	 */
270 	pud = pud_offset(pgd, address);
271 	pud_k = pud_offset(pgd_k, address);
272 	if (!pud_present(*pud_k))
273 		return NULL;
274 
275 	pmd = pmd_offset(pud, address);
276 	pmd_k = pmd_offset(pud_k, address);
277 	if (!pmd_present(*pmd_k))
278 		return NULL;
279 
280 	if (!pmd_present(*pmd))
281 		set_pmd(pmd, *pmd_k);
282 	else
283 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
284 
285 	return pmd_k;
286 }
287 
288 void vmalloc_sync_all(void)
289 {
290 	unsigned long address;
291 
292 	if (SHARED_KERNEL_PMD)
293 		return;
294 
295 	for (address = VMALLOC_START & PMD_MASK;
296 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
297 	     address += PMD_SIZE) {
298 		struct page *page;
299 
300 		spin_lock(&pgd_lock);
301 		list_for_each_entry(page, &pgd_list, lru) {
302 			spinlock_t *pgt_lock;
303 			pmd_t *ret;
304 
305 			/* the pgt_lock only for Xen */
306 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
307 
308 			spin_lock(pgt_lock);
309 			ret = vmalloc_sync_one(page_address(page), address);
310 			spin_unlock(pgt_lock);
311 
312 			if (!ret)
313 				break;
314 		}
315 		spin_unlock(&pgd_lock);
316 	}
317 }
318 
319 /*
320  * 32-bit:
321  *
322  *   Handle a fault on the vmalloc or module mapping area
323  */
324 static noinline int vmalloc_fault(unsigned long address)
325 {
326 	unsigned long pgd_paddr;
327 	pmd_t *pmd_k;
328 	pte_t *pte_k;
329 
330 	/* Make sure we are in vmalloc area: */
331 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
332 		return -1;
333 
334 	WARN_ON_ONCE(in_nmi());
335 
336 	/*
337 	 * Synchronize this task's top level page-table
338 	 * with the 'reference' page table.
339 	 *
340 	 * Do _not_ use "current" here. We might be inside
341 	 * an interrupt in the middle of a task switch..
342 	 */
343 	pgd_paddr = read_cr3();
344 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
345 	if (!pmd_k)
346 		return -1;
347 
348 	if (pmd_huge(*pmd_k))
349 		return 0;
350 
351 	pte_k = pte_offset_kernel(pmd_k, address);
352 	if (!pte_present(*pte_k))
353 		return -1;
354 
355 	return 0;
356 }
357 NOKPROBE_SYMBOL(vmalloc_fault);
358 
359 /*
360  * Did it hit the DOS screen memory VA from vm86 mode?
361  */
362 static inline void
363 check_v8086_mode(struct pt_regs *regs, unsigned long address,
364 		 struct task_struct *tsk)
365 {
366 #ifdef CONFIG_VM86
367 	unsigned long bit;
368 
369 	if (!v8086_mode(regs) || !tsk->thread.vm86)
370 		return;
371 
372 	bit = (address - 0xA0000) >> PAGE_SHIFT;
373 	if (bit < 32)
374 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
375 #endif
376 }
377 
378 static bool low_pfn(unsigned long pfn)
379 {
380 	return pfn < max_low_pfn;
381 }
382 
383 static void dump_pagetable(unsigned long address)
384 {
385 	pgd_t *base = __va(read_cr3());
386 	pgd_t *pgd = &base[pgd_index(address)];
387 	pmd_t *pmd;
388 	pte_t *pte;
389 
390 #ifdef CONFIG_X86_PAE
391 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
392 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
393 		goto out;
394 #endif
395 	pmd = pmd_offset(pud_offset(pgd, address), address);
396 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
397 
398 	/*
399 	 * We must not directly access the pte in the highpte
400 	 * case if the page table is located in highmem.
401 	 * And let's rather not kmap-atomic the pte, just in case
402 	 * it's allocated already:
403 	 */
404 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
405 		goto out;
406 
407 	pte = pte_offset_kernel(pmd, address);
408 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
409 out:
410 	printk("\n");
411 }
412 
413 #else /* CONFIG_X86_64: */
414 
415 void vmalloc_sync_all(void)
416 {
417 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
418 }
419 
420 /*
421  * 64-bit:
422  *
423  *   Handle a fault on the vmalloc area
424  */
425 static noinline int vmalloc_fault(unsigned long address)
426 {
427 	pgd_t *pgd, *pgd_ref;
428 	pud_t *pud, *pud_ref;
429 	pmd_t *pmd, *pmd_ref;
430 	pte_t *pte, *pte_ref;
431 
432 	/* Make sure we are in vmalloc area: */
433 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
434 		return -1;
435 
436 	WARN_ON_ONCE(in_nmi());
437 
438 	/*
439 	 * Copy kernel mappings over when needed. This can also
440 	 * happen within a race in page table update. In the later
441 	 * case just flush:
442 	 */
443 	pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
444 	pgd_ref = pgd_offset_k(address);
445 	if (pgd_none(*pgd_ref))
446 		return -1;
447 
448 	if (pgd_none(*pgd)) {
449 		set_pgd(pgd, *pgd_ref);
450 		arch_flush_lazy_mmu_mode();
451 	} else {
452 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
453 	}
454 
455 	/*
456 	 * Below here mismatches are bugs because these lower tables
457 	 * are shared:
458 	 */
459 
460 	pud = pud_offset(pgd, address);
461 	pud_ref = pud_offset(pgd_ref, address);
462 	if (pud_none(*pud_ref))
463 		return -1;
464 
465 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
466 		BUG();
467 
468 	if (pud_huge(*pud))
469 		return 0;
470 
471 	pmd = pmd_offset(pud, address);
472 	pmd_ref = pmd_offset(pud_ref, address);
473 	if (pmd_none(*pmd_ref))
474 		return -1;
475 
476 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
477 		BUG();
478 
479 	if (pmd_huge(*pmd))
480 		return 0;
481 
482 	pte_ref = pte_offset_kernel(pmd_ref, address);
483 	if (!pte_present(*pte_ref))
484 		return -1;
485 
486 	pte = pte_offset_kernel(pmd, address);
487 
488 	/*
489 	 * Don't use pte_page here, because the mappings can point
490 	 * outside mem_map, and the NUMA hash lookup cannot handle
491 	 * that:
492 	 */
493 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
494 		BUG();
495 
496 	return 0;
497 }
498 NOKPROBE_SYMBOL(vmalloc_fault);
499 
500 #ifdef CONFIG_CPU_SUP_AMD
501 static const char errata93_warning[] =
502 KERN_ERR
503 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
504 "******* Working around it, but it may cause SEGVs or burn power.\n"
505 "******* Please consider a BIOS update.\n"
506 "******* Disabling USB legacy in the BIOS may also help.\n";
507 #endif
508 
509 /*
510  * No vm86 mode in 64-bit mode:
511  */
512 static inline void
513 check_v8086_mode(struct pt_regs *regs, unsigned long address,
514 		 struct task_struct *tsk)
515 {
516 }
517 
518 static int bad_address(void *p)
519 {
520 	unsigned long dummy;
521 
522 	return probe_kernel_address((unsigned long *)p, dummy);
523 }
524 
525 static void dump_pagetable(unsigned long address)
526 {
527 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
528 	pgd_t *pgd = base + pgd_index(address);
529 	pud_t *pud;
530 	pmd_t *pmd;
531 	pte_t *pte;
532 
533 	if (bad_address(pgd))
534 		goto bad;
535 
536 	printk("PGD %lx ", pgd_val(*pgd));
537 
538 	if (!pgd_present(*pgd))
539 		goto out;
540 
541 	pud = pud_offset(pgd, address);
542 	if (bad_address(pud))
543 		goto bad;
544 
545 	printk("PUD %lx ", pud_val(*pud));
546 	if (!pud_present(*pud) || pud_large(*pud))
547 		goto out;
548 
549 	pmd = pmd_offset(pud, address);
550 	if (bad_address(pmd))
551 		goto bad;
552 
553 	printk("PMD %lx ", pmd_val(*pmd));
554 	if (!pmd_present(*pmd) || pmd_large(*pmd))
555 		goto out;
556 
557 	pte = pte_offset_kernel(pmd, address);
558 	if (bad_address(pte))
559 		goto bad;
560 
561 	printk("PTE %lx", pte_val(*pte));
562 out:
563 	printk("\n");
564 	return;
565 bad:
566 	printk("BAD\n");
567 }
568 
569 #endif /* CONFIG_X86_64 */
570 
571 /*
572  * Workaround for K8 erratum #93 & buggy BIOS.
573  *
574  * BIOS SMM functions are required to use a specific workaround
575  * to avoid corruption of the 64bit RIP register on C stepping K8.
576  *
577  * A lot of BIOS that didn't get tested properly miss this.
578  *
579  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
580  * Try to work around it here.
581  *
582  * Note we only handle faults in kernel here.
583  * Does nothing on 32-bit.
584  */
585 static int is_errata93(struct pt_regs *regs, unsigned long address)
586 {
587 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
588 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
589 	    || boot_cpu_data.x86 != 0xf)
590 		return 0;
591 
592 	if (address != regs->ip)
593 		return 0;
594 
595 	if ((address >> 32) != 0)
596 		return 0;
597 
598 	address |= 0xffffffffUL << 32;
599 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
600 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
601 		printk_once(errata93_warning);
602 		regs->ip = address;
603 		return 1;
604 	}
605 #endif
606 	return 0;
607 }
608 
609 /*
610  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
611  * to illegal addresses >4GB.
612  *
613  * We catch this in the page fault handler because these addresses
614  * are not reachable. Just detect this case and return.  Any code
615  * segment in LDT is compatibility mode.
616  */
617 static int is_errata100(struct pt_regs *regs, unsigned long address)
618 {
619 #ifdef CONFIG_X86_64
620 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
621 		return 1;
622 #endif
623 	return 0;
624 }
625 
626 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
627 {
628 #ifdef CONFIG_X86_F00F_BUG
629 	unsigned long nr;
630 
631 	/*
632 	 * Pentium F0 0F C7 C8 bug workaround:
633 	 */
634 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
635 		nr = (address - idt_descr.address) >> 3;
636 
637 		if (nr == 6) {
638 			do_invalid_op(regs, 0);
639 			return 1;
640 		}
641 	}
642 #endif
643 	return 0;
644 }
645 
646 static const char nx_warning[] = KERN_CRIT
647 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
648 static const char smep_warning[] = KERN_CRIT
649 "unable to execute userspace code (SMEP?) (uid: %d)\n";
650 
651 static void
652 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
653 		unsigned long address)
654 {
655 	if (!oops_may_print())
656 		return;
657 
658 	if (error_code & PF_INSTR) {
659 		unsigned int level;
660 		pgd_t *pgd;
661 		pte_t *pte;
662 
663 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
664 		pgd += pgd_index(address);
665 
666 		pte = lookup_address_in_pgd(pgd, address, &level);
667 
668 		if (pte && pte_present(*pte) && !pte_exec(*pte))
669 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
670 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
671 				(pgd_flags(*pgd) & _PAGE_USER) &&
672 				(__read_cr4() & X86_CR4_SMEP))
673 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
674 	}
675 
676 	printk(KERN_ALERT "BUG: unable to handle kernel ");
677 	if (address < PAGE_SIZE)
678 		printk(KERN_CONT "NULL pointer dereference");
679 	else
680 		printk(KERN_CONT "paging request");
681 
682 	printk(KERN_CONT " at %p\n", (void *) address);
683 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
684 
685 	dump_pagetable(address);
686 }
687 
688 static noinline void
689 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
690 	    unsigned long address)
691 {
692 	struct task_struct *tsk;
693 	unsigned long flags;
694 	int sig;
695 
696 	flags = oops_begin();
697 	tsk = current;
698 	sig = SIGKILL;
699 
700 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
701 	       tsk->comm, address);
702 	dump_pagetable(address);
703 
704 	tsk->thread.cr2		= address;
705 	tsk->thread.trap_nr	= X86_TRAP_PF;
706 	tsk->thread.error_code	= error_code;
707 
708 	if (__die("Bad pagetable", regs, error_code))
709 		sig = 0;
710 
711 	oops_end(flags, regs, sig);
712 }
713 
714 static noinline void
715 no_context(struct pt_regs *regs, unsigned long error_code,
716 	   unsigned long address, int signal, int si_code)
717 {
718 	struct task_struct *tsk = current;
719 	unsigned long flags;
720 	int sig;
721 	/* No context means no VMA to pass down */
722 	struct vm_area_struct *vma = NULL;
723 
724 	/* Are we prepared to handle this kernel fault? */
725 	if (fixup_exception(regs, X86_TRAP_PF)) {
726 		/*
727 		 * Any interrupt that takes a fault gets the fixup. This makes
728 		 * the below recursive fault logic only apply to a faults from
729 		 * task context.
730 		 */
731 		if (in_interrupt())
732 			return;
733 
734 		/*
735 		 * Per the above we're !in_interrupt(), aka. task context.
736 		 *
737 		 * In this case we need to make sure we're not recursively
738 		 * faulting through the emulate_vsyscall() logic.
739 		 */
740 		if (current->thread.sig_on_uaccess_err && signal) {
741 			tsk->thread.trap_nr = X86_TRAP_PF;
742 			tsk->thread.error_code = error_code | PF_USER;
743 			tsk->thread.cr2 = address;
744 
745 			/* XXX: hwpoison faults will set the wrong code. */
746 			force_sig_info_fault(signal, si_code, address,
747 					     tsk, vma, 0);
748 		}
749 
750 		/*
751 		 * Barring that, we can do the fixup and be happy.
752 		 */
753 		return;
754 	}
755 
756 #ifdef CONFIG_VMAP_STACK
757 	/*
758 	 * Stack overflow?  During boot, we can fault near the initial
759 	 * stack in the direct map, but that's not an overflow -- check
760 	 * that we're in vmalloc space to avoid this.
761 	 */
762 	if (is_vmalloc_addr((void *)address) &&
763 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
764 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
765 		register void *__sp asm("rsp");
766 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
767 		/*
768 		 * We're likely to be running with very little stack space
769 		 * left.  It's plausible that we'd hit this condition but
770 		 * double-fault even before we get this far, in which case
771 		 * we're fine: the double-fault handler will deal with it.
772 		 *
773 		 * We don't want to make it all the way into the oops code
774 		 * and then double-fault, though, because we're likely to
775 		 * break the console driver and lose most of the stack dump.
776 		 */
777 		asm volatile ("movq %[stack], %%rsp\n\t"
778 			      "call handle_stack_overflow\n\t"
779 			      "1: jmp 1b"
780 			      : "+r" (__sp)
781 			      : "D" ("kernel stack overflow (page fault)"),
782 				"S" (regs), "d" (address),
783 				[stack] "rm" (stack));
784 		unreachable();
785 	}
786 #endif
787 
788 	/*
789 	 * 32-bit:
790 	 *
791 	 *   Valid to do another page fault here, because if this fault
792 	 *   had been triggered by is_prefetch fixup_exception would have
793 	 *   handled it.
794 	 *
795 	 * 64-bit:
796 	 *
797 	 *   Hall of shame of CPU/BIOS bugs.
798 	 */
799 	if (is_prefetch(regs, error_code, address))
800 		return;
801 
802 	if (is_errata93(regs, address))
803 		return;
804 
805 	/*
806 	 * Oops. The kernel tried to access some bad page. We'll have to
807 	 * terminate things with extreme prejudice:
808 	 */
809 	flags = oops_begin();
810 
811 	show_fault_oops(regs, error_code, address);
812 
813 	if (task_stack_end_corrupted(tsk))
814 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
815 
816 	tsk->thread.cr2		= address;
817 	tsk->thread.trap_nr	= X86_TRAP_PF;
818 	tsk->thread.error_code	= error_code;
819 
820 	sig = SIGKILL;
821 	if (__die("Oops", regs, error_code))
822 		sig = 0;
823 
824 	/* Executive summary in case the body of the oops scrolled away */
825 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
826 
827 	oops_end(flags, regs, sig);
828 }
829 
830 /*
831  * Print out info about fatal segfaults, if the show_unhandled_signals
832  * sysctl is set:
833  */
834 static inline void
835 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
836 		unsigned long address, struct task_struct *tsk)
837 {
838 	if (!unhandled_signal(tsk, SIGSEGV))
839 		return;
840 
841 	if (!printk_ratelimit())
842 		return;
843 
844 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
845 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
846 		tsk->comm, task_pid_nr(tsk), address,
847 		(void *)regs->ip, (void *)regs->sp, error_code);
848 
849 	print_vma_addr(KERN_CONT " in ", regs->ip);
850 
851 	printk(KERN_CONT "\n");
852 }
853 
854 static void
855 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
856 		       unsigned long address, struct vm_area_struct *vma,
857 		       int si_code)
858 {
859 	struct task_struct *tsk = current;
860 
861 	/* User mode accesses just cause a SIGSEGV */
862 	if (error_code & PF_USER) {
863 		/*
864 		 * It's possible to have interrupts off here:
865 		 */
866 		local_irq_enable();
867 
868 		/*
869 		 * Valid to do another page fault here because this one came
870 		 * from user space:
871 		 */
872 		if (is_prefetch(regs, error_code, address))
873 			return;
874 
875 		if (is_errata100(regs, address))
876 			return;
877 
878 #ifdef CONFIG_X86_64
879 		/*
880 		 * Instruction fetch faults in the vsyscall page might need
881 		 * emulation.
882 		 */
883 		if (unlikely((error_code & PF_INSTR) &&
884 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
885 			if (emulate_vsyscall(regs, address))
886 				return;
887 		}
888 #endif
889 
890 		/*
891 		 * To avoid leaking information about the kernel page table
892 		 * layout, pretend that user-mode accesses to kernel addresses
893 		 * are always protection faults.
894 		 */
895 		if (address >= TASK_SIZE_MAX)
896 			error_code |= PF_PROT;
897 
898 		if (likely(show_unhandled_signals))
899 			show_signal_msg(regs, error_code, address, tsk);
900 
901 		tsk->thread.cr2		= address;
902 		tsk->thread.error_code	= error_code;
903 		tsk->thread.trap_nr	= X86_TRAP_PF;
904 
905 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
906 
907 		return;
908 	}
909 
910 	if (is_f00f_bug(regs, address))
911 		return;
912 
913 	no_context(regs, error_code, address, SIGSEGV, si_code);
914 }
915 
916 static noinline void
917 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
918 		     unsigned long address, struct vm_area_struct *vma)
919 {
920 	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
921 }
922 
923 static void
924 __bad_area(struct pt_regs *regs, unsigned long error_code,
925 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
926 {
927 	struct mm_struct *mm = current->mm;
928 
929 	/*
930 	 * Something tried to access memory that isn't in our memory map..
931 	 * Fix it, but check if it's kernel or user first..
932 	 */
933 	up_read(&mm->mmap_sem);
934 
935 	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
936 }
937 
938 static noinline void
939 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
940 {
941 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
942 }
943 
944 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
945 		struct vm_area_struct *vma)
946 {
947 	/* This code is always called on the current mm */
948 	bool foreign = false;
949 
950 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
951 		return false;
952 	if (error_code & PF_PK)
953 		return true;
954 	/* this checks permission keys on the VMA: */
955 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
956 				(error_code & PF_INSTR), foreign))
957 		return true;
958 	return false;
959 }
960 
961 static noinline void
962 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
963 		      unsigned long address, struct vm_area_struct *vma)
964 {
965 	/*
966 	 * This OSPKE check is not strictly necessary at runtime.
967 	 * But, doing it this way allows compiler optimizations
968 	 * if pkeys are compiled out.
969 	 */
970 	if (bad_area_access_from_pkeys(error_code, vma))
971 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
972 	else
973 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
974 }
975 
976 static void
977 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
978 	  struct vm_area_struct *vma, unsigned int fault)
979 {
980 	struct task_struct *tsk = current;
981 	int code = BUS_ADRERR;
982 
983 	/* Kernel mode? Handle exceptions or die: */
984 	if (!(error_code & PF_USER)) {
985 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
986 		return;
987 	}
988 
989 	/* User-space => ok to do another page fault: */
990 	if (is_prefetch(regs, error_code, address))
991 		return;
992 
993 	tsk->thread.cr2		= address;
994 	tsk->thread.error_code	= error_code;
995 	tsk->thread.trap_nr	= X86_TRAP_PF;
996 
997 #ifdef CONFIG_MEMORY_FAILURE
998 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
999 		printk(KERN_ERR
1000 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1001 			tsk->comm, tsk->pid, address);
1002 		code = BUS_MCEERR_AR;
1003 	}
1004 #endif
1005 	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1006 }
1007 
1008 static noinline void
1009 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1010 	       unsigned long address, struct vm_area_struct *vma,
1011 	       unsigned int fault)
1012 {
1013 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1014 		no_context(regs, error_code, address, 0, 0);
1015 		return;
1016 	}
1017 
1018 	if (fault & VM_FAULT_OOM) {
1019 		/* Kernel mode? Handle exceptions or die: */
1020 		if (!(error_code & PF_USER)) {
1021 			no_context(regs, error_code, address,
1022 				   SIGSEGV, SEGV_MAPERR);
1023 			return;
1024 		}
1025 
1026 		/*
1027 		 * We ran out of memory, call the OOM killer, and return the
1028 		 * userspace (which will retry the fault, or kill us if we got
1029 		 * oom-killed):
1030 		 */
1031 		pagefault_out_of_memory();
1032 	} else {
1033 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1034 			     VM_FAULT_HWPOISON_LARGE))
1035 			do_sigbus(regs, error_code, address, vma, fault);
1036 		else if (fault & VM_FAULT_SIGSEGV)
1037 			bad_area_nosemaphore(regs, error_code, address, vma);
1038 		else
1039 			BUG();
1040 	}
1041 }
1042 
1043 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1044 {
1045 	if ((error_code & PF_WRITE) && !pte_write(*pte))
1046 		return 0;
1047 
1048 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
1049 		return 0;
1050 	/*
1051 	 * Note: We do not do lazy flushing on protection key
1052 	 * changes, so no spurious fault will ever set PF_PK.
1053 	 */
1054 	if ((error_code & PF_PK))
1055 		return 1;
1056 
1057 	return 1;
1058 }
1059 
1060 /*
1061  * Handle a spurious fault caused by a stale TLB entry.
1062  *
1063  * This allows us to lazily refresh the TLB when increasing the
1064  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1065  * eagerly is very expensive since that implies doing a full
1066  * cross-processor TLB flush, even if no stale TLB entries exist
1067  * on other processors.
1068  *
1069  * Spurious faults may only occur if the TLB contains an entry with
1070  * fewer permission than the page table entry.  Non-present (P = 0)
1071  * and reserved bit (R = 1) faults are never spurious.
1072  *
1073  * There are no security implications to leaving a stale TLB when
1074  * increasing the permissions on a page.
1075  *
1076  * Returns non-zero if a spurious fault was handled, zero otherwise.
1077  *
1078  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1079  * (Optional Invalidation).
1080  */
1081 static noinline int
1082 spurious_fault(unsigned long error_code, unsigned long address)
1083 {
1084 	pgd_t *pgd;
1085 	pud_t *pud;
1086 	pmd_t *pmd;
1087 	pte_t *pte;
1088 	int ret;
1089 
1090 	/*
1091 	 * Only writes to RO or instruction fetches from NX may cause
1092 	 * spurious faults.
1093 	 *
1094 	 * These could be from user or supervisor accesses but the TLB
1095 	 * is only lazily flushed after a kernel mapping protection
1096 	 * change, so user accesses are not expected to cause spurious
1097 	 * faults.
1098 	 */
1099 	if (error_code != (PF_WRITE | PF_PROT)
1100 	    && error_code != (PF_INSTR | PF_PROT))
1101 		return 0;
1102 
1103 	pgd = init_mm.pgd + pgd_index(address);
1104 	if (!pgd_present(*pgd))
1105 		return 0;
1106 
1107 	pud = pud_offset(pgd, address);
1108 	if (!pud_present(*pud))
1109 		return 0;
1110 
1111 	if (pud_large(*pud))
1112 		return spurious_fault_check(error_code, (pte_t *) pud);
1113 
1114 	pmd = pmd_offset(pud, address);
1115 	if (!pmd_present(*pmd))
1116 		return 0;
1117 
1118 	if (pmd_large(*pmd))
1119 		return spurious_fault_check(error_code, (pte_t *) pmd);
1120 
1121 	pte = pte_offset_kernel(pmd, address);
1122 	if (!pte_present(*pte))
1123 		return 0;
1124 
1125 	ret = spurious_fault_check(error_code, pte);
1126 	if (!ret)
1127 		return 0;
1128 
1129 	/*
1130 	 * Make sure we have permissions in PMD.
1131 	 * If not, then there's a bug in the page tables:
1132 	 */
1133 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1134 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1135 
1136 	return ret;
1137 }
1138 NOKPROBE_SYMBOL(spurious_fault);
1139 
1140 int show_unhandled_signals = 1;
1141 
1142 static inline int
1143 access_error(unsigned long error_code, struct vm_area_struct *vma)
1144 {
1145 	/* This is only called for the current mm, so: */
1146 	bool foreign = false;
1147 
1148 	/*
1149 	 * Read or write was blocked by protection keys.  This is
1150 	 * always an unconditional error and can never result in
1151 	 * a follow-up action to resolve the fault, like a COW.
1152 	 */
1153 	if (error_code & PF_PK)
1154 		return 1;
1155 
1156 	/*
1157 	 * Make sure to check the VMA so that we do not perform
1158 	 * faults just to hit a PF_PK as soon as we fill in a
1159 	 * page.
1160 	 */
1161 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1162 				(error_code & PF_INSTR), foreign))
1163 		return 1;
1164 
1165 	if (error_code & PF_WRITE) {
1166 		/* write, present and write, not present: */
1167 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1168 			return 1;
1169 		return 0;
1170 	}
1171 
1172 	/* read, present: */
1173 	if (unlikely(error_code & PF_PROT))
1174 		return 1;
1175 
1176 	/* read, not present: */
1177 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1178 		return 1;
1179 
1180 	return 0;
1181 }
1182 
1183 static int fault_in_kernel_space(unsigned long address)
1184 {
1185 	return address >= TASK_SIZE_MAX;
1186 }
1187 
1188 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1189 {
1190 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1191 		return false;
1192 
1193 	if (!static_cpu_has(X86_FEATURE_SMAP))
1194 		return false;
1195 
1196 	if (error_code & PF_USER)
1197 		return false;
1198 
1199 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1200 		return false;
1201 
1202 	return true;
1203 }
1204 
1205 /*
1206  * This routine handles page faults.  It determines the address,
1207  * and the problem, and then passes it off to one of the appropriate
1208  * routines.
1209  *
1210  * This function must have noinline because both callers
1211  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1212  * guarantees there's a function trace entry.
1213  */
1214 static noinline void
1215 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216 		unsigned long address)
1217 {
1218 	struct vm_area_struct *vma;
1219 	struct task_struct *tsk;
1220 	struct mm_struct *mm;
1221 	int fault, major = 0;
1222 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1223 
1224 	tsk = current;
1225 	mm = tsk->mm;
1226 
1227 	/*
1228 	 * Detect and handle instructions that would cause a page fault for
1229 	 * both a tracked kernel page and a userspace page.
1230 	 */
1231 	if (kmemcheck_active(regs))
1232 		kmemcheck_hide(regs);
1233 	prefetchw(&mm->mmap_sem);
1234 
1235 	if (unlikely(kmmio_fault(regs, address)))
1236 		return;
1237 
1238 	/*
1239 	 * We fault-in kernel-space virtual memory on-demand. The
1240 	 * 'reference' page table is init_mm.pgd.
1241 	 *
1242 	 * NOTE! We MUST NOT take any locks for this case. We may
1243 	 * be in an interrupt or a critical region, and should
1244 	 * only copy the information from the master page table,
1245 	 * nothing more.
1246 	 *
1247 	 * This verifies that the fault happens in kernel space
1248 	 * (error_code & 4) == 0, and that the fault was not a
1249 	 * protection error (error_code & 9) == 0.
1250 	 */
1251 	if (unlikely(fault_in_kernel_space(address))) {
1252 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1253 			if (vmalloc_fault(address) >= 0)
1254 				return;
1255 
1256 			if (kmemcheck_fault(regs, address, error_code))
1257 				return;
1258 		}
1259 
1260 		/* Can handle a stale RO->RW TLB: */
1261 		if (spurious_fault(error_code, address))
1262 			return;
1263 
1264 		/* kprobes don't want to hook the spurious faults: */
1265 		if (kprobes_fault(regs))
1266 			return;
1267 		/*
1268 		 * Don't take the mm semaphore here. If we fixup a prefetch
1269 		 * fault we could otherwise deadlock:
1270 		 */
1271 		bad_area_nosemaphore(regs, error_code, address, NULL);
1272 
1273 		return;
1274 	}
1275 
1276 	/* kprobes don't want to hook the spurious faults: */
1277 	if (unlikely(kprobes_fault(regs)))
1278 		return;
1279 
1280 	if (unlikely(error_code & PF_RSVD))
1281 		pgtable_bad(regs, error_code, address);
1282 
1283 	if (unlikely(smap_violation(error_code, regs))) {
1284 		bad_area_nosemaphore(regs, error_code, address, NULL);
1285 		return;
1286 	}
1287 
1288 	/*
1289 	 * If we're in an interrupt, have no user context or are running
1290 	 * in a region with pagefaults disabled then we must not take the fault
1291 	 */
1292 	if (unlikely(faulthandler_disabled() || !mm)) {
1293 		bad_area_nosemaphore(regs, error_code, address, NULL);
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * It's safe to allow irq's after cr2 has been saved and the
1299 	 * vmalloc fault has been handled.
1300 	 *
1301 	 * User-mode registers count as a user access even for any
1302 	 * potential system fault or CPU buglet:
1303 	 */
1304 	if (user_mode(regs)) {
1305 		local_irq_enable();
1306 		error_code |= PF_USER;
1307 		flags |= FAULT_FLAG_USER;
1308 	} else {
1309 		if (regs->flags & X86_EFLAGS_IF)
1310 			local_irq_enable();
1311 	}
1312 
1313 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1314 
1315 	if (error_code & PF_WRITE)
1316 		flags |= FAULT_FLAG_WRITE;
1317 	if (error_code & PF_INSTR)
1318 		flags |= FAULT_FLAG_INSTRUCTION;
1319 
1320 	/*
1321 	 * When running in the kernel we expect faults to occur only to
1322 	 * addresses in user space.  All other faults represent errors in
1323 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1324 	 * case of an erroneous fault occurring in a code path which already
1325 	 * holds mmap_sem we will deadlock attempting to validate the fault
1326 	 * against the address space.  Luckily the kernel only validly
1327 	 * references user space from well defined areas of code, which are
1328 	 * listed in the exceptions table.
1329 	 *
1330 	 * As the vast majority of faults will be valid we will only perform
1331 	 * the source reference check when there is a possibility of a
1332 	 * deadlock. Attempt to lock the address space, if we cannot we then
1333 	 * validate the source. If this is invalid we can skip the address
1334 	 * space check, thus avoiding the deadlock:
1335 	 */
1336 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1337 		if ((error_code & PF_USER) == 0 &&
1338 		    !search_exception_tables(regs->ip)) {
1339 			bad_area_nosemaphore(regs, error_code, address, NULL);
1340 			return;
1341 		}
1342 retry:
1343 		down_read(&mm->mmap_sem);
1344 	} else {
1345 		/*
1346 		 * The above down_read_trylock() might have succeeded in
1347 		 * which case we'll have missed the might_sleep() from
1348 		 * down_read():
1349 		 */
1350 		might_sleep();
1351 	}
1352 
1353 	vma = find_vma(mm, address);
1354 	if (unlikely(!vma)) {
1355 		bad_area(regs, error_code, address);
1356 		return;
1357 	}
1358 	if (likely(vma->vm_start <= address))
1359 		goto good_area;
1360 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1361 		bad_area(regs, error_code, address);
1362 		return;
1363 	}
1364 	if (error_code & PF_USER) {
1365 		/*
1366 		 * Accessing the stack below %sp is always a bug.
1367 		 * The large cushion allows instructions like enter
1368 		 * and pusha to work. ("enter $65535, $31" pushes
1369 		 * 32 pointers and then decrements %sp by 65535.)
1370 		 */
1371 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1372 			bad_area(regs, error_code, address);
1373 			return;
1374 		}
1375 	}
1376 	if (unlikely(expand_stack(vma, address))) {
1377 		bad_area(regs, error_code, address);
1378 		return;
1379 	}
1380 
1381 	/*
1382 	 * Ok, we have a good vm_area for this memory access, so
1383 	 * we can handle it..
1384 	 */
1385 good_area:
1386 	if (unlikely(access_error(error_code, vma))) {
1387 		bad_area_access_error(regs, error_code, address, vma);
1388 		return;
1389 	}
1390 
1391 	/*
1392 	 * If for any reason at all we couldn't handle the fault,
1393 	 * make sure we exit gracefully rather than endlessly redo
1394 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1395 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1396 	 */
1397 	fault = handle_mm_fault(vma, address, flags);
1398 	major |= fault & VM_FAULT_MAJOR;
1399 
1400 	/*
1401 	 * If we need to retry the mmap_sem has already been released,
1402 	 * and if there is a fatal signal pending there is no guarantee
1403 	 * that we made any progress. Handle this case first.
1404 	 */
1405 	if (unlikely(fault & VM_FAULT_RETRY)) {
1406 		/* Retry at most once */
1407 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1408 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1409 			flags |= FAULT_FLAG_TRIED;
1410 			if (!fatal_signal_pending(tsk))
1411 				goto retry;
1412 		}
1413 
1414 		/* User mode? Just return to handle the fatal exception */
1415 		if (flags & FAULT_FLAG_USER)
1416 			return;
1417 
1418 		/* Not returning to user mode? Handle exceptions or die: */
1419 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1420 		return;
1421 	}
1422 
1423 	up_read(&mm->mmap_sem);
1424 	if (unlikely(fault & VM_FAULT_ERROR)) {
1425 		mm_fault_error(regs, error_code, address, vma, fault);
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * Major/minor page fault accounting. If any of the events
1431 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1432 	 */
1433 	if (major) {
1434 		tsk->maj_flt++;
1435 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1436 	} else {
1437 		tsk->min_flt++;
1438 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1439 	}
1440 
1441 	check_v8086_mode(regs, address, tsk);
1442 }
1443 NOKPROBE_SYMBOL(__do_page_fault);
1444 
1445 dotraplinkage void notrace
1446 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1447 {
1448 	unsigned long address = read_cr2(); /* Get the faulting address */
1449 	enum ctx_state prev_state;
1450 
1451 	/*
1452 	 * We must have this function tagged with __kprobes, notrace and call
1453 	 * read_cr2() before calling anything else. To avoid calling any kind
1454 	 * of tracing machinery before we've observed the CR2 value.
1455 	 *
1456 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1457 	 */
1458 
1459 	prev_state = exception_enter();
1460 	__do_page_fault(regs, error_code, address);
1461 	exception_exit(prev_state);
1462 }
1463 NOKPROBE_SYMBOL(do_page_fault);
1464 
1465 #ifdef CONFIG_TRACING
1466 static nokprobe_inline void
1467 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1468 			 unsigned long error_code)
1469 {
1470 	if (user_mode(regs))
1471 		trace_page_fault_user(address, regs, error_code);
1472 	else
1473 		trace_page_fault_kernel(address, regs, error_code);
1474 }
1475 
1476 dotraplinkage void notrace
1477 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1478 {
1479 	/*
1480 	 * The exception_enter and tracepoint processing could
1481 	 * trigger another page faults (user space callchain
1482 	 * reading) and destroy the original cr2 value, so read
1483 	 * the faulting address now.
1484 	 */
1485 	unsigned long address = read_cr2();
1486 	enum ctx_state prev_state;
1487 
1488 	prev_state = exception_enter();
1489 	trace_page_fault_entries(address, regs, error_code);
1490 	__do_page_fault(regs, error_code, address);
1491 	exception_exit(prev_state);
1492 }
1493 NOKPROBE_SYMBOL(trace_do_page_fault);
1494 #endif /* CONFIG_TRACING */
1495