1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/sched.h> /* test_thread_flag(), ... */ 7 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 8 #include <linux/kdebug.h> /* oops_begin/end, ... */ 9 #include <linux/extable.h> /* search_exception_tables */ 10 #include <linux/bootmem.h> /* max_low_pfn */ 11 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 13 #include <linux/perf_event.h> /* perf_sw_event */ 14 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 15 #include <linux/prefetch.h> /* prefetchw */ 16 #include <linux/context_tracking.h> /* exception_enter(), ... */ 17 #include <linux/uaccess.h> /* faulthandler_disabled() */ 18 19 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 20 #include <asm/traps.h> /* dotraplinkage, ... */ 21 #include <asm/pgalloc.h> /* pgd_*(), ... */ 22 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 24 #include <asm/vsyscall.h> /* emulate_vsyscall */ 25 #include <asm/vm86.h> /* struct vm86 */ 26 #include <asm/mmu_context.h> /* vma_pkey() */ 27 28 #define CREATE_TRACE_POINTS 29 #include <asm/trace/exceptions.h> 30 31 /* 32 * Page fault error code bits: 33 * 34 * bit 0 == 0: no page found 1: protection fault 35 * bit 1 == 0: read access 1: write access 36 * bit 2 == 0: kernel-mode access 1: user-mode access 37 * bit 3 == 1: use of reserved bit detected 38 * bit 4 == 1: fault was an instruction fetch 39 * bit 5 == 1: protection keys block access 40 */ 41 enum x86_pf_error_code { 42 43 PF_PROT = 1 << 0, 44 PF_WRITE = 1 << 1, 45 PF_USER = 1 << 2, 46 PF_RSVD = 1 << 3, 47 PF_INSTR = 1 << 4, 48 PF_PK = 1 << 5, 49 }; 50 51 /* 52 * Returns 0 if mmiotrace is disabled, or if the fault is not 53 * handled by mmiotrace: 54 */ 55 static nokprobe_inline int 56 kmmio_fault(struct pt_regs *regs, unsigned long addr) 57 { 58 if (unlikely(is_kmmio_active())) 59 if (kmmio_handler(regs, addr) == 1) 60 return -1; 61 return 0; 62 } 63 64 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 65 { 66 int ret = 0; 67 68 /* kprobe_running() needs smp_processor_id() */ 69 if (kprobes_built_in() && !user_mode(regs)) { 70 preempt_disable(); 71 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 72 ret = 1; 73 preempt_enable(); 74 } 75 76 return ret; 77 } 78 79 /* 80 * Prefetch quirks: 81 * 82 * 32-bit mode: 83 * 84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 85 * Check that here and ignore it. 86 * 87 * 64-bit mode: 88 * 89 * Sometimes the CPU reports invalid exceptions on prefetch. 90 * Check that here and ignore it. 91 * 92 * Opcode checker based on code by Richard Brunner. 93 */ 94 static inline int 95 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 96 unsigned char opcode, int *prefetch) 97 { 98 unsigned char instr_hi = opcode & 0xf0; 99 unsigned char instr_lo = opcode & 0x0f; 100 101 switch (instr_hi) { 102 case 0x20: 103 case 0x30: 104 /* 105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 106 * In X86_64 long mode, the CPU will signal invalid 107 * opcode if some of these prefixes are present so 108 * X86_64 will never get here anyway 109 */ 110 return ((instr_lo & 7) == 0x6); 111 #ifdef CONFIG_X86_64 112 case 0x40: 113 /* 114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 115 * Need to figure out under what instruction mode the 116 * instruction was issued. Could check the LDT for lm, 117 * but for now it's good enough to assume that long 118 * mode only uses well known segments or kernel. 119 */ 120 return (!user_mode(regs) || user_64bit_mode(regs)); 121 #endif 122 case 0x60: 123 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 124 return (instr_lo & 0xC) == 0x4; 125 case 0xF0: 126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 127 return !instr_lo || (instr_lo>>1) == 1; 128 case 0x00: 129 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 130 if (probe_kernel_address(instr, opcode)) 131 return 0; 132 133 *prefetch = (instr_lo == 0xF) && 134 (opcode == 0x0D || opcode == 0x18); 135 return 0; 136 default: 137 return 0; 138 } 139 } 140 141 static int 142 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 143 { 144 unsigned char *max_instr; 145 unsigned char *instr; 146 int prefetch = 0; 147 148 /* 149 * If it was a exec (instruction fetch) fault on NX page, then 150 * do not ignore the fault: 151 */ 152 if (error_code & PF_INSTR) 153 return 0; 154 155 instr = (void *)convert_ip_to_linear(current, regs); 156 max_instr = instr + 15; 157 158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 159 return 0; 160 161 while (instr < max_instr) { 162 unsigned char opcode; 163 164 if (probe_kernel_address(instr, opcode)) 165 break; 166 167 instr++; 168 169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 170 break; 171 } 172 return prefetch; 173 } 174 175 /* 176 * A protection key fault means that the PKRU value did not allow 177 * access to some PTE. Userspace can figure out what PKRU was 178 * from the XSAVE state, and this function fills out a field in 179 * siginfo so userspace can discover which protection key was set 180 * on the PTE. 181 * 182 * If we get here, we know that the hardware signaled a PF_PK 183 * fault and that there was a VMA once we got in the fault 184 * handler. It does *not* guarantee that the VMA we find here 185 * was the one that we faulted on. 186 * 187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 188 * 2. T1 : set PKRU to deny access to pkey=4, touches page 189 * 3. T1 : faults... 190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 191 * 5. T1 : enters fault handler, takes mmap_sem, etc... 192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 193 * faulted on a pte with its pkey=4. 194 */ 195 static void fill_sig_info_pkey(int si_code, siginfo_t *info, 196 struct vm_area_struct *vma) 197 { 198 /* This is effectively an #ifdef */ 199 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 200 return; 201 202 /* Fault not from Protection Keys: nothing to do */ 203 if (si_code != SEGV_PKUERR) 204 return; 205 /* 206 * force_sig_info_fault() is called from a number of 207 * contexts, some of which have a VMA and some of which 208 * do not. The PF_PK handing happens after we have a 209 * valid VMA, so we should never reach this without a 210 * valid VMA. 211 */ 212 if (!vma) { 213 WARN_ONCE(1, "PKU fault with no VMA passed in"); 214 info->si_pkey = 0; 215 return; 216 } 217 /* 218 * si_pkey should be thought of as a strong hint, but not 219 * absolutely guranteed to be 100% accurate because of 220 * the race explained above. 221 */ 222 info->si_pkey = vma_pkey(vma); 223 } 224 225 static void 226 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 227 struct task_struct *tsk, struct vm_area_struct *vma, 228 int fault) 229 { 230 unsigned lsb = 0; 231 siginfo_t info; 232 233 info.si_signo = si_signo; 234 info.si_errno = 0; 235 info.si_code = si_code; 236 info.si_addr = (void __user *)address; 237 if (fault & VM_FAULT_HWPOISON_LARGE) 238 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 239 if (fault & VM_FAULT_HWPOISON) 240 lsb = PAGE_SHIFT; 241 info.si_addr_lsb = lsb; 242 243 fill_sig_info_pkey(si_code, &info, vma); 244 245 force_sig_info(si_signo, &info, tsk); 246 } 247 248 DEFINE_SPINLOCK(pgd_lock); 249 LIST_HEAD(pgd_list); 250 251 #ifdef CONFIG_X86_32 252 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 253 { 254 unsigned index = pgd_index(address); 255 pgd_t *pgd_k; 256 pud_t *pud, *pud_k; 257 pmd_t *pmd, *pmd_k; 258 259 pgd += index; 260 pgd_k = init_mm.pgd + index; 261 262 if (!pgd_present(*pgd_k)) 263 return NULL; 264 265 /* 266 * set_pgd(pgd, *pgd_k); here would be useless on PAE 267 * and redundant with the set_pmd() on non-PAE. As would 268 * set_pud. 269 */ 270 pud = pud_offset(pgd, address); 271 pud_k = pud_offset(pgd_k, address); 272 if (!pud_present(*pud_k)) 273 return NULL; 274 275 pmd = pmd_offset(pud, address); 276 pmd_k = pmd_offset(pud_k, address); 277 if (!pmd_present(*pmd_k)) 278 return NULL; 279 280 if (!pmd_present(*pmd)) 281 set_pmd(pmd, *pmd_k); 282 else 283 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 284 285 return pmd_k; 286 } 287 288 void vmalloc_sync_all(void) 289 { 290 unsigned long address; 291 292 if (SHARED_KERNEL_PMD) 293 return; 294 295 for (address = VMALLOC_START & PMD_MASK; 296 address >= TASK_SIZE_MAX && address < FIXADDR_TOP; 297 address += PMD_SIZE) { 298 struct page *page; 299 300 spin_lock(&pgd_lock); 301 list_for_each_entry(page, &pgd_list, lru) { 302 spinlock_t *pgt_lock; 303 pmd_t *ret; 304 305 /* the pgt_lock only for Xen */ 306 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 307 308 spin_lock(pgt_lock); 309 ret = vmalloc_sync_one(page_address(page), address); 310 spin_unlock(pgt_lock); 311 312 if (!ret) 313 break; 314 } 315 spin_unlock(&pgd_lock); 316 } 317 } 318 319 /* 320 * 32-bit: 321 * 322 * Handle a fault on the vmalloc or module mapping area 323 */ 324 static noinline int vmalloc_fault(unsigned long address) 325 { 326 unsigned long pgd_paddr; 327 pmd_t *pmd_k; 328 pte_t *pte_k; 329 330 /* Make sure we are in vmalloc area: */ 331 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 332 return -1; 333 334 WARN_ON_ONCE(in_nmi()); 335 336 /* 337 * Synchronize this task's top level page-table 338 * with the 'reference' page table. 339 * 340 * Do _not_ use "current" here. We might be inside 341 * an interrupt in the middle of a task switch.. 342 */ 343 pgd_paddr = read_cr3(); 344 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 345 if (!pmd_k) 346 return -1; 347 348 if (pmd_huge(*pmd_k)) 349 return 0; 350 351 pte_k = pte_offset_kernel(pmd_k, address); 352 if (!pte_present(*pte_k)) 353 return -1; 354 355 return 0; 356 } 357 NOKPROBE_SYMBOL(vmalloc_fault); 358 359 /* 360 * Did it hit the DOS screen memory VA from vm86 mode? 361 */ 362 static inline void 363 check_v8086_mode(struct pt_regs *regs, unsigned long address, 364 struct task_struct *tsk) 365 { 366 #ifdef CONFIG_VM86 367 unsigned long bit; 368 369 if (!v8086_mode(regs) || !tsk->thread.vm86) 370 return; 371 372 bit = (address - 0xA0000) >> PAGE_SHIFT; 373 if (bit < 32) 374 tsk->thread.vm86->screen_bitmap |= 1 << bit; 375 #endif 376 } 377 378 static bool low_pfn(unsigned long pfn) 379 { 380 return pfn < max_low_pfn; 381 } 382 383 static void dump_pagetable(unsigned long address) 384 { 385 pgd_t *base = __va(read_cr3()); 386 pgd_t *pgd = &base[pgd_index(address)]; 387 pmd_t *pmd; 388 pte_t *pte; 389 390 #ifdef CONFIG_X86_PAE 391 printk("*pdpt = %016Lx ", pgd_val(*pgd)); 392 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 393 goto out; 394 #endif 395 pmd = pmd_offset(pud_offset(pgd, address), address); 396 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 397 398 /* 399 * We must not directly access the pte in the highpte 400 * case if the page table is located in highmem. 401 * And let's rather not kmap-atomic the pte, just in case 402 * it's allocated already: 403 */ 404 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 405 goto out; 406 407 pte = pte_offset_kernel(pmd, address); 408 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 409 out: 410 printk("\n"); 411 } 412 413 #else /* CONFIG_X86_64: */ 414 415 void vmalloc_sync_all(void) 416 { 417 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 418 } 419 420 /* 421 * 64-bit: 422 * 423 * Handle a fault on the vmalloc area 424 */ 425 static noinline int vmalloc_fault(unsigned long address) 426 { 427 pgd_t *pgd, *pgd_ref; 428 pud_t *pud, *pud_ref; 429 pmd_t *pmd, *pmd_ref; 430 pte_t *pte, *pte_ref; 431 432 /* Make sure we are in vmalloc area: */ 433 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 434 return -1; 435 436 WARN_ON_ONCE(in_nmi()); 437 438 /* 439 * Copy kernel mappings over when needed. This can also 440 * happen within a race in page table update. In the later 441 * case just flush: 442 */ 443 pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address); 444 pgd_ref = pgd_offset_k(address); 445 if (pgd_none(*pgd_ref)) 446 return -1; 447 448 if (pgd_none(*pgd)) { 449 set_pgd(pgd, *pgd_ref); 450 arch_flush_lazy_mmu_mode(); 451 } else { 452 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 453 } 454 455 /* 456 * Below here mismatches are bugs because these lower tables 457 * are shared: 458 */ 459 460 pud = pud_offset(pgd, address); 461 pud_ref = pud_offset(pgd_ref, address); 462 if (pud_none(*pud_ref)) 463 return -1; 464 465 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref)) 466 BUG(); 467 468 if (pud_huge(*pud)) 469 return 0; 470 471 pmd = pmd_offset(pud, address); 472 pmd_ref = pmd_offset(pud_ref, address); 473 if (pmd_none(*pmd_ref)) 474 return -1; 475 476 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref)) 477 BUG(); 478 479 if (pmd_huge(*pmd)) 480 return 0; 481 482 pte_ref = pte_offset_kernel(pmd_ref, address); 483 if (!pte_present(*pte_ref)) 484 return -1; 485 486 pte = pte_offset_kernel(pmd, address); 487 488 /* 489 * Don't use pte_page here, because the mappings can point 490 * outside mem_map, and the NUMA hash lookup cannot handle 491 * that: 492 */ 493 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 494 BUG(); 495 496 return 0; 497 } 498 NOKPROBE_SYMBOL(vmalloc_fault); 499 500 #ifdef CONFIG_CPU_SUP_AMD 501 static const char errata93_warning[] = 502 KERN_ERR 503 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 504 "******* Working around it, but it may cause SEGVs or burn power.\n" 505 "******* Please consider a BIOS update.\n" 506 "******* Disabling USB legacy in the BIOS may also help.\n"; 507 #endif 508 509 /* 510 * No vm86 mode in 64-bit mode: 511 */ 512 static inline void 513 check_v8086_mode(struct pt_regs *regs, unsigned long address, 514 struct task_struct *tsk) 515 { 516 } 517 518 static int bad_address(void *p) 519 { 520 unsigned long dummy; 521 522 return probe_kernel_address((unsigned long *)p, dummy); 523 } 524 525 static void dump_pagetable(unsigned long address) 526 { 527 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK); 528 pgd_t *pgd = base + pgd_index(address); 529 pud_t *pud; 530 pmd_t *pmd; 531 pte_t *pte; 532 533 if (bad_address(pgd)) 534 goto bad; 535 536 printk("PGD %lx ", pgd_val(*pgd)); 537 538 if (!pgd_present(*pgd)) 539 goto out; 540 541 pud = pud_offset(pgd, address); 542 if (bad_address(pud)) 543 goto bad; 544 545 printk("PUD %lx ", pud_val(*pud)); 546 if (!pud_present(*pud) || pud_large(*pud)) 547 goto out; 548 549 pmd = pmd_offset(pud, address); 550 if (bad_address(pmd)) 551 goto bad; 552 553 printk("PMD %lx ", pmd_val(*pmd)); 554 if (!pmd_present(*pmd) || pmd_large(*pmd)) 555 goto out; 556 557 pte = pte_offset_kernel(pmd, address); 558 if (bad_address(pte)) 559 goto bad; 560 561 printk("PTE %lx", pte_val(*pte)); 562 out: 563 printk("\n"); 564 return; 565 bad: 566 printk("BAD\n"); 567 } 568 569 #endif /* CONFIG_X86_64 */ 570 571 /* 572 * Workaround for K8 erratum #93 & buggy BIOS. 573 * 574 * BIOS SMM functions are required to use a specific workaround 575 * to avoid corruption of the 64bit RIP register on C stepping K8. 576 * 577 * A lot of BIOS that didn't get tested properly miss this. 578 * 579 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 580 * Try to work around it here. 581 * 582 * Note we only handle faults in kernel here. 583 * Does nothing on 32-bit. 584 */ 585 static int is_errata93(struct pt_regs *regs, unsigned long address) 586 { 587 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 588 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 589 || boot_cpu_data.x86 != 0xf) 590 return 0; 591 592 if (address != regs->ip) 593 return 0; 594 595 if ((address >> 32) != 0) 596 return 0; 597 598 address |= 0xffffffffUL << 32; 599 if ((address >= (u64)_stext && address <= (u64)_etext) || 600 (address >= MODULES_VADDR && address <= MODULES_END)) { 601 printk_once(errata93_warning); 602 regs->ip = address; 603 return 1; 604 } 605 #endif 606 return 0; 607 } 608 609 /* 610 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 611 * to illegal addresses >4GB. 612 * 613 * We catch this in the page fault handler because these addresses 614 * are not reachable. Just detect this case and return. Any code 615 * segment in LDT is compatibility mode. 616 */ 617 static int is_errata100(struct pt_regs *regs, unsigned long address) 618 { 619 #ifdef CONFIG_X86_64 620 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 621 return 1; 622 #endif 623 return 0; 624 } 625 626 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 627 { 628 #ifdef CONFIG_X86_F00F_BUG 629 unsigned long nr; 630 631 /* 632 * Pentium F0 0F C7 C8 bug workaround: 633 */ 634 if (boot_cpu_has_bug(X86_BUG_F00F)) { 635 nr = (address - idt_descr.address) >> 3; 636 637 if (nr == 6) { 638 do_invalid_op(regs, 0); 639 return 1; 640 } 641 } 642 #endif 643 return 0; 644 } 645 646 static const char nx_warning[] = KERN_CRIT 647 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 648 static const char smep_warning[] = KERN_CRIT 649 "unable to execute userspace code (SMEP?) (uid: %d)\n"; 650 651 static void 652 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 653 unsigned long address) 654 { 655 if (!oops_may_print()) 656 return; 657 658 if (error_code & PF_INSTR) { 659 unsigned int level; 660 pgd_t *pgd; 661 pte_t *pte; 662 663 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK); 664 pgd += pgd_index(address); 665 666 pte = lookup_address_in_pgd(pgd, address, &level); 667 668 if (pte && pte_present(*pte) && !pte_exec(*pte)) 669 printk(nx_warning, from_kuid(&init_user_ns, current_uid())); 670 if (pte && pte_present(*pte) && pte_exec(*pte) && 671 (pgd_flags(*pgd) & _PAGE_USER) && 672 (__read_cr4() & X86_CR4_SMEP)) 673 printk(smep_warning, from_kuid(&init_user_ns, current_uid())); 674 } 675 676 printk(KERN_ALERT "BUG: unable to handle kernel "); 677 if (address < PAGE_SIZE) 678 printk(KERN_CONT "NULL pointer dereference"); 679 else 680 printk(KERN_CONT "paging request"); 681 682 printk(KERN_CONT " at %p\n", (void *) address); 683 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip); 684 685 dump_pagetable(address); 686 } 687 688 static noinline void 689 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 690 unsigned long address) 691 { 692 struct task_struct *tsk; 693 unsigned long flags; 694 int sig; 695 696 flags = oops_begin(); 697 tsk = current; 698 sig = SIGKILL; 699 700 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 701 tsk->comm, address); 702 dump_pagetable(address); 703 704 tsk->thread.cr2 = address; 705 tsk->thread.trap_nr = X86_TRAP_PF; 706 tsk->thread.error_code = error_code; 707 708 if (__die("Bad pagetable", regs, error_code)) 709 sig = 0; 710 711 oops_end(flags, regs, sig); 712 } 713 714 static noinline void 715 no_context(struct pt_regs *regs, unsigned long error_code, 716 unsigned long address, int signal, int si_code) 717 { 718 struct task_struct *tsk = current; 719 unsigned long flags; 720 int sig; 721 /* No context means no VMA to pass down */ 722 struct vm_area_struct *vma = NULL; 723 724 /* Are we prepared to handle this kernel fault? */ 725 if (fixup_exception(regs, X86_TRAP_PF)) { 726 /* 727 * Any interrupt that takes a fault gets the fixup. This makes 728 * the below recursive fault logic only apply to a faults from 729 * task context. 730 */ 731 if (in_interrupt()) 732 return; 733 734 /* 735 * Per the above we're !in_interrupt(), aka. task context. 736 * 737 * In this case we need to make sure we're not recursively 738 * faulting through the emulate_vsyscall() logic. 739 */ 740 if (current->thread.sig_on_uaccess_err && signal) { 741 tsk->thread.trap_nr = X86_TRAP_PF; 742 tsk->thread.error_code = error_code | PF_USER; 743 tsk->thread.cr2 = address; 744 745 /* XXX: hwpoison faults will set the wrong code. */ 746 force_sig_info_fault(signal, si_code, address, 747 tsk, vma, 0); 748 } 749 750 /* 751 * Barring that, we can do the fixup and be happy. 752 */ 753 return; 754 } 755 756 #ifdef CONFIG_VMAP_STACK 757 /* 758 * Stack overflow? During boot, we can fault near the initial 759 * stack in the direct map, but that's not an overflow -- check 760 * that we're in vmalloc space to avoid this. 761 */ 762 if (is_vmalloc_addr((void *)address) && 763 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 764 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 765 register void *__sp asm("rsp"); 766 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); 767 /* 768 * We're likely to be running with very little stack space 769 * left. It's plausible that we'd hit this condition but 770 * double-fault even before we get this far, in which case 771 * we're fine: the double-fault handler will deal with it. 772 * 773 * We don't want to make it all the way into the oops code 774 * and then double-fault, though, because we're likely to 775 * break the console driver and lose most of the stack dump. 776 */ 777 asm volatile ("movq %[stack], %%rsp\n\t" 778 "call handle_stack_overflow\n\t" 779 "1: jmp 1b" 780 : "+r" (__sp) 781 : "D" ("kernel stack overflow (page fault)"), 782 "S" (regs), "d" (address), 783 [stack] "rm" (stack)); 784 unreachable(); 785 } 786 #endif 787 788 /* 789 * 32-bit: 790 * 791 * Valid to do another page fault here, because if this fault 792 * had been triggered by is_prefetch fixup_exception would have 793 * handled it. 794 * 795 * 64-bit: 796 * 797 * Hall of shame of CPU/BIOS bugs. 798 */ 799 if (is_prefetch(regs, error_code, address)) 800 return; 801 802 if (is_errata93(regs, address)) 803 return; 804 805 /* 806 * Oops. The kernel tried to access some bad page. We'll have to 807 * terminate things with extreme prejudice: 808 */ 809 flags = oops_begin(); 810 811 show_fault_oops(regs, error_code, address); 812 813 if (task_stack_end_corrupted(tsk)) 814 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 815 816 tsk->thread.cr2 = address; 817 tsk->thread.trap_nr = X86_TRAP_PF; 818 tsk->thread.error_code = error_code; 819 820 sig = SIGKILL; 821 if (__die("Oops", regs, error_code)) 822 sig = 0; 823 824 /* Executive summary in case the body of the oops scrolled away */ 825 printk(KERN_DEFAULT "CR2: %016lx\n", address); 826 827 oops_end(flags, regs, sig); 828 } 829 830 /* 831 * Print out info about fatal segfaults, if the show_unhandled_signals 832 * sysctl is set: 833 */ 834 static inline void 835 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 836 unsigned long address, struct task_struct *tsk) 837 { 838 if (!unhandled_signal(tsk, SIGSEGV)) 839 return; 840 841 if (!printk_ratelimit()) 842 return; 843 844 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 845 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 846 tsk->comm, task_pid_nr(tsk), address, 847 (void *)regs->ip, (void *)regs->sp, error_code); 848 849 print_vma_addr(KERN_CONT " in ", regs->ip); 850 851 printk(KERN_CONT "\n"); 852 } 853 854 static void 855 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 856 unsigned long address, struct vm_area_struct *vma, 857 int si_code) 858 { 859 struct task_struct *tsk = current; 860 861 /* User mode accesses just cause a SIGSEGV */ 862 if (error_code & PF_USER) { 863 /* 864 * It's possible to have interrupts off here: 865 */ 866 local_irq_enable(); 867 868 /* 869 * Valid to do another page fault here because this one came 870 * from user space: 871 */ 872 if (is_prefetch(regs, error_code, address)) 873 return; 874 875 if (is_errata100(regs, address)) 876 return; 877 878 #ifdef CONFIG_X86_64 879 /* 880 * Instruction fetch faults in the vsyscall page might need 881 * emulation. 882 */ 883 if (unlikely((error_code & PF_INSTR) && 884 ((address & ~0xfff) == VSYSCALL_ADDR))) { 885 if (emulate_vsyscall(regs, address)) 886 return; 887 } 888 #endif 889 890 /* 891 * To avoid leaking information about the kernel page table 892 * layout, pretend that user-mode accesses to kernel addresses 893 * are always protection faults. 894 */ 895 if (address >= TASK_SIZE_MAX) 896 error_code |= PF_PROT; 897 898 if (likely(show_unhandled_signals)) 899 show_signal_msg(regs, error_code, address, tsk); 900 901 tsk->thread.cr2 = address; 902 tsk->thread.error_code = error_code; 903 tsk->thread.trap_nr = X86_TRAP_PF; 904 905 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0); 906 907 return; 908 } 909 910 if (is_f00f_bug(regs, address)) 911 return; 912 913 no_context(regs, error_code, address, SIGSEGV, si_code); 914 } 915 916 static noinline void 917 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 918 unsigned long address, struct vm_area_struct *vma) 919 { 920 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR); 921 } 922 923 static void 924 __bad_area(struct pt_regs *regs, unsigned long error_code, 925 unsigned long address, struct vm_area_struct *vma, int si_code) 926 { 927 struct mm_struct *mm = current->mm; 928 929 /* 930 * Something tried to access memory that isn't in our memory map.. 931 * Fix it, but check if it's kernel or user first.. 932 */ 933 up_read(&mm->mmap_sem); 934 935 __bad_area_nosemaphore(regs, error_code, address, vma, si_code); 936 } 937 938 static noinline void 939 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 940 { 941 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR); 942 } 943 944 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 945 struct vm_area_struct *vma) 946 { 947 /* This code is always called on the current mm */ 948 bool foreign = false; 949 950 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 951 return false; 952 if (error_code & PF_PK) 953 return true; 954 /* this checks permission keys on the VMA: */ 955 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE), 956 (error_code & PF_INSTR), foreign)) 957 return true; 958 return false; 959 } 960 961 static noinline void 962 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 963 unsigned long address, struct vm_area_struct *vma) 964 { 965 /* 966 * This OSPKE check is not strictly necessary at runtime. 967 * But, doing it this way allows compiler optimizations 968 * if pkeys are compiled out. 969 */ 970 if (bad_area_access_from_pkeys(error_code, vma)) 971 __bad_area(regs, error_code, address, vma, SEGV_PKUERR); 972 else 973 __bad_area(regs, error_code, address, vma, SEGV_ACCERR); 974 } 975 976 static void 977 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 978 struct vm_area_struct *vma, unsigned int fault) 979 { 980 struct task_struct *tsk = current; 981 int code = BUS_ADRERR; 982 983 /* Kernel mode? Handle exceptions or die: */ 984 if (!(error_code & PF_USER)) { 985 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 986 return; 987 } 988 989 /* User-space => ok to do another page fault: */ 990 if (is_prefetch(regs, error_code, address)) 991 return; 992 993 tsk->thread.cr2 = address; 994 tsk->thread.error_code = error_code; 995 tsk->thread.trap_nr = X86_TRAP_PF; 996 997 #ifdef CONFIG_MEMORY_FAILURE 998 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 999 printk(KERN_ERR 1000 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 1001 tsk->comm, tsk->pid, address); 1002 code = BUS_MCEERR_AR; 1003 } 1004 #endif 1005 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault); 1006 } 1007 1008 static noinline void 1009 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 1010 unsigned long address, struct vm_area_struct *vma, 1011 unsigned int fault) 1012 { 1013 if (fatal_signal_pending(current) && !(error_code & PF_USER)) { 1014 no_context(regs, error_code, address, 0, 0); 1015 return; 1016 } 1017 1018 if (fault & VM_FAULT_OOM) { 1019 /* Kernel mode? Handle exceptions or die: */ 1020 if (!(error_code & PF_USER)) { 1021 no_context(regs, error_code, address, 1022 SIGSEGV, SEGV_MAPERR); 1023 return; 1024 } 1025 1026 /* 1027 * We ran out of memory, call the OOM killer, and return the 1028 * userspace (which will retry the fault, or kill us if we got 1029 * oom-killed): 1030 */ 1031 pagefault_out_of_memory(); 1032 } else { 1033 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1034 VM_FAULT_HWPOISON_LARGE)) 1035 do_sigbus(regs, error_code, address, vma, fault); 1036 else if (fault & VM_FAULT_SIGSEGV) 1037 bad_area_nosemaphore(regs, error_code, address, vma); 1038 else 1039 BUG(); 1040 } 1041 } 1042 1043 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 1044 { 1045 if ((error_code & PF_WRITE) && !pte_write(*pte)) 1046 return 0; 1047 1048 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 1049 return 0; 1050 /* 1051 * Note: We do not do lazy flushing on protection key 1052 * changes, so no spurious fault will ever set PF_PK. 1053 */ 1054 if ((error_code & PF_PK)) 1055 return 1; 1056 1057 return 1; 1058 } 1059 1060 /* 1061 * Handle a spurious fault caused by a stale TLB entry. 1062 * 1063 * This allows us to lazily refresh the TLB when increasing the 1064 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1065 * eagerly is very expensive since that implies doing a full 1066 * cross-processor TLB flush, even if no stale TLB entries exist 1067 * on other processors. 1068 * 1069 * Spurious faults may only occur if the TLB contains an entry with 1070 * fewer permission than the page table entry. Non-present (P = 0) 1071 * and reserved bit (R = 1) faults are never spurious. 1072 * 1073 * There are no security implications to leaving a stale TLB when 1074 * increasing the permissions on a page. 1075 * 1076 * Returns non-zero if a spurious fault was handled, zero otherwise. 1077 * 1078 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1079 * (Optional Invalidation). 1080 */ 1081 static noinline int 1082 spurious_fault(unsigned long error_code, unsigned long address) 1083 { 1084 pgd_t *pgd; 1085 pud_t *pud; 1086 pmd_t *pmd; 1087 pte_t *pte; 1088 int ret; 1089 1090 /* 1091 * Only writes to RO or instruction fetches from NX may cause 1092 * spurious faults. 1093 * 1094 * These could be from user or supervisor accesses but the TLB 1095 * is only lazily flushed after a kernel mapping protection 1096 * change, so user accesses are not expected to cause spurious 1097 * faults. 1098 */ 1099 if (error_code != (PF_WRITE | PF_PROT) 1100 && error_code != (PF_INSTR | PF_PROT)) 1101 return 0; 1102 1103 pgd = init_mm.pgd + pgd_index(address); 1104 if (!pgd_present(*pgd)) 1105 return 0; 1106 1107 pud = pud_offset(pgd, address); 1108 if (!pud_present(*pud)) 1109 return 0; 1110 1111 if (pud_large(*pud)) 1112 return spurious_fault_check(error_code, (pte_t *) pud); 1113 1114 pmd = pmd_offset(pud, address); 1115 if (!pmd_present(*pmd)) 1116 return 0; 1117 1118 if (pmd_large(*pmd)) 1119 return spurious_fault_check(error_code, (pte_t *) pmd); 1120 1121 pte = pte_offset_kernel(pmd, address); 1122 if (!pte_present(*pte)) 1123 return 0; 1124 1125 ret = spurious_fault_check(error_code, pte); 1126 if (!ret) 1127 return 0; 1128 1129 /* 1130 * Make sure we have permissions in PMD. 1131 * If not, then there's a bug in the page tables: 1132 */ 1133 ret = spurious_fault_check(error_code, (pte_t *) pmd); 1134 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1135 1136 return ret; 1137 } 1138 NOKPROBE_SYMBOL(spurious_fault); 1139 1140 int show_unhandled_signals = 1; 1141 1142 static inline int 1143 access_error(unsigned long error_code, struct vm_area_struct *vma) 1144 { 1145 /* This is only called for the current mm, so: */ 1146 bool foreign = false; 1147 1148 /* 1149 * Read or write was blocked by protection keys. This is 1150 * always an unconditional error and can never result in 1151 * a follow-up action to resolve the fault, like a COW. 1152 */ 1153 if (error_code & PF_PK) 1154 return 1; 1155 1156 /* 1157 * Make sure to check the VMA so that we do not perform 1158 * faults just to hit a PF_PK as soon as we fill in a 1159 * page. 1160 */ 1161 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE), 1162 (error_code & PF_INSTR), foreign)) 1163 return 1; 1164 1165 if (error_code & PF_WRITE) { 1166 /* write, present and write, not present: */ 1167 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1168 return 1; 1169 return 0; 1170 } 1171 1172 /* read, present: */ 1173 if (unlikely(error_code & PF_PROT)) 1174 return 1; 1175 1176 /* read, not present: */ 1177 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1178 return 1; 1179 1180 return 0; 1181 } 1182 1183 static int fault_in_kernel_space(unsigned long address) 1184 { 1185 return address >= TASK_SIZE_MAX; 1186 } 1187 1188 static inline bool smap_violation(int error_code, struct pt_regs *regs) 1189 { 1190 if (!IS_ENABLED(CONFIG_X86_SMAP)) 1191 return false; 1192 1193 if (!static_cpu_has(X86_FEATURE_SMAP)) 1194 return false; 1195 1196 if (error_code & PF_USER) 1197 return false; 1198 1199 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) 1200 return false; 1201 1202 return true; 1203 } 1204 1205 /* 1206 * This routine handles page faults. It determines the address, 1207 * and the problem, and then passes it off to one of the appropriate 1208 * routines. 1209 * 1210 * This function must have noinline because both callers 1211 * {,trace_}do_page_fault() have notrace on. Having this an actual function 1212 * guarantees there's a function trace entry. 1213 */ 1214 static noinline void 1215 __do_page_fault(struct pt_regs *regs, unsigned long error_code, 1216 unsigned long address) 1217 { 1218 struct vm_area_struct *vma; 1219 struct task_struct *tsk; 1220 struct mm_struct *mm; 1221 int fault, major = 0; 1222 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1223 1224 tsk = current; 1225 mm = tsk->mm; 1226 1227 /* 1228 * Detect and handle instructions that would cause a page fault for 1229 * both a tracked kernel page and a userspace page. 1230 */ 1231 if (kmemcheck_active(regs)) 1232 kmemcheck_hide(regs); 1233 prefetchw(&mm->mmap_sem); 1234 1235 if (unlikely(kmmio_fault(regs, address))) 1236 return; 1237 1238 /* 1239 * We fault-in kernel-space virtual memory on-demand. The 1240 * 'reference' page table is init_mm.pgd. 1241 * 1242 * NOTE! We MUST NOT take any locks for this case. We may 1243 * be in an interrupt or a critical region, and should 1244 * only copy the information from the master page table, 1245 * nothing more. 1246 * 1247 * This verifies that the fault happens in kernel space 1248 * (error_code & 4) == 0, and that the fault was not a 1249 * protection error (error_code & 9) == 0. 1250 */ 1251 if (unlikely(fault_in_kernel_space(address))) { 1252 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 1253 if (vmalloc_fault(address) >= 0) 1254 return; 1255 1256 if (kmemcheck_fault(regs, address, error_code)) 1257 return; 1258 } 1259 1260 /* Can handle a stale RO->RW TLB: */ 1261 if (spurious_fault(error_code, address)) 1262 return; 1263 1264 /* kprobes don't want to hook the spurious faults: */ 1265 if (kprobes_fault(regs)) 1266 return; 1267 /* 1268 * Don't take the mm semaphore here. If we fixup a prefetch 1269 * fault we could otherwise deadlock: 1270 */ 1271 bad_area_nosemaphore(regs, error_code, address, NULL); 1272 1273 return; 1274 } 1275 1276 /* kprobes don't want to hook the spurious faults: */ 1277 if (unlikely(kprobes_fault(regs))) 1278 return; 1279 1280 if (unlikely(error_code & PF_RSVD)) 1281 pgtable_bad(regs, error_code, address); 1282 1283 if (unlikely(smap_violation(error_code, regs))) { 1284 bad_area_nosemaphore(regs, error_code, address, NULL); 1285 return; 1286 } 1287 1288 /* 1289 * If we're in an interrupt, have no user context or are running 1290 * in a region with pagefaults disabled then we must not take the fault 1291 */ 1292 if (unlikely(faulthandler_disabled() || !mm)) { 1293 bad_area_nosemaphore(regs, error_code, address, NULL); 1294 return; 1295 } 1296 1297 /* 1298 * It's safe to allow irq's after cr2 has been saved and the 1299 * vmalloc fault has been handled. 1300 * 1301 * User-mode registers count as a user access even for any 1302 * potential system fault or CPU buglet: 1303 */ 1304 if (user_mode(regs)) { 1305 local_irq_enable(); 1306 error_code |= PF_USER; 1307 flags |= FAULT_FLAG_USER; 1308 } else { 1309 if (regs->flags & X86_EFLAGS_IF) 1310 local_irq_enable(); 1311 } 1312 1313 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1314 1315 if (error_code & PF_WRITE) 1316 flags |= FAULT_FLAG_WRITE; 1317 if (error_code & PF_INSTR) 1318 flags |= FAULT_FLAG_INSTRUCTION; 1319 1320 /* 1321 * When running in the kernel we expect faults to occur only to 1322 * addresses in user space. All other faults represent errors in 1323 * the kernel and should generate an OOPS. Unfortunately, in the 1324 * case of an erroneous fault occurring in a code path which already 1325 * holds mmap_sem we will deadlock attempting to validate the fault 1326 * against the address space. Luckily the kernel only validly 1327 * references user space from well defined areas of code, which are 1328 * listed in the exceptions table. 1329 * 1330 * As the vast majority of faults will be valid we will only perform 1331 * the source reference check when there is a possibility of a 1332 * deadlock. Attempt to lock the address space, if we cannot we then 1333 * validate the source. If this is invalid we can skip the address 1334 * space check, thus avoiding the deadlock: 1335 */ 1336 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1337 if ((error_code & PF_USER) == 0 && 1338 !search_exception_tables(regs->ip)) { 1339 bad_area_nosemaphore(regs, error_code, address, NULL); 1340 return; 1341 } 1342 retry: 1343 down_read(&mm->mmap_sem); 1344 } else { 1345 /* 1346 * The above down_read_trylock() might have succeeded in 1347 * which case we'll have missed the might_sleep() from 1348 * down_read(): 1349 */ 1350 might_sleep(); 1351 } 1352 1353 vma = find_vma(mm, address); 1354 if (unlikely(!vma)) { 1355 bad_area(regs, error_code, address); 1356 return; 1357 } 1358 if (likely(vma->vm_start <= address)) 1359 goto good_area; 1360 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1361 bad_area(regs, error_code, address); 1362 return; 1363 } 1364 if (error_code & PF_USER) { 1365 /* 1366 * Accessing the stack below %sp is always a bug. 1367 * The large cushion allows instructions like enter 1368 * and pusha to work. ("enter $65535, $31" pushes 1369 * 32 pointers and then decrements %sp by 65535.) 1370 */ 1371 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1372 bad_area(regs, error_code, address); 1373 return; 1374 } 1375 } 1376 if (unlikely(expand_stack(vma, address))) { 1377 bad_area(regs, error_code, address); 1378 return; 1379 } 1380 1381 /* 1382 * Ok, we have a good vm_area for this memory access, so 1383 * we can handle it.. 1384 */ 1385 good_area: 1386 if (unlikely(access_error(error_code, vma))) { 1387 bad_area_access_error(regs, error_code, address, vma); 1388 return; 1389 } 1390 1391 /* 1392 * If for any reason at all we couldn't handle the fault, 1393 * make sure we exit gracefully rather than endlessly redo 1394 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1395 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1396 */ 1397 fault = handle_mm_fault(vma, address, flags); 1398 major |= fault & VM_FAULT_MAJOR; 1399 1400 /* 1401 * If we need to retry the mmap_sem has already been released, 1402 * and if there is a fatal signal pending there is no guarantee 1403 * that we made any progress. Handle this case first. 1404 */ 1405 if (unlikely(fault & VM_FAULT_RETRY)) { 1406 /* Retry at most once */ 1407 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1408 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1409 flags |= FAULT_FLAG_TRIED; 1410 if (!fatal_signal_pending(tsk)) 1411 goto retry; 1412 } 1413 1414 /* User mode? Just return to handle the fatal exception */ 1415 if (flags & FAULT_FLAG_USER) 1416 return; 1417 1418 /* Not returning to user mode? Handle exceptions or die: */ 1419 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1420 return; 1421 } 1422 1423 up_read(&mm->mmap_sem); 1424 if (unlikely(fault & VM_FAULT_ERROR)) { 1425 mm_fault_error(regs, error_code, address, vma, fault); 1426 return; 1427 } 1428 1429 /* 1430 * Major/minor page fault accounting. If any of the events 1431 * returned VM_FAULT_MAJOR, we account it as a major fault. 1432 */ 1433 if (major) { 1434 tsk->maj_flt++; 1435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1436 } else { 1437 tsk->min_flt++; 1438 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1439 } 1440 1441 check_v8086_mode(regs, address, tsk); 1442 } 1443 NOKPROBE_SYMBOL(__do_page_fault); 1444 1445 dotraplinkage void notrace 1446 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1447 { 1448 unsigned long address = read_cr2(); /* Get the faulting address */ 1449 enum ctx_state prev_state; 1450 1451 /* 1452 * We must have this function tagged with __kprobes, notrace and call 1453 * read_cr2() before calling anything else. To avoid calling any kind 1454 * of tracing machinery before we've observed the CR2 value. 1455 * 1456 * exception_{enter,exit}() contain all sorts of tracepoints. 1457 */ 1458 1459 prev_state = exception_enter(); 1460 __do_page_fault(regs, error_code, address); 1461 exception_exit(prev_state); 1462 } 1463 NOKPROBE_SYMBOL(do_page_fault); 1464 1465 #ifdef CONFIG_TRACING 1466 static nokprobe_inline void 1467 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1468 unsigned long error_code) 1469 { 1470 if (user_mode(regs)) 1471 trace_page_fault_user(address, regs, error_code); 1472 else 1473 trace_page_fault_kernel(address, regs, error_code); 1474 } 1475 1476 dotraplinkage void notrace 1477 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code) 1478 { 1479 /* 1480 * The exception_enter and tracepoint processing could 1481 * trigger another page faults (user space callchain 1482 * reading) and destroy the original cr2 value, so read 1483 * the faulting address now. 1484 */ 1485 unsigned long address = read_cr2(); 1486 enum ctx_state prev_state; 1487 1488 prev_state = exception_enter(); 1489 trace_page_fault_entries(address, regs, error_code); 1490 __do_page_fault(regs, error_code, address); 1491 exception_exit(prev_state); 1492 } 1493 NOKPROBE_SYMBOL(trace_do_page_fault); 1494 #endif /* CONFIG_TRACING */ 1495