xref: /openbmc/linux/arch/x86/mm/fault.c (revision a1e58bbd)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4  */
5 
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h>		/* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h>		/* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28 
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
33 #include <asm/smp.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
37 
38 /*
39  * Page fault error code bits
40  *	bit 0 == 0 means no page found, 1 means protection fault
41  *	bit 1 == 0 means read, 1 means write
42  *	bit 2 == 0 means kernel, 1 means user-mode
43  *	bit 3 == 1 means use of reserved bit detected
44  *	bit 4 == 1 means fault was an instruction fetch
45  */
46 #define PF_PROT		(1<<0)
47 #define PF_WRITE	(1<<1)
48 #define PF_USER		(1<<2)
49 #define PF_RSVD		(1<<3)
50 #define PF_INSTR	(1<<4)
51 
52 static inline int notify_page_fault(struct pt_regs *regs)
53 {
54 #ifdef CONFIG_KPROBES
55 	int ret = 0;
56 
57 	/* kprobe_running() needs smp_processor_id() */
58 #ifdef CONFIG_X86_32
59 	if (!user_mode_vm(regs)) {
60 #else
61 	if (!user_mode(regs)) {
62 #endif
63 		preempt_disable();
64 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 			ret = 1;
66 		preempt_enable();
67 	}
68 
69 	return ret;
70 #else
71 	return 0;
72 #endif
73 }
74 
75 /*
76  * X86_32
77  * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78  * Check that here and ignore it.
79  *
80  * X86_64
81  * Sometimes the CPU reports invalid exceptions on prefetch.
82  * Check that here and ignore it.
83  *
84  * Opcode checker based on code by Richard Brunner
85  */
86 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 		       unsigned long error_code)
88 {
89 	unsigned char *instr;
90 	int scan_more = 1;
91 	int prefetch = 0;
92 	unsigned char *max_instr;
93 
94 	/*
95 	 * If it was a exec (instruction fetch) fault on NX page, then
96 	 * do not ignore the fault:
97 	 */
98 	if (error_code & PF_INSTR)
99 		return 0;
100 
101 	instr = (unsigned char *)convert_ip_to_linear(current, regs);
102 	max_instr = instr + 15;
103 
104 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
105 		return 0;
106 
107 	while (scan_more && instr < max_instr) {
108 		unsigned char opcode;
109 		unsigned char instr_hi;
110 		unsigned char instr_lo;
111 
112 		if (probe_kernel_address(instr, opcode))
113 			break;
114 
115 		instr_hi = opcode & 0xf0;
116 		instr_lo = opcode & 0x0f;
117 		instr++;
118 
119 		switch (instr_hi) {
120 		case 0x20:
121 		case 0x30:
122 			/*
123 			 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
124 			 * In X86_64 long mode, the CPU will signal invalid
125 			 * opcode if some of these prefixes are present so
126 			 * X86_64 will never get here anyway
127 			 */
128 			scan_more = ((instr_lo & 7) == 0x6);
129 			break;
130 #ifdef CONFIG_X86_64
131 		case 0x40:
132 			/*
133 			 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
134 			 * Need to figure out under what instruction mode the
135 			 * instruction was issued. Could check the LDT for lm,
136 			 * but for now it's good enough to assume that long
137 			 * mode only uses well known segments or kernel.
138 			 */
139 			scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
140 			break;
141 #endif
142 		case 0x60:
143 			/* 0x64 thru 0x67 are valid prefixes in all modes. */
144 			scan_more = (instr_lo & 0xC) == 0x4;
145 			break;
146 		case 0xF0:
147 			/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
148 			scan_more = !instr_lo || (instr_lo>>1) == 1;
149 			break;
150 		case 0x00:
151 			/* Prefetch instruction is 0x0F0D or 0x0F18 */
152 			scan_more = 0;
153 
154 			if (probe_kernel_address(instr, opcode))
155 				break;
156 			prefetch = (instr_lo == 0xF) &&
157 				(opcode == 0x0D || opcode == 0x18);
158 			break;
159 		default:
160 			scan_more = 0;
161 			break;
162 		}
163 	}
164 	return prefetch;
165 }
166 
167 static void force_sig_info_fault(int si_signo, int si_code,
168 	unsigned long address, struct task_struct *tsk)
169 {
170 	siginfo_t info;
171 
172 	info.si_signo = si_signo;
173 	info.si_errno = 0;
174 	info.si_code = si_code;
175 	info.si_addr = (void __user *)address;
176 	force_sig_info(si_signo, &info, tsk);
177 }
178 
179 #ifdef CONFIG_X86_64
180 static int bad_address(void *p)
181 {
182 	unsigned long dummy;
183 	return probe_kernel_address((unsigned long *)p, dummy);
184 }
185 #endif
186 
187 static void dump_pagetable(unsigned long address)
188 {
189 #ifdef CONFIG_X86_32
190 	__typeof__(pte_val(__pte(0))) page;
191 
192 	page = read_cr3();
193 	page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
194 #ifdef CONFIG_X86_PAE
195 	printk("*pdpt = %016Lx ", page);
196 	if ((page >> PAGE_SHIFT) < max_low_pfn
197 	    && page & _PAGE_PRESENT) {
198 		page &= PAGE_MASK;
199 		page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
200 		                                         & (PTRS_PER_PMD - 1)];
201 		printk(KERN_CONT "*pde = %016Lx ", page);
202 		page &= ~_PAGE_NX;
203 	}
204 #else
205 	printk("*pde = %08lx ", page);
206 #endif
207 
208 	/*
209 	 * We must not directly access the pte in the highpte
210 	 * case if the page table is located in highmem.
211 	 * And let's rather not kmap-atomic the pte, just in case
212 	 * it's allocated already.
213 	 */
214 	if ((page >> PAGE_SHIFT) < max_low_pfn
215 	    && (page & _PAGE_PRESENT)
216 	    && !(page & _PAGE_PSE)) {
217 		page &= PAGE_MASK;
218 		page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
219 		                                         & (PTRS_PER_PTE - 1)];
220 		printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
221 	}
222 
223 	printk("\n");
224 #else /* CONFIG_X86_64 */
225 	pgd_t *pgd;
226 	pud_t *pud;
227 	pmd_t *pmd;
228 	pte_t *pte;
229 
230 	pgd = (pgd_t *)read_cr3();
231 
232 	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
233 	pgd += pgd_index(address);
234 	if (bad_address(pgd)) goto bad;
235 	printk("PGD %lx ", pgd_val(*pgd));
236 	if (!pgd_present(*pgd)) goto ret;
237 
238 	pud = pud_offset(pgd, address);
239 	if (bad_address(pud)) goto bad;
240 	printk("PUD %lx ", pud_val(*pud));
241 	if (!pud_present(*pud) || pud_large(*pud))
242 		goto ret;
243 
244 	pmd = pmd_offset(pud, address);
245 	if (bad_address(pmd)) goto bad;
246 	printk("PMD %lx ", pmd_val(*pmd));
247 	if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
248 
249 	pte = pte_offset_kernel(pmd, address);
250 	if (bad_address(pte)) goto bad;
251 	printk("PTE %lx", pte_val(*pte));
252 ret:
253 	printk("\n");
254 	return;
255 bad:
256 	printk("BAD\n");
257 #endif
258 }
259 
260 #ifdef CONFIG_X86_32
261 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
262 {
263 	unsigned index = pgd_index(address);
264 	pgd_t *pgd_k;
265 	pud_t *pud, *pud_k;
266 	pmd_t *pmd, *pmd_k;
267 
268 	pgd += index;
269 	pgd_k = init_mm.pgd + index;
270 
271 	if (!pgd_present(*pgd_k))
272 		return NULL;
273 
274 	/*
275 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
276 	 * and redundant with the set_pmd() on non-PAE. As would
277 	 * set_pud.
278 	 */
279 
280 	pud = pud_offset(pgd, address);
281 	pud_k = pud_offset(pgd_k, address);
282 	if (!pud_present(*pud_k))
283 		return NULL;
284 
285 	pmd = pmd_offset(pud, address);
286 	pmd_k = pmd_offset(pud_k, address);
287 	if (!pmd_present(*pmd_k))
288 		return NULL;
289 	if (!pmd_present(*pmd)) {
290 		set_pmd(pmd, *pmd_k);
291 		arch_flush_lazy_mmu_mode();
292 	} else
293 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
294 	return pmd_k;
295 }
296 #endif
297 
298 #ifdef CONFIG_X86_64
299 static const char errata93_warning[] =
300 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
301 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
302 KERN_ERR "******* Please consider a BIOS update.\n"
303 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
304 #endif
305 
306 /* Workaround for K8 erratum #93 & buggy BIOS.
307    BIOS SMM functions are required to use a specific workaround
308    to avoid corruption of the 64bit RIP register on C stepping K8.
309    A lot of BIOS that didn't get tested properly miss this.
310    The OS sees this as a page fault with the upper 32bits of RIP cleared.
311    Try to work around it here.
312    Note we only handle faults in kernel here.
313    Does nothing for X86_32
314  */
315 static int is_errata93(struct pt_regs *regs, unsigned long address)
316 {
317 #ifdef CONFIG_X86_64
318 	static int warned;
319 	if (address != regs->ip)
320 		return 0;
321 	if ((address >> 32) != 0)
322 		return 0;
323 	address |= 0xffffffffUL << 32;
324 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
325 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
326 		if (!warned) {
327 			printk(errata93_warning);
328 			warned = 1;
329 		}
330 		regs->ip = address;
331 		return 1;
332 	}
333 #endif
334 	return 0;
335 }
336 
337 /*
338  * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
339  * addresses >4GB.  We catch this in the page fault handler because these
340  * addresses are not reachable. Just detect this case and return.  Any code
341  * segment in LDT is compatibility mode.
342  */
343 static int is_errata100(struct pt_regs *regs, unsigned long address)
344 {
345 #ifdef CONFIG_X86_64
346 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
347 	    (address >> 32))
348 		return 1;
349 #endif
350 	return 0;
351 }
352 
353 void do_invalid_op(struct pt_regs *, unsigned long);
354 
355 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
356 {
357 #ifdef CONFIG_X86_F00F_BUG
358 	unsigned long nr;
359 	/*
360 	 * Pentium F0 0F C7 C8 bug workaround.
361 	 */
362 	if (boot_cpu_data.f00f_bug) {
363 		nr = (address - idt_descr.address) >> 3;
364 
365 		if (nr == 6) {
366 			do_invalid_op(regs, 0);
367 			return 1;
368 		}
369 	}
370 #endif
371 	return 0;
372 }
373 
374 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
375 			    unsigned long address)
376 {
377 #ifdef CONFIG_X86_32
378 	if (!oops_may_print())
379 		return;
380 #endif
381 
382 #ifdef CONFIG_X86_PAE
383 	if (error_code & PF_INSTR) {
384 		unsigned int level;
385 		pte_t *pte = lookup_address(address, &level);
386 
387 		if (pte && pte_present(*pte) && !pte_exec(*pte))
388 			printk(KERN_CRIT "kernel tried to execute "
389 				"NX-protected page - exploit attempt? "
390 				"(uid: %d)\n", current->uid);
391 	}
392 #endif
393 
394 	printk(KERN_ALERT "BUG: unable to handle kernel ");
395 	if (address < PAGE_SIZE)
396 		printk(KERN_CONT "NULL pointer dereference");
397 	else
398 		printk(KERN_CONT "paging request");
399 #ifdef CONFIG_X86_32
400 	printk(KERN_CONT " at %08lx\n", address);
401 #else
402 	printk(KERN_CONT " at %016lx\n", address);
403 #endif
404 	printk(KERN_ALERT "IP:");
405 	printk_address(regs->ip, 1);
406 	dump_pagetable(address);
407 }
408 
409 #ifdef CONFIG_X86_64
410 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
411 				 unsigned long error_code)
412 {
413 	unsigned long flags = oops_begin();
414 	struct task_struct *tsk;
415 
416 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
417 	       current->comm, address);
418 	dump_pagetable(address);
419 	tsk = current;
420 	tsk->thread.cr2 = address;
421 	tsk->thread.trap_no = 14;
422 	tsk->thread.error_code = error_code;
423 	if (__die("Bad pagetable", regs, error_code))
424 		regs = NULL;
425 	oops_end(flags, regs, SIGKILL);
426 }
427 #endif
428 
429 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
430 {
431 	if ((error_code & PF_WRITE) && !pte_write(*pte))
432 		return 0;
433 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
434 		return 0;
435 
436 	return 1;
437 }
438 
439 /*
440  * Handle a spurious fault caused by a stale TLB entry.  This allows
441  * us to lazily refresh the TLB when increasing the permissions of a
442  * kernel page (RO -> RW or NX -> X).  Doing it eagerly is very
443  * expensive since that implies doing a full cross-processor TLB
444  * flush, even if no stale TLB entries exist on other processors.
445  * There are no security implications to leaving a stale TLB when
446  * increasing the permissions on a page.
447  */
448 static int spurious_fault(unsigned long address,
449 			  unsigned long error_code)
450 {
451 	pgd_t *pgd;
452 	pud_t *pud;
453 	pmd_t *pmd;
454 	pte_t *pte;
455 
456 	/* Reserved-bit violation or user access to kernel space? */
457 	if (error_code & (PF_USER | PF_RSVD))
458 		return 0;
459 
460 	pgd = init_mm.pgd + pgd_index(address);
461 	if (!pgd_present(*pgd))
462 		return 0;
463 
464 	pud = pud_offset(pgd, address);
465 	if (!pud_present(*pud))
466 		return 0;
467 
468 	if (pud_large(*pud))
469 		return spurious_fault_check(error_code, (pte_t *) pud);
470 
471 	pmd = pmd_offset(pud, address);
472 	if (!pmd_present(*pmd))
473 		return 0;
474 
475 	if (pmd_large(*pmd))
476 		return spurious_fault_check(error_code, (pte_t *) pmd);
477 
478 	pte = pte_offset_kernel(pmd, address);
479 	if (!pte_present(*pte))
480 		return 0;
481 
482 	return spurious_fault_check(error_code, pte);
483 }
484 
485 /*
486  * X86_32
487  * Handle a fault on the vmalloc or module mapping area
488  *
489  * X86_64
490  * Handle a fault on the vmalloc area
491  *
492  * This assumes no large pages in there.
493  */
494 static int vmalloc_fault(unsigned long address)
495 {
496 #ifdef CONFIG_X86_32
497 	unsigned long pgd_paddr;
498 	pmd_t *pmd_k;
499 	pte_t *pte_k;
500 	/*
501 	 * Synchronize this task's top level page-table
502 	 * with the 'reference' page table.
503 	 *
504 	 * Do _not_ use "current" here. We might be inside
505 	 * an interrupt in the middle of a task switch..
506 	 */
507 	pgd_paddr = read_cr3();
508 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
509 	if (!pmd_k)
510 		return -1;
511 	pte_k = pte_offset_kernel(pmd_k, address);
512 	if (!pte_present(*pte_k))
513 		return -1;
514 	return 0;
515 #else
516 	pgd_t *pgd, *pgd_ref;
517 	pud_t *pud, *pud_ref;
518 	pmd_t *pmd, *pmd_ref;
519 	pte_t *pte, *pte_ref;
520 
521 	/* Make sure we are in vmalloc area */
522 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
523 		return -1;
524 
525 	/* Copy kernel mappings over when needed. This can also
526 	   happen within a race in page table update. In the later
527 	   case just flush. */
528 
529 	pgd = pgd_offset(current->mm ?: &init_mm, address);
530 	pgd_ref = pgd_offset_k(address);
531 	if (pgd_none(*pgd_ref))
532 		return -1;
533 	if (pgd_none(*pgd))
534 		set_pgd(pgd, *pgd_ref);
535 	else
536 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
537 
538 	/* Below here mismatches are bugs because these lower tables
539 	   are shared */
540 
541 	pud = pud_offset(pgd, address);
542 	pud_ref = pud_offset(pgd_ref, address);
543 	if (pud_none(*pud_ref))
544 		return -1;
545 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
546 		BUG();
547 	pmd = pmd_offset(pud, address);
548 	pmd_ref = pmd_offset(pud_ref, address);
549 	if (pmd_none(*pmd_ref))
550 		return -1;
551 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
552 		BUG();
553 	pte_ref = pte_offset_kernel(pmd_ref, address);
554 	if (!pte_present(*pte_ref))
555 		return -1;
556 	pte = pte_offset_kernel(pmd, address);
557 	/* Don't use pte_page here, because the mappings can point
558 	   outside mem_map, and the NUMA hash lookup cannot handle
559 	   that. */
560 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
561 		BUG();
562 	return 0;
563 #endif
564 }
565 
566 int show_unhandled_signals = 1;
567 
568 /*
569  * This routine handles page faults.  It determines the address,
570  * and the problem, and then passes it off to one of the appropriate
571  * routines.
572  */
573 #ifdef CONFIG_X86_64
574 asmlinkage
575 #endif
576 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
577 {
578 	struct task_struct *tsk;
579 	struct mm_struct *mm;
580 	struct vm_area_struct *vma;
581 	unsigned long address;
582 	int write, si_code;
583 	int fault;
584 #ifdef CONFIG_X86_64
585 	unsigned long flags;
586 #endif
587 
588 	/*
589 	 * We can fault from pretty much anywhere, with unknown IRQ state.
590 	 */
591 	trace_hardirqs_fixup();
592 
593 	tsk = current;
594 	mm = tsk->mm;
595 	prefetchw(&mm->mmap_sem);
596 
597 	/* get the address */
598 	address = read_cr2();
599 
600 	si_code = SEGV_MAPERR;
601 
602 	if (notify_page_fault(regs))
603 		return;
604 
605 	/*
606 	 * We fault-in kernel-space virtual memory on-demand. The
607 	 * 'reference' page table is init_mm.pgd.
608 	 *
609 	 * NOTE! We MUST NOT take any locks for this case. We may
610 	 * be in an interrupt or a critical region, and should
611 	 * only copy the information from the master page table,
612 	 * nothing more.
613 	 *
614 	 * This verifies that the fault happens in kernel space
615 	 * (error_code & 4) == 0, and that the fault was not a
616 	 * protection error (error_code & 9) == 0.
617 	 */
618 #ifdef CONFIG_X86_32
619 	if (unlikely(address >= TASK_SIZE)) {
620 #else
621 	if (unlikely(address >= TASK_SIZE64)) {
622 #endif
623 		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
624 		    vmalloc_fault(address) >= 0)
625 			return;
626 
627 		/* Can handle a stale RO->RW TLB */
628 		if (spurious_fault(address, error_code))
629 			return;
630 
631 		/*
632 		 * Don't take the mm semaphore here. If we fixup a prefetch
633 		 * fault we could otherwise deadlock.
634 		 */
635 		goto bad_area_nosemaphore;
636 	}
637 
638 
639 #ifdef CONFIG_X86_32
640 	/* It's safe to allow irq's after cr2 has been saved and the vmalloc
641 	   fault has been handled. */
642 	if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
643 		local_irq_enable();
644 
645 	/*
646 	 * If we're in an interrupt, have no user context or are running in an
647 	 * atomic region then we must not take the fault.
648 	 */
649 	if (in_atomic() || !mm)
650 		goto bad_area_nosemaphore;
651 #else /* CONFIG_X86_64 */
652 	if (likely(regs->flags & X86_EFLAGS_IF))
653 		local_irq_enable();
654 
655 	if (unlikely(error_code & PF_RSVD))
656 		pgtable_bad(address, regs, error_code);
657 
658 	/*
659 	 * If we're in an interrupt, have no user context or are running in an
660 	 * atomic region then we must not take the fault.
661 	 */
662 	if (unlikely(in_atomic() || !mm))
663 		goto bad_area_nosemaphore;
664 
665 	/*
666 	 * User-mode registers count as a user access even for any
667 	 * potential system fault or CPU buglet.
668 	 */
669 	if (user_mode_vm(regs))
670 		error_code |= PF_USER;
671 again:
672 #endif
673 	/* When running in the kernel we expect faults to occur only to
674 	 * addresses in user space.  All other faults represent errors in the
675 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
676 	 * erroneous fault occurring in a code path which already holds mmap_sem
677 	 * we will deadlock attempting to validate the fault against the
678 	 * address space.  Luckily the kernel only validly references user
679 	 * space from well defined areas of code, which are listed in the
680 	 * exceptions table.
681 	 *
682 	 * As the vast majority of faults will be valid we will only perform
683 	 * the source reference check when there is a possibility of a deadlock.
684 	 * Attempt to lock the address space, if we cannot we then validate the
685 	 * source.  If this is invalid we can skip the address space check,
686 	 * thus avoiding the deadlock.
687 	 */
688 	if (!down_read_trylock(&mm->mmap_sem)) {
689 		if ((error_code & PF_USER) == 0 &&
690 		    !search_exception_tables(regs->ip))
691 			goto bad_area_nosemaphore;
692 		down_read(&mm->mmap_sem);
693 	}
694 
695 	vma = find_vma(mm, address);
696 	if (!vma)
697 		goto bad_area;
698 	if (vma->vm_start <= address)
699 		goto good_area;
700 	if (!(vma->vm_flags & VM_GROWSDOWN))
701 		goto bad_area;
702 	if (error_code & PF_USER) {
703 		/*
704 		 * Accessing the stack below %sp is always a bug.
705 		 * The large cushion allows instructions like enter
706 		 * and pusha to work.  ("enter $65535,$31" pushes
707 		 * 32 pointers and then decrements %sp by 65535.)
708 		 */
709 		if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
710 			goto bad_area;
711 	}
712 	if (expand_stack(vma, address))
713 		goto bad_area;
714 /*
715  * Ok, we have a good vm_area for this memory access, so
716  * we can handle it..
717  */
718 good_area:
719 	si_code = SEGV_ACCERR;
720 	write = 0;
721 	switch (error_code & (PF_PROT|PF_WRITE)) {
722 	default:	/* 3: write, present */
723 		/* fall through */
724 	case PF_WRITE:		/* write, not present */
725 		if (!(vma->vm_flags & VM_WRITE))
726 			goto bad_area;
727 		write++;
728 		break;
729 	case PF_PROT:		/* read, present */
730 		goto bad_area;
731 	case 0:			/* read, not present */
732 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
733 			goto bad_area;
734 	}
735 
736 #ifdef CONFIG_X86_32
737 survive:
738 #endif
739 	/*
740 	 * If for any reason at all we couldn't handle the fault,
741 	 * make sure we exit gracefully rather than endlessly redo
742 	 * the fault.
743 	 */
744 	fault = handle_mm_fault(mm, vma, address, write);
745 	if (unlikely(fault & VM_FAULT_ERROR)) {
746 		if (fault & VM_FAULT_OOM)
747 			goto out_of_memory;
748 		else if (fault & VM_FAULT_SIGBUS)
749 			goto do_sigbus;
750 		BUG();
751 	}
752 	if (fault & VM_FAULT_MAJOR)
753 		tsk->maj_flt++;
754 	else
755 		tsk->min_flt++;
756 
757 #ifdef CONFIG_X86_32
758 	/*
759 	 * Did it hit the DOS screen memory VA from vm86 mode?
760 	 */
761 	if (v8086_mode(regs)) {
762 		unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
763 		if (bit < 32)
764 			tsk->thread.screen_bitmap |= 1 << bit;
765 	}
766 #endif
767 	up_read(&mm->mmap_sem);
768 	return;
769 
770 /*
771  * Something tried to access memory that isn't in our memory map..
772  * Fix it, but check if it's kernel or user first..
773  */
774 bad_area:
775 	up_read(&mm->mmap_sem);
776 
777 bad_area_nosemaphore:
778 	/* User mode accesses just cause a SIGSEGV */
779 	if (error_code & PF_USER) {
780 		/*
781 		 * It's possible to have interrupts off here.
782 		 */
783 		local_irq_enable();
784 
785 		/*
786 		 * Valid to do another page fault here because this one came
787 		 * from user space.
788 		 */
789 		if (is_prefetch(regs, address, error_code))
790 			return;
791 
792 		if (is_errata100(regs, address))
793 			return;
794 
795 		if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
796 		    printk_ratelimit()) {
797 			printk(
798 #ifdef CONFIG_X86_32
799 			"%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
800 #else
801 			"%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
802 #endif
803 			task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
804 			tsk->comm, task_pid_nr(tsk), address, regs->ip,
805 			regs->sp, error_code);
806 			print_vma_addr(" in ", regs->ip);
807 			printk("\n");
808 		}
809 
810 		tsk->thread.cr2 = address;
811 		/* Kernel addresses are always protection faults */
812 		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
813 		tsk->thread.trap_no = 14;
814 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
815 		return;
816 	}
817 
818 	if (is_f00f_bug(regs, address))
819 		return;
820 
821 no_context:
822 	/* Are we prepared to handle this kernel fault?  */
823 	if (fixup_exception(regs))
824 		return;
825 
826 	/*
827 	 * X86_32
828 	 * Valid to do another page fault here, because if this fault
829 	 * had been triggered by is_prefetch fixup_exception would have
830 	 * handled it.
831 	 *
832 	 * X86_64
833 	 * Hall of shame of CPU/BIOS bugs.
834 	 */
835 	if (is_prefetch(regs, address, error_code))
836 		return;
837 
838 	if (is_errata93(regs, address))
839 		return;
840 
841 /*
842  * Oops. The kernel tried to access some bad page. We'll have to
843  * terminate things with extreme prejudice.
844  */
845 #ifdef CONFIG_X86_32
846 	bust_spinlocks(1);
847 #else
848 	flags = oops_begin();
849 #endif
850 
851 	show_fault_oops(regs, error_code, address);
852 
853 	tsk->thread.cr2 = address;
854 	tsk->thread.trap_no = 14;
855 	tsk->thread.error_code = error_code;
856 
857 #ifdef CONFIG_X86_32
858 	die("Oops", regs, error_code);
859 	bust_spinlocks(0);
860 	do_exit(SIGKILL);
861 #else
862 	if (__die("Oops", regs, error_code))
863 		regs = NULL;
864 	/* Executive summary in case the body of the oops scrolled away */
865 	printk(KERN_EMERG "CR2: %016lx\n", address);
866 	oops_end(flags, regs, SIGKILL);
867 #endif
868 
869 /*
870  * We ran out of memory, or some other thing happened to us that made
871  * us unable to handle the page fault gracefully.
872  */
873 out_of_memory:
874 	up_read(&mm->mmap_sem);
875 	if (is_global_init(tsk)) {
876 		yield();
877 #ifdef CONFIG_X86_32
878 		down_read(&mm->mmap_sem);
879 		goto survive;
880 #else
881 		goto again;
882 #endif
883 	}
884 
885 	printk("VM: killing process %s\n", tsk->comm);
886 	if (error_code & PF_USER)
887 		do_group_exit(SIGKILL);
888 	goto no_context;
889 
890 do_sigbus:
891 	up_read(&mm->mmap_sem);
892 
893 	/* Kernel mode? Handle exceptions or die */
894 	if (!(error_code & PF_USER))
895 		goto no_context;
896 #ifdef CONFIG_X86_32
897 	/* User space => ok to do another page fault */
898 	if (is_prefetch(regs, address, error_code))
899 		return;
900 #endif
901 	tsk->thread.cr2 = address;
902 	tsk->thread.error_code = error_code;
903 	tsk->thread.trap_no = 14;
904 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
905 }
906 
907 DEFINE_SPINLOCK(pgd_lock);
908 LIST_HEAD(pgd_list);
909 
910 void vmalloc_sync_all(void)
911 {
912 #ifdef CONFIG_X86_32
913 	/*
914 	 * Note that races in the updates of insync and start aren't
915 	 * problematic: insync can only get set bits added, and updates to
916 	 * start are only improving performance (without affecting correctness
917 	 * if undone).
918 	 */
919 	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
920 	static unsigned long start = TASK_SIZE;
921 	unsigned long address;
922 
923 	if (SHARED_KERNEL_PMD)
924 		return;
925 
926 	BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
927 	for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
928 		if (!test_bit(pgd_index(address), insync)) {
929 			unsigned long flags;
930 			struct page *page;
931 
932 			spin_lock_irqsave(&pgd_lock, flags);
933 			list_for_each_entry(page, &pgd_list, lru) {
934 				if (!vmalloc_sync_one(page_address(page),
935 						      address))
936 					break;
937 			}
938 			spin_unlock_irqrestore(&pgd_lock, flags);
939 			if (!page)
940 				set_bit(pgd_index(address), insync);
941 		}
942 		if (address == start && test_bit(pgd_index(address), insync))
943 			start = address + PGDIR_SIZE;
944 	}
945 #else /* CONFIG_X86_64 */
946 	/*
947 	 * Note that races in the updates of insync and start aren't
948 	 * problematic: insync can only get set bits added, and updates to
949 	 * start are only improving performance (without affecting correctness
950 	 * if undone).
951 	 */
952 	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
953 	static unsigned long start = VMALLOC_START & PGDIR_MASK;
954 	unsigned long address;
955 
956 	for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
957 		if (!test_bit(pgd_index(address), insync)) {
958 			const pgd_t *pgd_ref = pgd_offset_k(address);
959 			unsigned long flags;
960 			struct page *page;
961 
962 			if (pgd_none(*pgd_ref))
963 				continue;
964 			spin_lock_irqsave(&pgd_lock, flags);
965 			list_for_each_entry(page, &pgd_list, lru) {
966 				pgd_t *pgd;
967 				pgd = (pgd_t *)page_address(page) + pgd_index(address);
968 				if (pgd_none(*pgd))
969 					set_pgd(pgd, *pgd_ref);
970 				else
971 					BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
972 			}
973 			spin_unlock_irqrestore(&pgd_lock, flags);
974 			set_bit(pgd_index(address), insync);
975 		}
976 		if (address == start)
977 			start = address + PGDIR_SIZE;
978 	}
979 	/* Check that there is no need to do the same for the modules area. */
980 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
981 	BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
982 				(__START_KERNEL & PGDIR_MASK)));
983 #endif
984 }
985