xref: /openbmc/linux/arch/x86/mm/fault.c (revision a16be368)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
34 
35 #define CREATE_TRACE_POINTS
36 #include <asm/trace/exceptions.h>
37 
38 /*
39  * Returns 0 if mmiotrace is disabled, or if the fault is not
40  * handled by mmiotrace:
41  */
42 static nokprobe_inline int
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 	if (unlikely(is_kmmio_active()))
46 		if (kmmio_handler(regs, addr) == 1)
47 			return -1;
48 	return 0;
49 }
50 
51 /*
52  * Prefetch quirks:
53  *
54  * 32-bit mode:
55  *
56  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
57  *   Check that here and ignore it.
58  *
59  * 64-bit mode:
60  *
61  *   Sometimes the CPU reports invalid exceptions on prefetch.
62  *   Check that here and ignore it.
63  *
64  * Opcode checker based on code by Richard Brunner.
65  */
66 static inline int
67 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
68 		      unsigned char opcode, int *prefetch)
69 {
70 	unsigned char instr_hi = opcode & 0xf0;
71 	unsigned char instr_lo = opcode & 0x0f;
72 
73 	switch (instr_hi) {
74 	case 0x20:
75 	case 0x30:
76 		/*
77 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
78 		 * In X86_64 long mode, the CPU will signal invalid
79 		 * opcode if some of these prefixes are present so
80 		 * X86_64 will never get here anyway
81 		 */
82 		return ((instr_lo & 7) == 0x6);
83 #ifdef CONFIG_X86_64
84 	case 0x40:
85 		/*
86 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
87 		 * Need to figure out under what instruction mode the
88 		 * instruction was issued. Could check the LDT for lm,
89 		 * but for now it's good enough to assume that long
90 		 * mode only uses well known segments or kernel.
91 		 */
92 		return (!user_mode(regs) || user_64bit_mode(regs));
93 #endif
94 	case 0x60:
95 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
96 		return (instr_lo & 0xC) == 0x4;
97 	case 0xF0:
98 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
99 		return !instr_lo || (instr_lo>>1) == 1;
100 	case 0x00:
101 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
102 		if (probe_kernel_address(instr, opcode))
103 			return 0;
104 
105 		*prefetch = (instr_lo == 0xF) &&
106 			(opcode == 0x0D || opcode == 0x18);
107 		return 0;
108 	default:
109 		return 0;
110 	}
111 }
112 
113 static int
114 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
115 {
116 	unsigned char *max_instr;
117 	unsigned char *instr;
118 	int prefetch = 0;
119 
120 	/*
121 	 * If it was a exec (instruction fetch) fault on NX page, then
122 	 * do not ignore the fault:
123 	 */
124 	if (error_code & X86_PF_INSTR)
125 		return 0;
126 
127 	instr = (void *)convert_ip_to_linear(current, regs);
128 	max_instr = instr + 15;
129 
130 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
131 		return 0;
132 
133 	while (instr < max_instr) {
134 		unsigned char opcode;
135 
136 		if (probe_kernel_address(instr, opcode))
137 			break;
138 
139 		instr++;
140 
141 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
142 			break;
143 	}
144 	return prefetch;
145 }
146 
147 DEFINE_SPINLOCK(pgd_lock);
148 LIST_HEAD(pgd_list);
149 
150 #ifdef CONFIG_X86_32
151 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
152 {
153 	unsigned index = pgd_index(address);
154 	pgd_t *pgd_k;
155 	p4d_t *p4d, *p4d_k;
156 	pud_t *pud, *pud_k;
157 	pmd_t *pmd, *pmd_k;
158 
159 	pgd += index;
160 	pgd_k = init_mm.pgd + index;
161 
162 	if (!pgd_present(*pgd_k))
163 		return NULL;
164 
165 	/*
166 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
167 	 * and redundant with the set_pmd() on non-PAE. As would
168 	 * set_p4d/set_pud.
169 	 */
170 	p4d = p4d_offset(pgd, address);
171 	p4d_k = p4d_offset(pgd_k, address);
172 	if (!p4d_present(*p4d_k))
173 		return NULL;
174 
175 	pud = pud_offset(p4d, address);
176 	pud_k = pud_offset(p4d_k, address);
177 	if (!pud_present(*pud_k))
178 		return NULL;
179 
180 	pmd = pmd_offset(pud, address);
181 	pmd_k = pmd_offset(pud_k, address);
182 
183 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
184 		set_pmd(pmd, *pmd_k);
185 
186 	if (!pmd_present(*pmd_k))
187 		return NULL;
188 	else
189 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
190 
191 	return pmd_k;
192 }
193 
194 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
195 {
196 	unsigned long addr;
197 
198 	for (addr = start & PMD_MASK;
199 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
200 	     addr += PMD_SIZE) {
201 		struct page *page;
202 
203 		spin_lock(&pgd_lock);
204 		list_for_each_entry(page, &pgd_list, lru) {
205 			spinlock_t *pgt_lock;
206 
207 			/* the pgt_lock only for Xen */
208 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
209 
210 			spin_lock(pgt_lock);
211 			vmalloc_sync_one(page_address(page), addr);
212 			spin_unlock(pgt_lock);
213 		}
214 		spin_unlock(&pgd_lock);
215 	}
216 }
217 
218 /*
219  * Did it hit the DOS screen memory VA from vm86 mode?
220  */
221 static inline void
222 check_v8086_mode(struct pt_regs *regs, unsigned long address,
223 		 struct task_struct *tsk)
224 {
225 #ifdef CONFIG_VM86
226 	unsigned long bit;
227 
228 	if (!v8086_mode(regs) || !tsk->thread.vm86)
229 		return;
230 
231 	bit = (address - 0xA0000) >> PAGE_SHIFT;
232 	if (bit < 32)
233 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
234 #endif
235 }
236 
237 static bool low_pfn(unsigned long pfn)
238 {
239 	return pfn < max_low_pfn;
240 }
241 
242 static void dump_pagetable(unsigned long address)
243 {
244 	pgd_t *base = __va(read_cr3_pa());
245 	pgd_t *pgd = &base[pgd_index(address)];
246 	p4d_t *p4d;
247 	pud_t *pud;
248 	pmd_t *pmd;
249 	pte_t *pte;
250 
251 #ifdef CONFIG_X86_PAE
252 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
253 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
254 		goto out;
255 #define pr_pde pr_cont
256 #else
257 #define pr_pde pr_info
258 #endif
259 	p4d = p4d_offset(pgd, address);
260 	pud = pud_offset(p4d, address);
261 	pmd = pmd_offset(pud, address);
262 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
263 #undef pr_pde
264 
265 	/*
266 	 * We must not directly access the pte in the highpte
267 	 * case if the page table is located in highmem.
268 	 * And let's rather not kmap-atomic the pte, just in case
269 	 * it's allocated already:
270 	 */
271 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
272 		goto out;
273 
274 	pte = pte_offset_kernel(pmd, address);
275 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
276 out:
277 	pr_cont("\n");
278 }
279 
280 #else /* CONFIG_X86_64: */
281 
282 #ifdef CONFIG_CPU_SUP_AMD
283 static const char errata93_warning[] =
284 KERN_ERR
285 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
286 "******* Working around it, but it may cause SEGVs or burn power.\n"
287 "******* Please consider a BIOS update.\n"
288 "******* Disabling USB legacy in the BIOS may also help.\n";
289 #endif
290 
291 /*
292  * No vm86 mode in 64-bit mode:
293  */
294 static inline void
295 check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 		 struct task_struct *tsk)
297 {
298 }
299 
300 static int bad_address(void *p)
301 {
302 	unsigned long dummy;
303 
304 	return probe_kernel_address((unsigned long *)p, dummy);
305 }
306 
307 static void dump_pagetable(unsigned long address)
308 {
309 	pgd_t *base = __va(read_cr3_pa());
310 	pgd_t *pgd = base + pgd_index(address);
311 	p4d_t *p4d;
312 	pud_t *pud;
313 	pmd_t *pmd;
314 	pte_t *pte;
315 
316 	if (bad_address(pgd))
317 		goto bad;
318 
319 	pr_info("PGD %lx ", pgd_val(*pgd));
320 
321 	if (!pgd_present(*pgd))
322 		goto out;
323 
324 	p4d = p4d_offset(pgd, address);
325 	if (bad_address(p4d))
326 		goto bad;
327 
328 	pr_cont("P4D %lx ", p4d_val(*p4d));
329 	if (!p4d_present(*p4d) || p4d_large(*p4d))
330 		goto out;
331 
332 	pud = pud_offset(p4d, address);
333 	if (bad_address(pud))
334 		goto bad;
335 
336 	pr_cont("PUD %lx ", pud_val(*pud));
337 	if (!pud_present(*pud) || pud_large(*pud))
338 		goto out;
339 
340 	pmd = pmd_offset(pud, address);
341 	if (bad_address(pmd))
342 		goto bad;
343 
344 	pr_cont("PMD %lx ", pmd_val(*pmd));
345 	if (!pmd_present(*pmd) || pmd_large(*pmd))
346 		goto out;
347 
348 	pte = pte_offset_kernel(pmd, address);
349 	if (bad_address(pte))
350 		goto bad;
351 
352 	pr_cont("PTE %lx", pte_val(*pte));
353 out:
354 	pr_cont("\n");
355 	return;
356 bad:
357 	pr_info("BAD\n");
358 }
359 
360 #endif /* CONFIG_X86_64 */
361 
362 /*
363  * Workaround for K8 erratum #93 & buggy BIOS.
364  *
365  * BIOS SMM functions are required to use a specific workaround
366  * to avoid corruption of the 64bit RIP register on C stepping K8.
367  *
368  * A lot of BIOS that didn't get tested properly miss this.
369  *
370  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
371  * Try to work around it here.
372  *
373  * Note we only handle faults in kernel here.
374  * Does nothing on 32-bit.
375  */
376 static int is_errata93(struct pt_regs *regs, unsigned long address)
377 {
378 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
379 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
380 	    || boot_cpu_data.x86 != 0xf)
381 		return 0;
382 
383 	if (address != regs->ip)
384 		return 0;
385 
386 	if ((address >> 32) != 0)
387 		return 0;
388 
389 	address |= 0xffffffffUL << 32;
390 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
391 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
392 		printk_once(errata93_warning);
393 		regs->ip = address;
394 		return 1;
395 	}
396 #endif
397 	return 0;
398 }
399 
400 /*
401  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
402  * to illegal addresses >4GB.
403  *
404  * We catch this in the page fault handler because these addresses
405  * are not reachable. Just detect this case and return.  Any code
406  * segment in LDT is compatibility mode.
407  */
408 static int is_errata100(struct pt_regs *regs, unsigned long address)
409 {
410 #ifdef CONFIG_X86_64
411 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
412 		return 1;
413 #endif
414 	return 0;
415 }
416 
417 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
418 {
419 #ifdef CONFIG_X86_F00F_BUG
420 	unsigned long nr;
421 
422 	/*
423 	 * Pentium F0 0F C7 C8 bug workaround:
424 	 */
425 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
426 		nr = (address - idt_descr.address) >> 3;
427 
428 		if (nr == 6) {
429 			handle_invalid_op(regs);
430 			return 1;
431 		}
432 	}
433 #endif
434 	return 0;
435 }
436 
437 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
438 {
439 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
440 	unsigned long addr;
441 	struct ldttss_desc desc;
442 
443 	if (index == 0) {
444 		pr_alert("%s: NULL\n", name);
445 		return;
446 	}
447 
448 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
449 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
450 		return;
451 	}
452 
453 	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
454 			      sizeof(struct ldttss_desc))) {
455 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
456 			 name, index);
457 		return;
458 	}
459 
460 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
461 #ifdef CONFIG_X86_64
462 	addr |= ((u64)desc.base3 << 32);
463 #endif
464 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
465 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
466 }
467 
468 static void
469 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
470 {
471 	if (!oops_may_print())
472 		return;
473 
474 	if (error_code & X86_PF_INSTR) {
475 		unsigned int level;
476 		pgd_t *pgd;
477 		pte_t *pte;
478 
479 		pgd = __va(read_cr3_pa());
480 		pgd += pgd_index(address);
481 
482 		pte = lookup_address_in_pgd(pgd, address, &level);
483 
484 		if (pte && pte_present(*pte) && !pte_exec(*pte))
485 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
486 				from_kuid(&init_user_ns, current_uid()));
487 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
488 				(pgd_flags(*pgd) & _PAGE_USER) &&
489 				(__read_cr4() & X86_CR4_SMEP))
490 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
491 				from_kuid(&init_user_ns, current_uid()));
492 	}
493 
494 	if (address < PAGE_SIZE && !user_mode(regs))
495 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
496 			(void *)address);
497 	else
498 		pr_alert("BUG: unable to handle page fault for address: %px\n",
499 			(void *)address);
500 
501 	pr_alert("#PF: %s %s in %s mode\n",
502 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
503 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
504 		 (error_code & X86_PF_WRITE) ? "write access" :
505 					       "read access",
506 			     user_mode(regs) ? "user" : "kernel");
507 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
508 		 !(error_code & X86_PF_PROT) ? "not-present page" :
509 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
510 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
511 					       "permissions violation");
512 
513 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
514 		struct desc_ptr idt, gdt;
515 		u16 ldtr, tr;
516 
517 		/*
518 		 * This can happen for quite a few reasons.  The more obvious
519 		 * ones are faults accessing the GDT, or LDT.  Perhaps
520 		 * surprisingly, if the CPU tries to deliver a benign or
521 		 * contributory exception from user code and gets a page fault
522 		 * during delivery, the page fault can be delivered as though
523 		 * it originated directly from user code.  This could happen
524 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
525 		 * kernel or IST stack.
526 		 */
527 		store_idt(&idt);
528 
529 		/* Usable even on Xen PV -- it's just slow. */
530 		native_store_gdt(&gdt);
531 
532 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
533 			 idt.address, idt.size, gdt.address, gdt.size);
534 
535 		store_ldt(ldtr);
536 		show_ldttss(&gdt, "LDTR", ldtr);
537 
538 		store_tr(tr);
539 		show_ldttss(&gdt, "TR", tr);
540 	}
541 
542 	dump_pagetable(address);
543 }
544 
545 static noinline void
546 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
547 	    unsigned long address)
548 {
549 	struct task_struct *tsk;
550 	unsigned long flags;
551 	int sig;
552 
553 	flags = oops_begin();
554 	tsk = current;
555 	sig = SIGKILL;
556 
557 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
558 	       tsk->comm, address);
559 	dump_pagetable(address);
560 
561 	if (__die("Bad pagetable", regs, error_code))
562 		sig = 0;
563 
564 	oops_end(flags, regs, sig);
565 }
566 
567 static void set_signal_archinfo(unsigned long address,
568 				unsigned long error_code)
569 {
570 	struct task_struct *tsk = current;
571 
572 	/*
573 	 * To avoid leaking information about the kernel page
574 	 * table layout, pretend that user-mode accesses to
575 	 * kernel addresses are always protection faults.
576 	 *
577 	 * NB: This means that failed vsyscalls with vsyscall=none
578 	 * will have the PROT bit.  This doesn't leak any
579 	 * information and does not appear to cause any problems.
580 	 */
581 	if (address >= TASK_SIZE_MAX)
582 		error_code |= X86_PF_PROT;
583 
584 	tsk->thread.trap_nr = X86_TRAP_PF;
585 	tsk->thread.error_code = error_code | X86_PF_USER;
586 	tsk->thread.cr2 = address;
587 }
588 
589 static noinline void
590 no_context(struct pt_regs *regs, unsigned long error_code,
591 	   unsigned long address, int signal, int si_code)
592 {
593 	struct task_struct *tsk = current;
594 	unsigned long flags;
595 	int sig;
596 
597 	if (user_mode(regs)) {
598 		/*
599 		 * This is an implicit supervisor-mode access from user
600 		 * mode.  Bypass all the kernel-mode recovery code and just
601 		 * OOPS.
602 		 */
603 		goto oops;
604 	}
605 
606 	/* Are we prepared to handle this kernel fault? */
607 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
608 		/*
609 		 * Any interrupt that takes a fault gets the fixup. This makes
610 		 * the below recursive fault logic only apply to a faults from
611 		 * task context.
612 		 */
613 		if (in_interrupt())
614 			return;
615 
616 		/*
617 		 * Per the above we're !in_interrupt(), aka. task context.
618 		 *
619 		 * In this case we need to make sure we're not recursively
620 		 * faulting through the emulate_vsyscall() logic.
621 		 */
622 		if (current->thread.sig_on_uaccess_err && signal) {
623 			set_signal_archinfo(address, error_code);
624 
625 			/* XXX: hwpoison faults will set the wrong code. */
626 			force_sig_fault(signal, si_code, (void __user *)address);
627 		}
628 
629 		/*
630 		 * Barring that, we can do the fixup and be happy.
631 		 */
632 		return;
633 	}
634 
635 #ifdef CONFIG_VMAP_STACK
636 	/*
637 	 * Stack overflow?  During boot, we can fault near the initial
638 	 * stack in the direct map, but that's not an overflow -- check
639 	 * that we're in vmalloc space to avoid this.
640 	 */
641 	if (is_vmalloc_addr((void *)address) &&
642 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
643 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
644 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
645 		/*
646 		 * We're likely to be running with very little stack space
647 		 * left.  It's plausible that we'd hit this condition but
648 		 * double-fault even before we get this far, in which case
649 		 * we're fine: the double-fault handler will deal with it.
650 		 *
651 		 * We don't want to make it all the way into the oops code
652 		 * and then double-fault, though, because we're likely to
653 		 * break the console driver and lose most of the stack dump.
654 		 */
655 		asm volatile ("movq %[stack], %%rsp\n\t"
656 			      "call handle_stack_overflow\n\t"
657 			      "1: jmp 1b"
658 			      : ASM_CALL_CONSTRAINT
659 			      : "D" ("kernel stack overflow (page fault)"),
660 				"S" (regs), "d" (address),
661 				[stack] "rm" (stack));
662 		unreachable();
663 	}
664 #endif
665 
666 	/*
667 	 * 32-bit:
668 	 *
669 	 *   Valid to do another page fault here, because if this fault
670 	 *   had been triggered by is_prefetch fixup_exception would have
671 	 *   handled it.
672 	 *
673 	 * 64-bit:
674 	 *
675 	 *   Hall of shame of CPU/BIOS bugs.
676 	 */
677 	if (is_prefetch(regs, error_code, address))
678 		return;
679 
680 	if (is_errata93(regs, address))
681 		return;
682 
683 	/*
684 	 * Buggy firmware could access regions which might page fault, try to
685 	 * recover from such faults.
686 	 */
687 	if (IS_ENABLED(CONFIG_EFI))
688 		efi_recover_from_page_fault(address);
689 
690 oops:
691 	/*
692 	 * Oops. The kernel tried to access some bad page. We'll have to
693 	 * terminate things with extreme prejudice:
694 	 */
695 	flags = oops_begin();
696 
697 	show_fault_oops(regs, error_code, address);
698 
699 	if (task_stack_end_corrupted(tsk))
700 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
701 
702 	sig = SIGKILL;
703 	if (__die("Oops", regs, error_code))
704 		sig = 0;
705 
706 	/* Executive summary in case the body of the oops scrolled away */
707 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
708 
709 	oops_end(flags, regs, sig);
710 }
711 
712 /*
713  * Print out info about fatal segfaults, if the show_unhandled_signals
714  * sysctl is set:
715  */
716 static inline void
717 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
718 		unsigned long address, struct task_struct *tsk)
719 {
720 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
721 
722 	if (!unhandled_signal(tsk, SIGSEGV))
723 		return;
724 
725 	if (!printk_ratelimit())
726 		return;
727 
728 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
729 		loglvl, tsk->comm, task_pid_nr(tsk), address,
730 		(void *)regs->ip, (void *)regs->sp, error_code);
731 
732 	print_vma_addr(KERN_CONT " in ", regs->ip);
733 
734 	printk(KERN_CONT "\n");
735 
736 	show_opcodes(regs, loglvl);
737 }
738 
739 /*
740  * The (legacy) vsyscall page is the long page in the kernel portion
741  * of the address space that has user-accessible permissions.
742  */
743 static bool is_vsyscall_vaddr(unsigned long vaddr)
744 {
745 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
746 }
747 
748 static void
749 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
750 		       unsigned long address, u32 pkey, int si_code)
751 {
752 	struct task_struct *tsk = current;
753 
754 	/* User mode accesses just cause a SIGSEGV */
755 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
756 		/*
757 		 * It's possible to have interrupts off here:
758 		 */
759 		local_irq_enable();
760 
761 		/*
762 		 * Valid to do another page fault here because this one came
763 		 * from user space:
764 		 */
765 		if (is_prefetch(regs, error_code, address))
766 			return;
767 
768 		if (is_errata100(regs, address))
769 			return;
770 
771 		/*
772 		 * To avoid leaking information about the kernel page table
773 		 * layout, pretend that user-mode accesses to kernel addresses
774 		 * are always protection faults.
775 		 */
776 		if (address >= TASK_SIZE_MAX)
777 			error_code |= X86_PF_PROT;
778 
779 		if (likely(show_unhandled_signals))
780 			show_signal_msg(regs, error_code, address, tsk);
781 
782 		set_signal_archinfo(address, error_code);
783 
784 		if (si_code == SEGV_PKUERR)
785 			force_sig_pkuerr((void __user *)address, pkey);
786 
787 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
788 
789 		local_irq_disable();
790 
791 		return;
792 	}
793 
794 	if (is_f00f_bug(regs, address))
795 		return;
796 
797 	no_context(regs, error_code, address, SIGSEGV, si_code);
798 }
799 
800 static noinline void
801 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
802 		     unsigned long address)
803 {
804 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
805 }
806 
807 static void
808 __bad_area(struct pt_regs *regs, unsigned long error_code,
809 	   unsigned long address, u32 pkey, int si_code)
810 {
811 	struct mm_struct *mm = current->mm;
812 	/*
813 	 * Something tried to access memory that isn't in our memory map..
814 	 * Fix it, but check if it's kernel or user first..
815 	 */
816 	mmap_read_unlock(mm);
817 
818 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
819 }
820 
821 static noinline void
822 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
823 {
824 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
825 }
826 
827 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
828 		struct vm_area_struct *vma)
829 {
830 	/* This code is always called on the current mm */
831 	bool foreign = false;
832 
833 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
834 		return false;
835 	if (error_code & X86_PF_PK)
836 		return true;
837 	/* this checks permission keys on the VMA: */
838 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
839 				       (error_code & X86_PF_INSTR), foreign))
840 		return true;
841 	return false;
842 }
843 
844 static noinline void
845 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
846 		      unsigned long address, struct vm_area_struct *vma)
847 {
848 	/*
849 	 * This OSPKE check is not strictly necessary at runtime.
850 	 * But, doing it this way allows compiler optimizations
851 	 * if pkeys are compiled out.
852 	 */
853 	if (bad_area_access_from_pkeys(error_code, vma)) {
854 		/*
855 		 * A protection key fault means that the PKRU value did not allow
856 		 * access to some PTE.  Userspace can figure out what PKRU was
857 		 * from the XSAVE state.  This function captures the pkey from
858 		 * the vma and passes it to userspace so userspace can discover
859 		 * which protection key was set on the PTE.
860 		 *
861 		 * If we get here, we know that the hardware signaled a X86_PF_PK
862 		 * fault and that there was a VMA once we got in the fault
863 		 * handler.  It does *not* guarantee that the VMA we find here
864 		 * was the one that we faulted on.
865 		 *
866 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
867 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
868 		 * 3. T1   : faults...
869 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
870 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
871 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
872 		 *	     faulted on a pte with its pkey=4.
873 		 */
874 		u32 pkey = vma_pkey(vma);
875 
876 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
877 	} else {
878 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
879 	}
880 }
881 
882 static void
883 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
884 	  vm_fault_t fault)
885 {
886 	/* Kernel mode? Handle exceptions or die: */
887 	if (!(error_code & X86_PF_USER)) {
888 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
889 		return;
890 	}
891 
892 	/* User-space => ok to do another page fault: */
893 	if (is_prefetch(regs, error_code, address))
894 		return;
895 
896 	set_signal_archinfo(address, error_code);
897 
898 #ifdef CONFIG_MEMORY_FAILURE
899 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
900 		struct task_struct *tsk = current;
901 		unsigned lsb = 0;
902 
903 		pr_err(
904 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
905 			tsk->comm, tsk->pid, address);
906 		if (fault & VM_FAULT_HWPOISON_LARGE)
907 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
908 		if (fault & VM_FAULT_HWPOISON)
909 			lsb = PAGE_SHIFT;
910 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
911 		return;
912 	}
913 #endif
914 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
915 }
916 
917 static noinline void
918 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
919 	       unsigned long address, vm_fault_t fault)
920 {
921 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
922 		no_context(regs, error_code, address, 0, 0);
923 		return;
924 	}
925 
926 	if (fault & VM_FAULT_OOM) {
927 		/* Kernel mode? Handle exceptions or die: */
928 		if (!(error_code & X86_PF_USER)) {
929 			no_context(regs, error_code, address,
930 				   SIGSEGV, SEGV_MAPERR);
931 			return;
932 		}
933 
934 		/*
935 		 * We ran out of memory, call the OOM killer, and return the
936 		 * userspace (which will retry the fault, or kill us if we got
937 		 * oom-killed):
938 		 */
939 		pagefault_out_of_memory();
940 	} else {
941 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
942 			     VM_FAULT_HWPOISON_LARGE))
943 			do_sigbus(regs, error_code, address, fault);
944 		else if (fault & VM_FAULT_SIGSEGV)
945 			bad_area_nosemaphore(regs, error_code, address);
946 		else
947 			BUG();
948 	}
949 }
950 
951 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
952 {
953 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
954 		return 0;
955 
956 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
957 		return 0;
958 
959 	return 1;
960 }
961 
962 /*
963  * Handle a spurious fault caused by a stale TLB entry.
964  *
965  * This allows us to lazily refresh the TLB when increasing the
966  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
967  * eagerly is very expensive since that implies doing a full
968  * cross-processor TLB flush, even if no stale TLB entries exist
969  * on other processors.
970  *
971  * Spurious faults may only occur if the TLB contains an entry with
972  * fewer permission than the page table entry.  Non-present (P = 0)
973  * and reserved bit (R = 1) faults are never spurious.
974  *
975  * There are no security implications to leaving a stale TLB when
976  * increasing the permissions on a page.
977  *
978  * Returns non-zero if a spurious fault was handled, zero otherwise.
979  *
980  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981  * (Optional Invalidation).
982  */
983 static noinline int
984 spurious_kernel_fault(unsigned long error_code, unsigned long address)
985 {
986 	pgd_t *pgd;
987 	p4d_t *p4d;
988 	pud_t *pud;
989 	pmd_t *pmd;
990 	pte_t *pte;
991 	int ret;
992 
993 	/*
994 	 * Only writes to RO or instruction fetches from NX may cause
995 	 * spurious faults.
996 	 *
997 	 * These could be from user or supervisor accesses but the TLB
998 	 * is only lazily flushed after a kernel mapping protection
999 	 * change, so user accesses are not expected to cause spurious
1000 	 * faults.
1001 	 */
1002 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1003 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1004 		return 0;
1005 
1006 	pgd = init_mm.pgd + pgd_index(address);
1007 	if (!pgd_present(*pgd))
1008 		return 0;
1009 
1010 	p4d = p4d_offset(pgd, address);
1011 	if (!p4d_present(*p4d))
1012 		return 0;
1013 
1014 	if (p4d_large(*p4d))
1015 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1016 
1017 	pud = pud_offset(p4d, address);
1018 	if (!pud_present(*pud))
1019 		return 0;
1020 
1021 	if (pud_large(*pud))
1022 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1023 
1024 	pmd = pmd_offset(pud, address);
1025 	if (!pmd_present(*pmd))
1026 		return 0;
1027 
1028 	if (pmd_large(*pmd))
1029 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1030 
1031 	pte = pte_offset_kernel(pmd, address);
1032 	if (!pte_present(*pte))
1033 		return 0;
1034 
1035 	ret = spurious_kernel_fault_check(error_code, pte);
1036 	if (!ret)
1037 		return 0;
1038 
1039 	/*
1040 	 * Make sure we have permissions in PMD.
1041 	 * If not, then there's a bug in the page tables:
1042 	 */
1043 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1044 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1045 
1046 	return ret;
1047 }
1048 NOKPROBE_SYMBOL(spurious_kernel_fault);
1049 
1050 int show_unhandled_signals = 1;
1051 
1052 static inline int
1053 access_error(unsigned long error_code, struct vm_area_struct *vma)
1054 {
1055 	/* This is only called for the current mm, so: */
1056 	bool foreign = false;
1057 
1058 	/*
1059 	 * Read or write was blocked by protection keys.  This is
1060 	 * always an unconditional error and can never result in
1061 	 * a follow-up action to resolve the fault, like a COW.
1062 	 */
1063 	if (error_code & X86_PF_PK)
1064 		return 1;
1065 
1066 	/*
1067 	 * Make sure to check the VMA so that we do not perform
1068 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1069 	 * page.
1070 	 */
1071 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1072 				       (error_code & X86_PF_INSTR), foreign))
1073 		return 1;
1074 
1075 	if (error_code & X86_PF_WRITE) {
1076 		/* write, present and write, not present: */
1077 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1078 			return 1;
1079 		return 0;
1080 	}
1081 
1082 	/* read, present: */
1083 	if (unlikely(error_code & X86_PF_PROT))
1084 		return 1;
1085 
1086 	/* read, not present: */
1087 	if (unlikely(!vma_is_accessible(vma)))
1088 		return 1;
1089 
1090 	return 0;
1091 }
1092 
1093 static int fault_in_kernel_space(unsigned long address)
1094 {
1095 	/*
1096 	 * On 64-bit systems, the vsyscall page is at an address above
1097 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1098 	 * address space.
1099 	 */
1100 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1101 		return false;
1102 
1103 	return address >= TASK_SIZE_MAX;
1104 }
1105 
1106 /*
1107  * Called for all faults where 'address' is part of the kernel address
1108  * space.  Might get called for faults that originate from *code* that
1109  * ran in userspace or the kernel.
1110  */
1111 static void
1112 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1113 		   unsigned long address)
1114 {
1115 	/*
1116 	 * Protection keys exceptions only happen on user pages.  We
1117 	 * have no user pages in the kernel portion of the address
1118 	 * space, so do not expect them here.
1119 	 */
1120 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1121 
1122 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1123 	if (spurious_kernel_fault(hw_error_code, address))
1124 		return;
1125 
1126 	/* kprobes don't want to hook the spurious faults: */
1127 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1128 		return;
1129 
1130 	/*
1131 	 * Note, despite being a "bad area", there are quite a few
1132 	 * acceptable reasons to get here, such as erratum fixups
1133 	 * and handling kernel code that can fault, like get_user().
1134 	 *
1135 	 * Don't take the mm semaphore here. If we fixup a prefetch
1136 	 * fault we could otherwise deadlock:
1137 	 */
1138 	bad_area_nosemaphore(regs, hw_error_code, address);
1139 }
1140 NOKPROBE_SYMBOL(do_kern_addr_fault);
1141 
1142 /* Handle faults in the user portion of the address space */
1143 static inline
1144 void do_user_addr_fault(struct pt_regs *regs,
1145 			unsigned long hw_error_code,
1146 			unsigned long address)
1147 {
1148 	struct vm_area_struct *vma;
1149 	struct task_struct *tsk;
1150 	struct mm_struct *mm;
1151 	vm_fault_t fault, major = 0;
1152 	unsigned int flags = FAULT_FLAG_DEFAULT;
1153 
1154 	tsk = current;
1155 	mm = tsk->mm;
1156 
1157 	/* kprobes don't want to hook the spurious faults: */
1158 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1159 		return;
1160 
1161 	/*
1162 	 * Reserved bits are never expected to be set on
1163 	 * entries in the user portion of the page tables.
1164 	 */
1165 	if (unlikely(hw_error_code & X86_PF_RSVD))
1166 		pgtable_bad(regs, hw_error_code, address);
1167 
1168 	/*
1169 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1170 	 * pages in the user address space.  The odd case here is WRUSS,
1171 	 * which, according to the preliminary documentation, does not respect
1172 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1173 	 * enforcement appears to be consistent with the USER bit.
1174 	 */
1175 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1176 		     !(hw_error_code & X86_PF_USER) &&
1177 		     !(regs->flags & X86_EFLAGS_AC)))
1178 	{
1179 		bad_area_nosemaphore(regs, hw_error_code, address);
1180 		return;
1181 	}
1182 
1183 	/*
1184 	 * If we're in an interrupt, have no user context or are running
1185 	 * in a region with pagefaults disabled then we must not take the fault
1186 	 */
1187 	if (unlikely(faulthandler_disabled() || !mm)) {
1188 		bad_area_nosemaphore(regs, hw_error_code, address);
1189 		return;
1190 	}
1191 
1192 	/*
1193 	 * It's safe to allow irq's after cr2 has been saved and the
1194 	 * vmalloc fault has been handled.
1195 	 *
1196 	 * User-mode registers count as a user access even for any
1197 	 * potential system fault or CPU buglet:
1198 	 */
1199 	if (user_mode(regs)) {
1200 		local_irq_enable();
1201 		flags |= FAULT_FLAG_USER;
1202 	} else {
1203 		if (regs->flags & X86_EFLAGS_IF)
1204 			local_irq_enable();
1205 	}
1206 
1207 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1208 
1209 	if (hw_error_code & X86_PF_WRITE)
1210 		flags |= FAULT_FLAG_WRITE;
1211 	if (hw_error_code & X86_PF_INSTR)
1212 		flags |= FAULT_FLAG_INSTRUCTION;
1213 
1214 #ifdef CONFIG_X86_64
1215 	/*
1216 	 * Faults in the vsyscall page might need emulation.  The
1217 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1218 	 * considered to be part of the user address space.
1219 	 *
1220 	 * The vsyscall page does not have a "real" VMA, so do this
1221 	 * emulation before we go searching for VMAs.
1222 	 *
1223 	 * PKRU never rejects instruction fetches, so we don't need
1224 	 * to consider the PF_PK bit.
1225 	 */
1226 	if (is_vsyscall_vaddr(address)) {
1227 		if (emulate_vsyscall(hw_error_code, regs, address))
1228 			return;
1229 	}
1230 #endif
1231 
1232 	/*
1233 	 * Kernel-mode access to the user address space should only occur
1234 	 * on well-defined single instructions listed in the exception
1235 	 * tables.  But, an erroneous kernel fault occurring outside one of
1236 	 * those areas which also holds mmap_lock might deadlock attempting
1237 	 * to validate the fault against the address space.
1238 	 *
1239 	 * Only do the expensive exception table search when we might be at
1240 	 * risk of a deadlock.  This happens if we
1241 	 * 1. Failed to acquire mmap_lock, and
1242 	 * 2. The access did not originate in userspace.
1243 	 */
1244 	if (unlikely(!mmap_read_trylock(mm))) {
1245 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1246 			/*
1247 			 * Fault from code in kernel from
1248 			 * which we do not expect faults.
1249 			 */
1250 			bad_area_nosemaphore(regs, hw_error_code, address);
1251 			return;
1252 		}
1253 retry:
1254 		mmap_read_lock(mm);
1255 	} else {
1256 		/*
1257 		 * The above down_read_trylock() might have succeeded in
1258 		 * which case we'll have missed the might_sleep() from
1259 		 * down_read():
1260 		 */
1261 		might_sleep();
1262 	}
1263 
1264 	vma = find_vma(mm, address);
1265 	if (unlikely(!vma)) {
1266 		bad_area(regs, hw_error_code, address);
1267 		return;
1268 	}
1269 	if (likely(vma->vm_start <= address))
1270 		goto good_area;
1271 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1272 		bad_area(regs, hw_error_code, address);
1273 		return;
1274 	}
1275 	if (unlikely(expand_stack(vma, address))) {
1276 		bad_area(regs, hw_error_code, address);
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * Ok, we have a good vm_area for this memory access, so
1282 	 * we can handle it..
1283 	 */
1284 good_area:
1285 	if (unlikely(access_error(hw_error_code, vma))) {
1286 		bad_area_access_error(regs, hw_error_code, address, vma);
1287 		return;
1288 	}
1289 
1290 	/*
1291 	 * If for any reason at all we couldn't handle the fault,
1292 	 * make sure we exit gracefully rather than endlessly redo
1293 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1294 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1295 	 *
1296 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1297 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1298 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1299 	 * (potentially after handling any pending signal during the return to
1300 	 * userland). The return to userland is identified whenever
1301 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1302 	 */
1303 	fault = handle_mm_fault(vma, address, flags);
1304 	major |= fault & VM_FAULT_MAJOR;
1305 
1306 	/* Quick path to respond to signals */
1307 	if (fault_signal_pending(fault, regs)) {
1308 		if (!user_mode(regs))
1309 			no_context(regs, hw_error_code, address, SIGBUS,
1310 				   BUS_ADRERR);
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * If we need to retry the mmap_lock has already been released,
1316 	 * and if there is a fatal signal pending there is no guarantee
1317 	 * that we made any progress. Handle this case first.
1318 	 */
1319 	if (unlikely((fault & VM_FAULT_RETRY) &&
1320 		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1321 		flags |= FAULT_FLAG_TRIED;
1322 		goto retry;
1323 	}
1324 
1325 	mmap_read_unlock(mm);
1326 	if (unlikely(fault & VM_FAULT_ERROR)) {
1327 		mm_fault_error(regs, hw_error_code, address, fault);
1328 		return;
1329 	}
1330 
1331 	/*
1332 	 * Major/minor page fault accounting. If any of the events
1333 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1334 	 */
1335 	if (major) {
1336 		tsk->maj_flt++;
1337 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1338 	} else {
1339 		tsk->min_flt++;
1340 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1341 	}
1342 
1343 	check_v8086_mode(regs, address, tsk);
1344 }
1345 NOKPROBE_SYMBOL(do_user_addr_fault);
1346 
1347 static __always_inline void
1348 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1349 			 unsigned long address)
1350 {
1351 	if (!trace_pagefault_enabled())
1352 		return;
1353 
1354 	if (user_mode(regs))
1355 		trace_page_fault_user(address, regs, error_code);
1356 	else
1357 		trace_page_fault_kernel(address, regs, error_code);
1358 }
1359 
1360 static __always_inline void
1361 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1362 			      unsigned long address)
1363 {
1364 	trace_page_fault_entries(regs, error_code, address);
1365 
1366 	if (unlikely(kmmio_fault(regs, address)))
1367 		return;
1368 
1369 	/* Was the fault on kernel-controlled part of the address space? */
1370 	if (unlikely(fault_in_kernel_space(address))) {
1371 		do_kern_addr_fault(regs, error_code, address);
1372 	} else {
1373 		do_user_addr_fault(regs, error_code, address);
1374 		/*
1375 		 * User address page fault handling might have reenabled
1376 		 * interrupts. Fixing up all potential exit points of
1377 		 * do_user_addr_fault() and its leaf functions is just not
1378 		 * doable w/o creating an unholy mess or turning the code
1379 		 * upside down.
1380 		 */
1381 		local_irq_disable();
1382 	}
1383 }
1384 
1385 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1386 {
1387 	unsigned long address = read_cr2();
1388 	bool rcu_exit;
1389 
1390 	prefetchw(&current->mm->mmap_lock);
1391 
1392 	/*
1393 	 * KVM has two types of events that are, logically, interrupts, but
1394 	 * are unfortunately delivered using the #PF vector.  These events are
1395 	 * "you just accessed valid memory, but the host doesn't have it right
1396 	 * now, so I'll put you to sleep if you continue" and "that memory
1397 	 * you tried to access earlier is available now."
1398 	 *
1399 	 * We are relying on the interrupted context being sane (valid RSP,
1400 	 * relevant locks not held, etc.), which is fine as long as the
1401 	 * interrupted context had IF=1.  We are also relying on the KVM
1402 	 * async pf type field and CR2 being read consistently instead of
1403 	 * getting values from real and async page faults mixed up.
1404 	 *
1405 	 * Fingers crossed.
1406 	 *
1407 	 * The async #PF handling code takes care of idtentry handling
1408 	 * itself.
1409 	 */
1410 	if (kvm_handle_async_pf(regs, (u32)address))
1411 		return;
1412 
1413 	/*
1414 	 * Entry handling for valid #PF from kernel mode is slightly
1415 	 * different: RCU is already watching and rcu_irq_enter() must not
1416 	 * be invoked because a kernel fault on a user space address might
1417 	 * sleep.
1418 	 *
1419 	 * In case the fault hit a RCU idle region the conditional entry
1420 	 * code reenabled RCU to avoid subsequent wreckage which helps
1421 	 * debugability.
1422 	 */
1423 	rcu_exit = idtentry_enter_cond_rcu(regs);
1424 
1425 	instrumentation_begin();
1426 	handle_page_fault(regs, error_code, address);
1427 	instrumentation_end();
1428 
1429 	idtentry_exit_cond_rcu(regs, rcu_exit);
1430 }
1431