xref: /openbmc/linux/arch/x86/mm/fault.c (revision a0865368)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 
16 #include <asm/traps.h>			/* dotraplinkage, ...		*/
17 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
18 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
19 
20 /*
21  * Page fault error code bits:
22  *
23  *   bit 0 ==	 0: no page found	1: protection fault
24  *   bit 1 ==	 0: read access		1: write access
25  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
26  *   bit 3 ==				1: use of reserved bit detected
27  *   bit 4 ==				1: fault was an instruction fetch
28  */
29 enum x86_pf_error_code {
30 
31 	PF_PROT		=		1 << 0,
32 	PF_WRITE	=		1 << 1,
33 	PF_USER		=		1 << 2,
34 	PF_RSVD		=		1 << 3,
35 	PF_INSTR	=		1 << 4,
36 };
37 
38 /*
39  * Returns 0 if mmiotrace is disabled, or if the fault is not
40  * handled by mmiotrace:
41  */
42 static inline int __kprobes
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 	if (unlikely(is_kmmio_active()))
46 		if (kmmio_handler(regs, addr) == 1)
47 			return -1;
48 	return 0;
49 }
50 
51 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
52 {
53 	int ret = 0;
54 
55 	/* kprobe_running() needs smp_processor_id() */
56 	if (kprobes_built_in() && !user_mode_vm(regs)) {
57 		preempt_disable();
58 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
59 			ret = 1;
60 		preempt_enable();
61 	}
62 
63 	return ret;
64 }
65 
66 /*
67  * Prefetch quirks:
68  *
69  * 32-bit mode:
70  *
71  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
72  *   Check that here and ignore it.
73  *
74  * 64-bit mode:
75  *
76  *   Sometimes the CPU reports invalid exceptions on prefetch.
77  *   Check that here and ignore it.
78  *
79  * Opcode checker based on code by Richard Brunner.
80  */
81 static inline int
82 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
83 		      unsigned char opcode, int *prefetch)
84 {
85 	unsigned char instr_hi = opcode & 0xf0;
86 	unsigned char instr_lo = opcode & 0x0f;
87 
88 	switch (instr_hi) {
89 	case 0x20:
90 	case 0x30:
91 		/*
92 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
93 		 * In X86_64 long mode, the CPU will signal invalid
94 		 * opcode if some of these prefixes are present so
95 		 * X86_64 will never get here anyway
96 		 */
97 		return ((instr_lo & 7) == 0x6);
98 #ifdef CONFIG_X86_64
99 	case 0x40:
100 		/*
101 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
102 		 * Need to figure out under what instruction mode the
103 		 * instruction was issued. Could check the LDT for lm,
104 		 * but for now it's good enough to assume that long
105 		 * mode only uses well known segments or kernel.
106 		 */
107 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
108 #endif
109 	case 0x60:
110 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
111 		return (instr_lo & 0xC) == 0x4;
112 	case 0xF0:
113 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
114 		return !instr_lo || (instr_lo>>1) == 1;
115 	case 0x00:
116 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
117 		if (probe_kernel_address(instr, opcode))
118 			return 0;
119 
120 		*prefetch = (instr_lo == 0xF) &&
121 			(opcode == 0x0D || opcode == 0x18);
122 		return 0;
123 	default:
124 		return 0;
125 	}
126 }
127 
128 static int
129 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
130 {
131 	unsigned char *max_instr;
132 	unsigned char *instr;
133 	int prefetch = 0;
134 
135 	/*
136 	 * If it was a exec (instruction fetch) fault on NX page, then
137 	 * do not ignore the fault:
138 	 */
139 	if (error_code & PF_INSTR)
140 		return 0;
141 
142 	instr = (void *)convert_ip_to_linear(current, regs);
143 	max_instr = instr + 15;
144 
145 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
146 		return 0;
147 
148 	while (instr < max_instr) {
149 		unsigned char opcode;
150 
151 		if (probe_kernel_address(instr, opcode))
152 			break;
153 
154 		instr++;
155 
156 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
157 			break;
158 	}
159 	return prefetch;
160 }
161 
162 static void
163 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
164 		     struct task_struct *tsk, int fault)
165 {
166 	unsigned lsb = 0;
167 	siginfo_t info;
168 
169 	info.si_signo	= si_signo;
170 	info.si_errno	= 0;
171 	info.si_code	= si_code;
172 	info.si_addr	= (void __user *)address;
173 	if (fault & VM_FAULT_HWPOISON_LARGE)
174 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
175 	if (fault & VM_FAULT_HWPOISON)
176 		lsb = PAGE_SHIFT;
177 	info.si_addr_lsb = lsb;
178 
179 	force_sig_info(si_signo, &info, tsk);
180 }
181 
182 DEFINE_SPINLOCK(pgd_lock);
183 LIST_HEAD(pgd_list);
184 
185 #ifdef CONFIG_X86_32
186 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
187 {
188 	unsigned index = pgd_index(address);
189 	pgd_t *pgd_k;
190 	pud_t *pud, *pud_k;
191 	pmd_t *pmd, *pmd_k;
192 
193 	pgd += index;
194 	pgd_k = init_mm.pgd + index;
195 
196 	if (!pgd_present(*pgd_k))
197 		return NULL;
198 
199 	/*
200 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
201 	 * and redundant with the set_pmd() on non-PAE. As would
202 	 * set_pud.
203 	 */
204 	pud = pud_offset(pgd, address);
205 	pud_k = pud_offset(pgd_k, address);
206 	if (!pud_present(*pud_k))
207 		return NULL;
208 
209 	pmd = pmd_offset(pud, address);
210 	pmd_k = pmd_offset(pud_k, address);
211 	if (!pmd_present(*pmd_k))
212 		return NULL;
213 
214 	if (!pmd_present(*pmd))
215 		set_pmd(pmd, *pmd_k);
216 	else
217 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
218 
219 	return pmd_k;
220 }
221 
222 void vmalloc_sync_all(void)
223 {
224 	unsigned long address;
225 
226 	if (SHARED_KERNEL_PMD)
227 		return;
228 
229 	for (address = VMALLOC_START & PMD_MASK;
230 	     address >= TASK_SIZE && address < FIXADDR_TOP;
231 	     address += PMD_SIZE) {
232 
233 		unsigned long flags;
234 		struct page *page;
235 
236 		spin_lock_irqsave(&pgd_lock, flags);
237 		list_for_each_entry(page, &pgd_list, lru) {
238 			spinlock_t *pgt_lock;
239 			pmd_t *ret;
240 
241 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
242 
243 			spin_lock(pgt_lock);
244 			ret = vmalloc_sync_one(page_address(page), address);
245 			spin_unlock(pgt_lock);
246 
247 			if (!ret)
248 				break;
249 		}
250 		spin_unlock_irqrestore(&pgd_lock, flags);
251 	}
252 }
253 
254 /*
255  * 32-bit:
256  *
257  *   Handle a fault on the vmalloc or module mapping area
258  */
259 static noinline __kprobes int vmalloc_fault(unsigned long address)
260 {
261 	unsigned long pgd_paddr;
262 	pmd_t *pmd_k;
263 	pte_t *pte_k;
264 
265 	/* Make sure we are in vmalloc area: */
266 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
267 		return -1;
268 
269 	WARN_ON_ONCE(in_nmi());
270 
271 	/*
272 	 * Synchronize this task's top level page-table
273 	 * with the 'reference' page table.
274 	 *
275 	 * Do _not_ use "current" here. We might be inside
276 	 * an interrupt in the middle of a task switch..
277 	 */
278 	pgd_paddr = read_cr3();
279 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
280 	if (!pmd_k)
281 		return -1;
282 
283 	pte_k = pte_offset_kernel(pmd_k, address);
284 	if (!pte_present(*pte_k))
285 		return -1;
286 
287 	return 0;
288 }
289 
290 /*
291  * Did it hit the DOS screen memory VA from vm86 mode?
292  */
293 static inline void
294 check_v8086_mode(struct pt_regs *regs, unsigned long address,
295 		 struct task_struct *tsk)
296 {
297 	unsigned long bit;
298 
299 	if (!v8086_mode(regs))
300 		return;
301 
302 	bit = (address - 0xA0000) >> PAGE_SHIFT;
303 	if (bit < 32)
304 		tsk->thread.screen_bitmap |= 1 << bit;
305 }
306 
307 static bool low_pfn(unsigned long pfn)
308 {
309 	return pfn < max_low_pfn;
310 }
311 
312 static void dump_pagetable(unsigned long address)
313 {
314 	pgd_t *base = __va(read_cr3());
315 	pgd_t *pgd = &base[pgd_index(address)];
316 	pmd_t *pmd;
317 	pte_t *pte;
318 
319 #ifdef CONFIG_X86_PAE
320 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
321 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
322 		goto out;
323 #endif
324 	pmd = pmd_offset(pud_offset(pgd, address), address);
325 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
326 
327 	/*
328 	 * We must not directly access the pte in the highpte
329 	 * case if the page table is located in highmem.
330 	 * And let's rather not kmap-atomic the pte, just in case
331 	 * it's allocated already:
332 	 */
333 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
334 		goto out;
335 
336 	pte = pte_offset_kernel(pmd, address);
337 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
338 out:
339 	printk("\n");
340 }
341 
342 #else /* CONFIG_X86_64: */
343 
344 void vmalloc_sync_all(void)
345 {
346 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
347 }
348 
349 /*
350  * 64-bit:
351  *
352  *   Handle a fault on the vmalloc area
353  *
354  * This assumes no large pages in there.
355  */
356 static noinline __kprobes int vmalloc_fault(unsigned long address)
357 {
358 	pgd_t *pgd, *pgd_ref;
359 	pud_t *pud, *pud_ref;
360 	pmd_t *pmd, *pmd_ref;
361 	pte_t *pte, *pte_ref;
362 
363 	/* Make sure we are in vmalloc area: */
364 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
365 		return -1;
366 
367 	WARN_ON_ONCE(in_nmi());
368 
369 	/*
370 	 * Copy kernel mappings over when needed. This can also
371 	 * happen within a race in page table update. In the later
372 	 * case just flush:
373 	 */
374 	pgd = pgd_offset(current->active_mm, address);
375 	pgd_ref = pgd_offset_k(address);
376 	if (pgd_none(*pgd_ref))
377 		return -1;
378 
379 	if (pgd_none(*pgd))
380 		set_pgd(pgd, *pgd_ref);
381 	else
382 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
383 
384 	/*
385 	 * Below here mismatches are bugs because these lower tables
386 	 * are shared:
387 	 */
388 
389 	pud = pud_offset(pgd, address);
390 	pud_ref = pud_offset(pgd_ref, address);
391 	if (pud_none(*pud_ref))
392 		return -1;
393 
394 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
395 		BUG();
396 
397 	pmd = pmd_offset(pud, address);
398 	pmd_ref = pmd_offset(pud_ref, address);
399 	if (pmd_none(*pmd_ref))
400 		return -1;
401 
402 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
403 		BUG();
404 
405 	pte_ref = pte_offset_kernel(pmd_ref, address);
406 	if (!pte_present(*pte_ref))
407 		return -1;
408 
409 	pte = pte_offset_kernel(pmd, address);
410 
411 	/*
412 	 * Don't use pte_page here, because the mappings can point
413 	 * outside mem_map, and the NUMA hash lookup cannot handle
414 	 * that:
415 	 */
416 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
417 		BUG();
418 
419 	return 0;
420 }
421 
422 static const char errata93_warning[] =
423 KERN_ERR
424 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
425 "******* Working around it, but it may cause SEGVs or burn power.\n"
426 "******* Please consider a BIOS update.\n"
427 "******* Disabling USB legacy in the BIOS may also help.\n";
428 
429 /*
430  * No vm86 mode in 64-bit mode:
431  */
432 static inline void
433 check_v8086_mode(struct pt_regs *regs, unsigned long address,
434 		 struct task_struct *tsk)
435 {
436 }
437 
438 static int bad_address(void *p)
439 {
440 	unsigned long dummy;
441 
442 	return probe_kernel_address((unsigned long *)p, dummy);
443 }
444 
445 static void dump_pagetable(unsigned long address)
446 {
447 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
448 	pgd_t *pgd = base + pgd_index(address);
449 	pud_t *pud;
450 	pmd_t *pmd;
451 	pte_t *pte;
452 
453 	if (bad_address(pgd))
454 		goto bad;
455 
456 	printk("PGD %lx ", pgd_val(*pgd));
457 
458 	if (!pgd_present(*pgd))
459 		goto out;
460 
461 	pud = pud_offset(pgd, address);
462 	if (bad_address(pud))
463 		goto bad;
464 
465 	printk("PUD %lx ", pud_val(*pud));
466 	if (!pud_present(*pud) || pud_large(*pud))
467 		goto out;
468 
469 	pmd = pmd_offset(pud, address);
470 	if (bad_address(pmd))
471 		goto bad;
472 
473 	printk("PMD %lx ", pmd_val(*pmd));
474 	if (!pmd_present(*pmd) || pmd_large(*pmd))
475 		goto out;
476 
477 	pte = pte_offset_kernel(pmd, address);
478 	if (bad_address(pte))
479 		goto bad;
480 
481 	printk("PTE %lx", pte_val(*pte));
482 out:
483 	printk("\n");
484 	return;
485 bad:
486 	printk("BAD\n");
487 }
488 
489 #endif /* CONFIG_X86_64 */
490 
491 /*
492  * Workaround for K8 erratum #93 & buggy BIOS.
493  *
494  * BIOS SMM functions are required to use a specific workaround
495  * to avoid corruption of the 64bit RIP register on C stepping K8.
496  *
497  * A lot of BIOS that didn't get tested properly miss this.
498  *
499  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
500  * Try to work around it here.
501  *
502  * Note we only handle faults in kernel here.
503  * Does nothing on 32-bit.
504  */
505 static int is_errata93(struct pt_regs *regs, unsigned long address)
506 {
507 #ifdef CONFIG_X86_64
508 	if (address != regs->ip)
509 		return 0;
510 
511 	if ((address >> 32) != 0)
512 		return 0;
513 
514 	address |= 0xffffffffUL << 32;
515 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
516 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
517 		printk_once(errata93_warning);
518 		regs->ip = address;
519 		return 1;
520 	}
521 #endif
522 	return 0;
523 }
524 
525 /*
526  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
527  * to illegal addresses >4GB.
528  *
529  * We catch this in the page fault handler because these addresses
530  * are not reachable. Just detect this case and return.  Any code
531  * segment in LDT is compatibility mode.
532  */
533 static int is_errata100(struct pt_regs *regs, unsigned long address)
534 {
535 #ifdef CONFIG_X86_64
536 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
537 		return 1;
538 #endif
539 	return 0;
540 }
541 
542 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
543 {
544 #ifdef CONFIG_X86_F00F_BUG
545 	unsigned long nr;
546 
547 	/*
548 	 * Pentium F0 0F C7 C8 bug workaround:
549 	 */
550 	if (boot_cpu_data.f00f_bug) {
551 		nr = (address - idt_descr.address) >> 3;
552 
553 		if (nr == 6) {
554 			do_invalid_op(regs, 0);
555 			return 1;
556 		}
557 	}
558 #endif
559 	return 0;
560 }
561 
562 static const char nx_warning[] = KERN_CRIT
563 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
564 
565 static void
566 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
567 		unsigned long address)
568 {
569 	if (!oops_may_print())
570 		return;
571 
572 	if (error_code & PF_INSTR) {
573 		unsigned int level;
574 
575 		pte_t *pte = lookup_address(address, &level);
576 
577 		if (pte && pte_present(*pte) && !pte_exec(*pte))
578 			printk(nx_warning, current_uid());
579 	}
580 
581 	printk(KERN_ALERT "BUG: unable to handle kernel ");
582 	if (address < PAGE_SIZE)
583 		printk(KERN_CONT "NULL pointer dereference");
584 	else
585 		printk(KERN_CONT "paging request");
586 
587 	printk(KERN_CONT " at %p\n", (void *) address);
588 	printk(KERN_ALERT "IP:");
589 	printk_address(regs->ip, 1);
590 
591 	dump_pagetable(address);
592 }
593 
594 static noinline void
595 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
596 	    unsigned long address)
597 {
598 	struct task_struct *tsk;
599 	unsigned long flags;
600 	int sig;
601 
602 	flags = oops_begin();
603 	tsk = current;
604 	sig = SIGKILL;
605 
606 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
607 	       tsk->comm, address);
608 	dump_pagetable(address);
609 
610 	tsk->thread.cr2		= address;
611 	tsk->thread.trap_no	= 14;
612 	tsk->thread.error_code	= error_code;
613 
614 	if (__die("Bad pagetable", regs, error_code))
615 		sig = 0;
616 
617 	oops_end(flags, regs, sig);
618 }
619 
620 static noinline void
621 no_context(struct pt_regs *regs, unsigned long error_code,
622 	   unsigned long address)
623 {
624 	struct task_struct *tsk = current;
625 	unsigned long *stackend;
626 	unsigned long flags;
627 	int sig;
628 
629 	/* Are we prepared to handle this kernel fault? */
630 	if (fixup_exception(regs))
631 		return;
632 
633 	/*
634 	 * 32-bit:
635 	 *
636 	 *   Valid to do another page fault here, because if this fault
637 	 *   had been triggered by is_prefetch fixup_exception would have
638 	 *   handled it.
639 	 *
640 	 * 64-bit:
641 	 *
642 	 *   Hall of shame of CPU/BIOS bugs.
643 	 */
644 	if (is_prefetch(regs, error_code, address))
645 		return;
646 
647 	if (is_errata93(regs, address))
648 		return;
649 
650 	/*
651 	 * Oops. The kernel tried to access some bad page. We'll have to
652 	 * terminate things with extreme prejudice:
653 	 */
654 	flags = oops_begin();
655 
656 	show_fault_oops(regs, error_code, address);
657 
658 	stackend = end_of_stack(tsk);
659 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
660 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
661 
662 	tsk->thread.cr2		= address;
663 	tsk->thread.trap_no	= 14;
664 	tsk->thread.error_code	= error_code;
665 
666 	sig = SIGKILL;
667 	if (__die("Oops", regs, error_code))
668 		sig = 0;
669 
670 	/* Executive summary in case the body of the oops scrolled away */
671 	printk(KERN_EMERG "CR2: %016lx\n", address);
672 
673 	oops_end(flags, regs, sig);
674 }
675 
676 /*
677  * Print out info about fatal segfaults, if the show_unhandled_signals
678  * sysctl is set:
679  */
680 static inline void
681 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
682 		unsigned long address, struct task_struct *tsk)
683 {
684 	if (!unhandled_signal(tsk, SIGSEGV))
685 		return;
686 
687 	if (!printk_ratelimit())
688 		return;
689 
690 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
691 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
692 		tsk->comm, task_pid_nr(tsk), address,
693 		(void *)regs->ip, (void *)regs->sp, error_code);
694 
695 	print_vma_addr(KERN_CONT " in ", regs->ip);
696 
697 	printk(KERN_CONT "\n");
698 }
699 
700 static void
701 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
702 		       unsigned long address, int si_code)
703 {
704 	struct task_struct *tsk = current;
705 
706 	/* User mode accesses just cause a SIGSEGV */
707 	if (error_code & PF_USER) {
708 		/*
709 		 * It's possible to have interrupts off here:
710 		 */
711 		local_irq_enable();
712 
713 		/*
714 		 * Valid to do another page fault here because this one came
715 		 * from user space:
716 		 */
717 		if (is_prefetch(regs, error_code, address))
718 			return;
719 
720 		if (is_errata100(regs, address))
721 			return;
722 
723 		if (unlikely(show_unhandled_signals))
724 			show_signal_msg(regs, error_code, address, tsk);
725 
726 		/* Kernel addresses are always protection faults: */
727 		tsk->thread.cr2		= address;
728 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
729 		tsk->thread.trap_no	= 14;
730 
731 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
732 
733 		return;
734 	}
735 
736 	if (is_f00f_bug(regs, address))
737 		return;
738 
739 	no_context(regs, error_code, address);
740 }
741 
742 static noinline void
743 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
744 		     unsigned long address)
745 {
746 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
747 }
748 
749 static void
750 __bad_area(struct pt_regs *regs, unsigned long error_code,
751 	   unsigned long address, int si_code)
752 {
753 	struct mm_struct *mm = current->mm;
754 
755 	/*
756 	 * Something tried to access memory that isn't in our memory map..
757 	 * Fix it, but check if it's kernel or user first..
758 	 */
759 	up_read(&mm->mmap_sem);
760 
761 	__bad_area_nosemaphore(regs, error_code, address, si_code);
762 }
763 
764 static noinline void
765 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
766 {
767 	__bad_area(regs, error_code, address, SEGV_MAPERR);
768 }
769 
770 static noinline void
771 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
772 		      unsigned long address)
773 {
774 	__bad_area(regs, error_code, address, SEGV_ACCERR);
775 }
776 
777 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
778 static void
779 out_of_memory(struct pt_regs *regs, unsigned long error_code,
780 	      unsigned long address)
781 {
782 	/*
783 	 * We ran out of memory, call the OOM killer, and return the userspace
784 	 * (which will retry the fault, or kill us if we got oom-killed):
785 	 */
786 	up_read(&current->mm->mmap_sem);
787 
788 	pagefault_out_of_memory();
789 }
790 
791 static void
792 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
793 	  unsigned int fault)
794 {
795 	struct task_struct *tsk = current;
796 	struct mm_struct *mm = tsk->mm;
797 	int code = BUS_ADRERR;
798 
799 	up_read(&mm->mmap_sem);
800 
801 	/* Kernel mode? Handle exceptions or die: */
802 	if (!(error_code & PF_USER)) {
803 		no_context(regs, error_code, address);
804 		return;
805 	}
806 
807 	/* User-space => ok to do another page fault: */
808 	if (is_prefetch(regs, error_code, address))
809 		return;
810 
811 	tsk->thread.cr2		= address;
812 	tsk->thread.error_code	= error_code;
813 	tsk->thread.trap_no	= 14;
814 
815 #ifdef CONFIG_MEMORY_FAILURE
816 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
817 		printk(KERN_ERR
818 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
819 			tsk->comm, tsk->pid, address);
820 		code = BUS_MCEERR_AR;
821 	}
822 #endif
823 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
824 }
825 
826 static noinline void
827 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
828 	       unsigned long address, unsigned int fault)
829 {
830 	if (fault & VM_FAULT_OOM) {
831 		out_of_memory(regs, error_code, address);
832 	} else {
833 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
834 			     VM_FAULT_HWPOISON_LARGE))
835 			do_sigbus(regs, error_code, address, fault);
836 		else
837 			BUG();
838 	}
839 }
840 
841 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
842 {
843 	if ((error_code & PF_WRITE) && !pte_write(*pte))
844 		return 0;
845 
846 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
847 		return 0;
848 
849 	return 1;
850 }
851 
852 /*
853  * Handle a spurious fault caused by a stale TLB entry.
854  *
855  * This allows us to lazily refresh the TLB when increasing the
856  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
857  * eagerly is very expensive since that implies doing a full
858  * cross-processor TLB flush, even if no stale TLB entries exist
859  * on other processors.
860  *
861  * There are no security implications to leaving a stale TLB when
862  * increasing the permissions on a page.
863  */
864 static noinline __kprobes int
865 spurious_fault(unsigned long error_code, unsigned long address)
866 {
867 	pgd_t *pgd;
868 	pud_t *pud;
869 	pmd_t *pmd;
870 	pte_t *pte;
871 	int ret;
872 
873 	/* Reserved-bit violation or user access to kernel space? */
874 	if (error_code & (PF_USER | PF_RSVD))
875 		return 0;
876 
877 	pgd = init_mm.pgd + pgd_index(address);
878 	if (!pgd_present(*pgd))
879 		return 0;
880 
881 	pud = pud_offset(pgd, address);
882 	if (!pud_present(*pud))
883 		return 0;
884 
885 	if (pud_large(*pud))
886 		return spurious_fault_check(error_code, (pte_t *) pud);
887 
888 	pmd = pmd_offset(pud, address);
889 	if (!pmd_present(*pmd))
890 		return 0;
891 
892 	if (pmd_large(*pmd))
893 		return spurious_fault_check(error_code, (pte_t *) pmd);
894 
895 	/*
896 	 * Note: don't use pte_present() here, since it returns true
897 	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
898 	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
899 	 * when CONFIG_DEBUG_PAGEALLOC is used.
900 	 */
901 	pte = pte_offset_kernel(pmd, address);
902 	if (!(pte_flags(*pte) & _PAGE_PRESENT))
903 		return 0;
904 
905 	ret = spurious_fault_check(error_code, pte);
906 	if (!ret)
907 		return 0;
908 
909 	/*
910 	 * Make sure we have permissions in PMD.
911 	 * If not, then there's a bug in the page tables:
912 	 */
913 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
914 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
915 
916 	return ret;
917 }
918 
919 int show_unhandled_signals = 1;
920 
921 static inline int
922 access_error(unsigned long error_code, struct vm_area_struct *vma)
923 {
924 	if (error_code & PF_WRITE) {
925 		/* write, present and write, not present: */
926 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
927 			return 1;
928 		return 0;
929 	}
930 
931 	/* read, present: */
932 	if (unlikely(error_code & PF_PROT))
933 		return 1;
934 
935 	/* read, not present: */
936 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
937 		return 1;
938 
939 	return 0;
940 }
941 
942 static int fault_in_kernel_space(unsigned long address)
943 {
944 	return address >= TASK_SIZE_MAX;
945 }
946 
947 /*
948  * This routine handles page faults.  It determines the address,
949  * and the problem, and then passes it off to one of the appropriate
950  * routines.
951  */
952 dotraplinkage void __kprobes
953 do_page_fault(struct pt_regs *regs, unsigned long error_code)
954 {
955 	struct vm_area_struct *vma;
956 	struct task_struct *tsk;
957 	unsigned long address;
958 	struct mm_struct *mm;
959 	int fault;
960 	int write = error_code & PF_WRITE;
961 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
962 					(write ? FAULT_FLAG_WRITE : 0);
963 
964 	tsk = current;
965 	mm = tsk->mm;
966 
967 	/* Get the faulting address: */
968 	address = read_cr2();
969 
970 	/*
971 	 * Detect and handle instructions that would cause a page fault for
972 	 * both a tracked kernel page and a userspace page.
973 	 */
974 	if (kmemcheck_active(regs))
975 		kmemcheck_hide(regs);
976 	prefetchw(&mm->mmap_sem);
977 
978 	if (unlikely(kmmio_fault(regs, address)))
979 		return;
980 
981 	/*
982 	 * We fault-in kernel-space virtual memory on-demand. The
983 	 * 'reference' page table is init_mm.pgd.
984 	 *
985 	 * NOTE! We MUST NOT take any locks for this case. We may
986 	 * be in an interrupt or a critical region, and should
987 	 * only copy the information from the master page table,
988 	 * nothing more.
989 	 *
990 	 * This verifies that the fault happens in kernel space
991 	 * (error_code & 4) == 0, and that the fault was not a
992 	 * protection error (error_code & 9) == 0.
993 	 */
994 	if (unlikely(fault_in_kernel_space(address))) {
995 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
996 			if (vmalloc_fault(address) >= 0)
997 				return;
998 
999 			if (kmemcheck_fault(regs, address, error_code))
1000 				return;
1001 		}
1002 
1003 		/* Can handle a stale RO->RW TLB: */
1004 		if (spurious_fault(error_code, address))
1005 			return;
1006 
1007 		/* kprobes don't want to hook the spurious faults: */
1008 		if (notify_page_fault(regs))
1009 			return;
1010 		/*
1011 		 * Don't take the mm semaphore here. If we fixup a prefetch
1012 		 * fault we could otherwise deadlock:
1013 		 */
1014 		bad_area_nosemaphore(regs, error_code, address);
1015 
1016 		return;
1017 	}
1018 
1019 	/* kprobes don't want to hook the spurious faults: */
1020 	if (unlikely(notify_page_fault(regs)))
1021 		return;
1022 	/*
1023 	 * It's safe to allow irq's after cr2 has been saved and the
1024 	 * vmalloc fault has been handled.
1025 	 *
1026 	 * User-mode registers count as a user access even for any
1027 	 * potential system fault or CPU buglet:
1028 	 */
1029 	if (user_mode_vm(regs)) {
1030 		local_irq_enable();
1031 		error_code |= PF_USER;
1032 	} else {
1033 		if (regs->flags & X86_EFLAGS_IF)
1034 			local_irq_enable();
1035 	}
1036 
1037 	if (unlikely(error_code & PF_RSVD))
1038 		pgtable_bad(regs, error_code, address);
1039 
1040 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1041 
1042 	/*
1043 	 * If we're in an interrupt, have no user context or are running
1044 	 * in an atomic region then we must not take the fault:
1045 	 */
1046 	if (unlikely(in_atomic() || !mm)) {
1047 		bad_area_nosemaphore(regs, error_code, address);
1048 		return;
1049 	}
1050 
1051 	/*
1052 	 * When running in the kernel we expect faults to occur only to
1053 	 * addresses in user space.  All other faults represent errors in
1054 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1055 	 * case of an erroneous fault occurring in a code path which already
1056 	 * holds mmap_sem we will deadlock attempting to validate the fault
1057 	 * against the address space.  Luckily the kernel only validly
1058 	 * references user space from well defined areas of code, which are
1059 	 * listed in the exceptions table.
1060 	 *
1061 	 * As the vast majority of faults will be valid we will only perform
1062 	 * the source reference check when there is a possibility of a
1063 	 * deadlock. Attempt to lock the address space, if we cannot we then
1064 	 * validate the source. If this is invalid we can skip the address
1065 	 * space check, thus avoiding the deadlock:
1066 	 */
1067 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1068 		if ((error_code & PF_USER) == 0 &&
1069 		    !search_exception_tables(regs->ip)) {
1070 			bad_area_nosemaphore(regs, error_code, address);
1071 			return;
1072 		}
1073 retry:
1074 		down_read(&mm->mmap_sem);
1075 	} else {
1076 		/*
1077 		 * The above down_read_trylock() might have succeeded in
1078 		 * which case we'll have missed the might_sleep() from
1079 		 * down_read():
1080 		 */
1081 		might_sleep();
1082 	}
1083 
1084 	vma = find_vma(mm, address);
1085 	if (unlikely(!vma)) {
1086 		bad_area(regs, error_code, address);
1087 		return;
1088 	}
1089 	if (likely(vma->vm_start <= address))
1090 		goto good_area;
1091 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1092 		bad_area(regs, error_code, address);
1093 		return;
1094 	}
1095 	if (error_code & PF_USER) {
1096 		/*
1097 		 * Accessing the stack below %sp is always a bug.
1098 		 * The large cushion allows instructions like enter
1099 		 * and pusha to work. ("enter $65535, $31" pushes
1100 		 * 32 pointers and then decrements %sp by 65535.)
1101 		 */
1102 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1103 			bad_area(regs, error_code, address);
1104 			return;
1105 		}
1106 	}
1107 	if (unlikely(expand_stack(vma, address))) {
1108 		bad_area(regs, error_code, address);
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * Ok, we have a good vm_area for this memory access, so
1114 	 * we can handle it..
1115 	 */
1116 good_area:
1117 	if (unlikely(access_error(error_code, vma))) {
1118 		bad_area_access_error(regs, error_code, address);
1119 		return;
1120 	}
1121 
1122 	/*
1123 	 * If for any reason at all we couldn't handle the fault,
1124 	 * make sure we exit gracefully rather than endlessly redo
1125 	 * the fault:
1126 	 */
1127 	fault = handle_mm_fault(mm, vma, address, flags);
1128 
1129 	if (unlikely(fault & VM_FAULT_ERROR)) {
1130 		mm_fault_error(regs, error_code, address, fault);
1131 		return;
1132 	}
1133 
1134 	/*
1135 	 * Major/minor page fault accounting is only done on the
1136 	 * initial attempt. If we go through a retry, it is extremely
1137 	 * likely that the page will be found in page cache at that point.
1138 	 */
1139 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1140 		if (fault & VM_FAULT_MAJOR) {
1141 			tsk->maj_flt++;
1142 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1143 				      regs, address);
1144 		} else {
1145 			tsk->min_flt++;
1146 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1147 				      regs, address);
1148 		}
1149 		if (fault & VM_FAULT_RETRY) {
1150 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1151 			 * of starvation. */
1152 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1153 			goto retry;
1154 		}
1155 	}
1156 
1157 	check_v8086_mode(regs, address, tsk);
1158 
1159 	up_read(&mm->mmap_sem);
1160 }
1161