xref: /openbmc/linux/arch/x86/mm/fault.c (revision 9c1f8594)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 #include <linux/prefetch.h>		/* prefetchw			*/
16 
17 #include <asm/traps.h>			/* dotraplinkage, ...		*/
18 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
19 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
20 #include <asm/vsyscall.h>
21 
22 /*
23  * Page fault error code bits:
24  *
25  *   bit 0 ==	 0: no page found	1: protection fault
26  *   bit 1 ==	 0: read access		1: write access
27  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
28  *   bit 3 ==				1: use of reserved bit detected
29  *   bit 4 ==				1: fault was an instruction fetch
30  */
31 enum x86_pf_error_code {
32 
33 	PF_PROT		=		1 << 0,
34 	PF_WRITE	=		1 << 1,
35 	PF_USER		=		1 << 2,
36 	PF_RSVD		=		1 << 3,
37 	PF_INSTR	=		1 << 4,
38 };
39 
40 /*
41  * Returns 0 if mmiotrace is disabled, or if the fault is not
42  * handled by mmiotrace:
43  */
44 static inline int __kprobes
45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
46 {
47 	if (unlikely(is_kmmio_active()))
48 		if (kmmio_handler(regs, addr) == 1)
49 			return -1;
50 	return 0;
51 }
52 
53 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
54 {
55 	int ret = 0;
56 
57 	/* kprobe_running() needs smp_processor_id() */
58 	if (kprobes_built_in() && !user_mode_vm(regs)) {
59 		preempt_disable();
60 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
61 			ret = 1;
62 		preempt_enable();
63 	}
64 
65 	return ret;
66 }
67 
68 /*
69  * Prefetch quirks:
70  *
71  * 32-bit mode:
72  *
73  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
74  *   Check that here and ignore it.
75  *
76  * 64-bit mode:
77  *
78  *   Sometimes the CPU reports invalid exceptions on prefetch.
79  *   Check that here and ignore it.
80  *
81  * Opcode checker based on code by Richard Brunner.
82  */
83 static inline int
84 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
85 		      unsigned char opcode, int *prefetch)
86 {
87 	unsigned char instr_hi = opcode & 0xf0;
88 	unsigned char instr_lo = opcode & 0x0f;
89 
90 	switch (instr_hi) {
91 	case 0x20:
92 	case 0x30:
93 		/*
94 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
95 		 * In X86_64 long mode, the CPU will signal invalid
96 		 * opcode if some of these prefixes are present so
97 		 * X86_64 will never get here anyway
98 		 */
99 		return ((instr_lo & 7) == 0x6);
100 #ifdef CONFIG_X86_64
101 	case 0x40:
102 		/*
103 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
104 		 * Need to figure out under what instruction mode the
105 		 * instruction was issued. Could check the LDT for lm,
106 		 * but for now it's good enough to assume that long
107 		 * mode only uses well known segments or kernel.
108 		 */
109 		return (!user_mode(regs) || user_64bit_mode(regs));
110 #endif
111 	case 0x60:
112 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
113 		return (instr_lo & 0xC) == 0x4;
114 	case 0xF0:
115 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
116 		return !instr_lo || (instr_lo>>1) == 1;
117 	case 0x00:
118 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
119 		if (probe_kernel_address(instr, opcode))
120 			return 0;
121 
122 		*prefetch = (instr_lo == 0xF) &&
123 			(opcode == 0x0D || opcode == 0x18);
124 		return 0;
125 	default:
126 		return 0;
127 	}
128 }
129 
130 static int
131 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
132 {
133 	unsigned char *max_instr;
134 	unsigned char *instr;
135 	int prefetch = 0;
136 
137 	/*
138 	 * If it was a exec (instruction fetch) fault on NX page, then
139 	 * do not ignore the fault:
140 	 */
141 	if (error_code & PF_INSTR)
142 		return 0;
143 
144 	instr = (void *)convert_ip_to_linear(current, regs);
145 	max_instr = instr + 15;
146 
147 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
148 		return 0;
149 
150 	while (instr < max_instr) {
151 		unsigned char opcode;
152 
153 		if (probe_kernel_address(instr, opcode))
154 			break;
155 
156 		instr++;
157 
158 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
159 			break;
160 	}
161 	return prefetch;
162 }
163 
164 static void
165 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
166 		     struct task_struct *tsk, int fault)
167 {
168 	unsigned lsb = 0;
169 	siginfo_t info;
170 
171 	info.si_signo	= si_signo;
172 	info.si_errno	= 0;
173 	info.si_code	= si_code;
174 	info.si_addr	= (void __user *)address;
175 	if (fault & VM_FAULT_HWPOISON_LARGE)
176 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
177 	if (fault & VM_FAULT_HWPOISON)
178 		lsb = PAGE_SHIFT;
179 	info.si_addr_lsb = lsb;
180 
181 	force_sig_info(si_signo, &info, tsk);
182 }
183 
184 DEFINE_SPINLOCK(pgd_lock);
185 LIST_HEAD(pgd_list);
186 
187 #ifdef CONFIG_X86_32
188 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
189 {
190 	unsigned index = pgd_index(address);
191 	pgd_t *pgd_k;
192 	pud_t *pud, *pud_k;
193 	pmd_t *pmd, *pmd_k;
194 
195 	pgd += index;
196 	pgd_k = init_mm.pgd + index;
197 
198 	if (!pgd_present(*pgd_k))
199 		return NULL;
200 
201 	/*
202 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
203 	 * and redundant with the set_pmd() on non-PAE. As would
204 	 * set_pud.
205 	 */
206 	pud = pud_offset(pgd, address);
207 	pud_k = pud_offset(pgd_k, address);
208 	if (!pud_present(*pud_k))
209 		return NULL;
210 
211 	pmd = pmd_offset(pud, address);
212 	pmd_k = pmd_offset(pud_k, address);
213 	if (!pmd_present(*pmd_k))
214 		return NULL;
215 
216 	if (!pmd_present(*pmd))
217 		set_pmd(pmd, *pmd_k);
218 	else
219 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
220 
221 	return pmd_k;
222 }
223 
224 void vmalloc_sync_all(void)
225 {
226 	unsigned long address;
227 
228 	if (SHARED_KERNEL_PMD)
229 		return;
230 
231 	for (address = VMALLOC_START & PMD_MASK;
232 	     address >= TASK_SIZE && address < FIXADDR_TOP;
233 	     address += PMD_SIZE) {
234 		struct page *page;
235 
236 		spin_lock(&pgd_lock);
237 		list_for_each_entry(page, &pgd_list, lru) {
238 			spinlock_t *pgt_lock;
239 			pmd_t *ret;
240 
241 			/* the pgt_lock only for Xen */
242 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
243 
244 			spin_lock(pgt_lock);
245 			ret = vmalloc_sync_one(page_address(page), address);
246 			spin_unlock(pgt_lock);
247 
248 			if (!ret)
249 				break;
250 		}
251 		spin_unlock(&pgd_lock);
252 	}
253 }
254 
255 /*
256  * 32-bit:
257  *
258  *   Handle a fault on the vmalloc or module mapping area
259  */
260 static noinline __kprobes int vmalloc_fault(unsigned long address)
261 {
262 	unsigned long pgd_paddr;
263 	pmd_t *pmd_k;
264 	pte_t *pte_k;
265 
266 	/* Make sure we are in vmalloc area: */
267 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
268 		return -1;
269 
270 	WARN_ON_ONCE(in_nmi());
271 
272 	/*
273 	 * Synchronize this task's top level page-table
274 	 * with the 'reference' page table.
275 	 *
276 	 * Do _not_ use "current" here. We might be inside
277 	 * an interrupt in the middle of a task switch..
278 	 */
279 	pgd_paddr = read_cr3();
280 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
281 	if (!pmd_k)
282 		return -1;
283 
284 	pte_k = pte_offset_kernel(pmd_k, address);
285 	if (!pte_present(*pte_k))
286 		return -1;
287 
288 	return 0;
289 }
290 
291 /*
292  * Did it hit the DOS screen memory VA from vm86 mode?
293  */
294 static inline void
295 check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 		 struct task_struct *tsk)
297 {
298 	unsigned long bit;
299 
300 	if (!v8086_mode(regs))
301 		return;
302 
303 	bit = (address - 0xA0000) >> PAGE_SHIFT;
304 	if (bit < 32)
305 		tsk->thread.screen_bitmap |= 1 << bit;
306 }
307 
308 static bool low_pfn(unsigned long pfn)
309 {
310 	return pfn < max_low_pfn;
311 }
312 
313 static void dump_pagetable(unsigned long address)
314 {
315 	pgd_t *base = __va(read_cr3());
316 	pgd_t *pgd = &base[pgd_index(address)];
317 	pmd_t *pmd;
318 	pte_t *pte;
319 
320 #ifdef CONFIG_X86_PAE
321 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
322 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
323 		goto out;
324 #endif
325 	pmd = pmd_offset(pud_offset(pgd, address), address);
326 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
327 
328 	/*
329 	 * We must not directly access the pte in the highpte
330 	 * case if the page table is located in highmem.
331 	 * And let's rather not kmap-atomic the pte, just in case
332 	 * it's allocated already:
333 	 */
334 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
335 		goto out;
336 
337 	pte = pte_offset_kernel(pmd, address);
338 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
339 out:
340 	printk("\n");
341 }
342 
343 #else /* CONFIG_X86_64: */
344 
345 void vmalloc_sync_all(void)
346 {
347 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
348 }
349 
350 /*
351  * 64-bit:
352  *
353  *   Handle a fault on the vmalloc area
354  *
355  * This assumes no large pages in there.
356  */
357 static noinline __kprobes int vmalloc_fault(unsigned long address)
358 {
359 	pgd_t *pgd, *pgd_ref;
360 	pud_t *pud, *pud_ref;
361 	pmd_t *pmd, *pmd_ref;
362 	pte_t *pte, *pte_ref;
363 
364 	/* Make sure we are in vmalloc area: */
365 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
366 		return -1;
367 
368 	WARN_ON_ONCE(in_nmi());
369 
370 	/*
371 	 * Copy kernel mappings over when needed. This can also
372 	 * happen within a race in page table update. In the later
373 	 * case just flush:
374 	 */
375 	pgd = pgd_offset(current->active_mm, address);
376 	pgd_ref = pgd_offset_k(address);
377 	if (pgd_none(*pgd_ref))
378 		return -1;
379 
380 	if (pgd_none(*pgd))
381 		set_pgd(pgd, *pgd_ref);
382 	else
383 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384 
385 	/*
386 	 * Below here mismatches are bugs because these lower tables
387 	 * are shared:
388 	 */
389 
390 	pud = pud_offset(pgd, address);
391 	pud_ref = pud_offset(pgd_ref, address);
392 	if (pud_none(*pud_ref))
393 		return -1;
394 
395 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 		BUG();
397 
398 	pmd = pmd_offset(pud, address);
399 	pmd_ref = pmd_offset(pud_ref, address);
400 	if (pmd_none(*pmd_ref))
401 		return -1;
402 
403 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 		BUG();
405 
406 	pte_ref = pte_offset_kernel(pmd_ref, address);
407 	if (!pte_present(*pte_ref))
408 		return -1;
409 
410 	pte = pte_offset_kernel(pmd, address);
411 
412 	/*
413 	 * Don't use pte_page here, because the mappings can point
414 	 * outside mem_map, and the NUMA hash lookup cannot handle
415 	 * that:
416 	 */
417 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 		BUG();
419 
420 	return 0;
421 }
422 
423 static const char errata93_warning[] =
424 KERN_ERR
425 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426 "******* Working around it, but it may cause SEGVs or burn power.\n"
427 "******* Please consider a BIOS update.\n"
428 "******* Disabling USB legacy in the BIOS may also help.\n";
429 
430 /*
431  * No vm86 mode in 64-bit mode:
432  */
433 static inline void
434 check_v8086_mode(struct pt_regs *regs, unsigned long address,
435 		 struct task_struct *tsk)
436 {
437 }
438 
439 static int bad_address(void *p)
440 {
441 	unsigned long dummy;
442 
443 	return probe_kernel_address((unsigned long *)p, dummy);
444 }
445 
446 static void dump_pagetable(unsigned long address)
447 {
448 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
449 	pgd_t *pgd = base + pgd_index(address);
450 	pud_t *pud;
451 	pmd_t *pmd;
452 	pte_t *pte;
453 
454 	if (bad_address(pgd))
455 		goto bad;
456 
457 	printk("PGD %lx ", pgd_val(*pgd));
458 
459 	if (!pgd_present(*pgd))
460 		goto out;
461 
462 	pud = pud_offset(pgd, address);
463 	if (bad_address(pud))
464 		goto bad;
465 
466 	printk("PUD %lx ", pud_val(*pud));
467 	if (!pud_present(*pud) || pud_large(*pud))
468 		goto out;
469 
470 	pmd = pmd_offset(pud, address);
471 	if (bad_address(pmd))
472 		goto bad;
473 
474 	printk("PMD %lx ", pmd_val(*pmd));
475 	if (!pmd_present(*pmd) || pmd_large(*pmd))
476 		goto out;
477 
478 	pte = pte_offset_kernel(pmd, address);
479 	if (bad_address(pte))
480 		goto bad;
481 
482 	printk("PTE %lx", pte_val(*pte));
483 out:
484 	printk("\n");
485 	return;
486 bad:
487 	printk("BAD\n");
488 }
489 
490 #endif /* CONFIG_X86_64 */
491 
492 /*
493  * Workaround for K8 erratum #93 & buggy BIOS.
494  *
495  * BIOS SMM functions are required to use a specific workaround
496  * to avoid corruption of the 64bit RIP register on C stepping K8.
497  *
498  * A lot of BIOS that didn't get tested properly miss this.
499  *
500  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501  * Try to work around it here.
502  *
503  * Note we only handle faults in kernel here.
504  * Does nothing on 32-bit.
505  */
506 static int is_errata93(struct pt_regs *regs, unsigned long address)
507 {
508 #ifdef CONFIG_X86_64
509 	if (address != regs->ip)
510 		return 0;
511 
512 	if ((address >> 32) != 0)
513 		return 0;
514 
515 	address |= 0xffffffffUL << 32;
516 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
517 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
518 		printk_once(errata93_warning);
519 		regs->ip = address;
520 		return 1;
521 	}
522 #endif
523 	return 0;
524 }
525 
526 /*
527  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528  * to illegal addresses >4GB.
529  *
530  * We catch this in the page fault handler because these addresses
531  * are not reachable. Just detect this case and return.  Any code
532  * segment in LDT is compatibility mode.
533  */
534 static int is_errata100(struct pt_regs *regs, unsigned long address)
535 {
536 #ifdef CONFIG_X86_64
537 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
538 		return 1;
539 #endif
540 	return 0;
541 }
542 
543 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
544 {
545 #ifdef CONFIG_X86_F00F_BUG
546 	unsigned long nr;
547 
548 	/*
549 	 * Pentium F0 0F C7 C8 bug workaround:
550 	 */
551 	if (boot_cpu_data.f00f_bug) {
552 		nr = (address - idt_descr.address) >> 3;
553 
554 		if (nr == 6) {
555 			do_invalid_op(regs, 0);
556 			return 1;
557 		}
558 	}
559 #endif
560 	return 0;
561 }
562 
563 static const char nx_warning[] = KERN_CRIT
564 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
565 
566 static void
567 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
568 		unsigned long address)
569 {
570 	if (!oops_may_print())
571 		return;
572 
573 	if (error_code & PF_INSTR) {
574 		unsigned int level;
575 
576 		pte_t *pte = lookup_address(address, &level);
577 
578 		if (pte && pte_present(*pte) && !pte_exec(*pte))
579 			printk(nx_warning, current_uid());
580 	}
581 
582 	printk(KERN_ALERT "BUG: unable to handle kernel ");
583 	if (address < PAGE_SIZE)
584 		printk(KERN_CONT "NULL pointer dereference");
585 	else
586 		printk(KERN_CONT "paging request");
587 
588 	printk(KERN_CONT " at %p\n", (void *) address);
589 	printk(KERN_ALERT "IP:");
590 	printk_address(regs->ip, 1);
591 
592 	dump_pagetable(address);
593 }
594 
595 static noinline void
596 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
597 	    unsigned long address)
598 {
599 	struct task_struct *tsk;
600 	unsigned long flags;
601 	int sig;
602 
603 	flags = oops_begin();
604 	tsk = current;
605 	sig = SIGKILL;
606 
607 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
608 	       tsk->comm, address);
609 	dump_pagetable(address);
610 
611 	tsk->thread.cr2		= address;
612 	tsk->thread.trap_no	= 14;
613 	tsk->thread.error_code	= error_code;
614 
615 	if (__die("Bad pagetable", regs, error_code))
616 		sig = 0;
617 
618 	oops_end(flags, regs, sig);
619 }
620 
621 static noinline void
622 no_context(struct pt_regs *regs, unsigned long error_code,
623 	   unsigned long address)
624 {
625 	struct task_struct *tsk = current;
626 	unsigned long *stackend;
627 	unsigned long flags;
628 	int sig;
629 
630 	/* Are we prepared to handle this kernel fault? */
631 	if (fixup_exception(regs))
632 		return;
633 
634 	/*
635 	 * 32-bit:
636 	 *
637 	 *   Valid to do another page fault here, because if this fault
638 	 *   had been triggered by is_prefetch fixup_exception would have
639 	 *   handled it.
640 	 *
641 	 * 64-bit:
642 	 *
643 	 *   Hall of shame of CPU/BIOS bugs.
644 	 */
645 	if (is_prefetch(regs, error_code, address))
646 		return;
647 
648 	if (is_errata93(regs, address))
649 		return;
650 
651 	/*
652 	 * Oops. The kernel tried to access some bad page. We'll have to
653 	 * terminate things with extreme prejudice:
654 	 */
655 	flags = oops_begin();
656 
657 	show_fault_oops(regs, error_code, address);
658 
659 	stackend = end_of_stack(tsk);
660 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
661 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
662 
663 	tsk->thread.cr2		= address;
664 	tsk->thread.trap_no	= 14;
665 	tsk->thread.error_code	= error_code;
666 
667 	sig = SIGKILL;
668 	if (__die("Oops", regs, error_code))
669 		sig = 0;
670 
671 	/* Executive summary in case the body of the oops scrolled away */
672 	printk(KERN_EMERG "CR2: %016lx\n", address);
673 
674 	oops_end(flags, regs, sig);
675 }
676 
677 /*
678  * Print out info about fatal segfaults, if the show_unhandled_signals
679  * sysctl is set:
680  */
681 static inline void
682 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
683 		unsigned long address, struct task_struct *tsk)
684 {
685 	if (!unhandled_signal(tsk, SIGSEGV))
686 		return;
687 
688 	if (!printk_ratelimit())
689 		return;
690 
691 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
692 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
693 		tsk->comm, task_pid_nr(tsk), address,
694 		(void *)regs->ip, (void *)regs->sp, error_code);
695 
696 	print_vma_addr(KERN_CONT " in ", regs->ip);
697 
698 	printk(KERN_CONT "\n");
699 }
700 
701 static void
702 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
703 		       unsigned long address, int si_code)
704 {
705 	struct task_struct *tsk = current;
706 
707 	/* User mode accesses just cause a SIGSEGV */
708 	if (error_code & PF_USER) {
709 		/*
710 		 * It's possible to have interrupts off here:
711 		 */
712 		local_irq_enable();
713 
714 		/*
715 		 * Valid to do another page fault here because this one came
716 		 * from user space:
717 		 */
718 		if (is_prefetch(regs, error_code, address))
719 			return;
720 
721 		if (is_errata100(regs, address))
722 			return;
723 
724 #ifdef CONFIG_X86_64
725 		/*
726 		 * Instruction fetch faults in the vsyscall page might need
727 		 * emulation.
728 		 */
729 		if (unlikely((error_code & PF_INSTR) &&
730 			     ((address & ~0xfff) == VSYSCALL_START))) {
731 			if (emulate_vsyscall(regs, address))
732 				return;
733 		}
734 #endif
735 
736 		if (unlikely(show_unhandled_signals))
737 			show_signal_msg(regs, error_code, address, tsk);
738 
739 		/* Kernel addresses are always protection faults: */
740 		tsk->thread.cr2		= address;
741 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
742 		tsk->thread.trap_no	= 14;
743 
744 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
745 
746 		return;
747 	}
748 
749 	if (is_f00f_bug(regs, address))
750 		return;
751 
752 	no_context(regs, error_code, address);
753 }
754 
755 static noinline void
756 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 		     unsigned long address)
758 {
759 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
760 }
761 
762 static void
763 __bad_area(struct pt_regs *regs, unsigned long error_code,
764 	   unsigned long address, int si_code)
765 {
766 	struct mm_struct *mm = current->mm;
767 
768 	/*
769 	 * Something tried to access memory that isn't in our memory map..
770 	 * Fix it, but check if it's kernel or user first..
771 	 */
772 	up_read(&mm->mmap_sem);
773 
774 	__bad_area_nosemaphore(regs, error_code, address, si_code);
775 }
776 
777 static noinline void
778 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
779 {
780 	__bad_area(regs, error_code, address, SEGV_MAPERR);
781 }
782 
783 static noinline void
784 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
785 		      unsigned long address)
786 {
787 	__bad_area(regs, error_code, address, SEGV_ACCERR);
788 }
789 
790 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
791 static void
792 out_of_memory(struct pt_regs *regs, unsigned long error_code,
793 	      unsigned long address)
794 {
795 	/*
796 	 * We ran out of memory, call the OOM killer, and return the userspace
797 	 * (which will retry the fault, or kill us if we got oom-killed):
798 	 */
799 	up_read(&current->mm->mmap_sem);
800 
801 	pagefault_out_of_memory();
802 }
803 
804 static void
805 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
806 	  unsigned int fault)
807 {
808 	struct task_struct *tsk = current;
809 	struct mm_struct *mm = tsk->mm;
810 	int code = BUS_ADRERR;
811 
812 	up_read(&mm->mmap_sem);
813 
814 	/* Kernel mode? Handle exceptions or die: */
815 	if (!(error_code & PF_USER)) {
816 		no_context(regs, error_code, address);
817 		return;
818 	}
819 
820 	/* User-space => ok to do another page fault: */
821 	if (is_prefetch(regs, error_code, address))
822 		return;
823 
824 	tsk->thread.cr2		= address;
825 	tsk->thread.error_code	= error_code;
826 	tsk->thread.trap_no	= 14;
827 
828 #ifdef CONFIG_MEMORY_FAILURE
829 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
830 		printk(KERN_ERR
831 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
832 			tsk->comm, tsk->pid, address);
833 		code = BUS_MCEERR_AR;
834 	}
835 #endif
836 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
837 }
838 
839 static noinline int
840 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
841 	       unsigned long address, unsigned int fault)
842 {
843 	/*
844 	 * Pagefault was interrupted by SIGKILL. We have no reason to
845 	 * continue pagefault.
846 	 */
847 	if (fatal_signal_pending(current)) {
848 		if (!(fault & VM_FAULT_RETRY))
849 			up_read(&current->mm->mmap_sem);
850 		if (!(error_code & PF_USER))
851 			no_context(regs, error_code, address);
852 		return 1;
853 	}
854 	if (!(fault & VM_FAULT_ERROR))
855 		return 0;
856 
857 	if (fault & VM_FAULT_OOM) {
858 		/* Kernel mode? Handle exceptions or die: */
859 		if (!(error_code & PF_USER)) {
860 			up_read(&current->mm->mmap_sem);
861 			no_context(regs, error_code, address);
862 			return 1;
863 		}
864 
865 		out_of_memory(regs, error_code, address);
866 	} else {
867 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
868 			     VM_FAULT_HWPOISON_LARGE))
869 			do_sigbus(regs, error_code, address, fault);
870 		else
871 			BUG();
872 	}
873 	return 1;
874 }
875 
876 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
877 {
878 	if ((error_code & PF_WRITE) && !pte_write(*pte))
879 		return 0;
880 
881 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
882 		return 0;
883 
884 	return 1;
885 }
886 
887 /*
888  * Handle a spurious fault caused by a stale TLB entry.
889  *
890  * This allows us to lazily refresh the TLB when increasing the
891  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
892  * eagerly is very expensive since that implies doing a full
893  * cross-processor TLB flush, even if no stale TLB entries exist
894  * on other processors.
895  *
896  * There are no security implications to leaving a stale TLB when
897  * increasing the permissions on a page.
898  */
899 static noinline __kprobes int
900 spurious_fault(unsigned long error_code, unsigned long address)
901 {
902 	pgd_t *pgd;
903 	pud_t *pud;
904 	pmd_t *pmd;
905 	pte_t *pte;
906 	int ret;
907 
908 	/* Reserved-bit violation or user access to kernel space? */
909 	if (error_code & (PF_USER | PF_RSVD))
910 		return 0;
911 
912 	pgd = init_mm.pgd + pgd_index(address);
913 	if (!pgd_present(*pgd))
914 		return 0;
915 
916 	pud = pud_offset(pgd, address);
917 	if (!pud_present(*pud))
918 		return 0;
919 
920 	if (pud_large(*pud))
921 		return spurious_fault_check(error_code, (pte_t *) pud);
922 
923 	pmd = pmd_offset(pud, address);
924 	if (!pmd_present(*pmd))
925 		return 0;
926 
927 	if (pmd_large(*pmd))
928 		return spurious_fault_check(error_code, (pte_t *) pmd);
929 
930 	/*
931 	 * Note: don't use pte_present() here, since it returns true
932 	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
933 	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
934 	 * when CONFIG_DEBUG_PAGEALLOC is used.
935 	 */
936 	pte = pte_offset_kernel(pmd, address);
937 	if (!(pte_flags(*pte) & _PAGE_PRESENT))
938 		return 0;
939 
940 	ret = spurious_fault_check(error_code, pte);
941 	if (!ret)
942 		return 0;
943 
944 	/*
945 	 * Make sure we have permissions in PMD.
946 	 * If not, then there's a bug in the page tables:
947 	 */
948 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
949 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
950 
951 	return ret;
952 }
953 
954 int show_unhandled_signals = 1;
955 
956 static inline int
957 access_error(unsigned long error_code, struct vm_area_struct *vma)
958 {
959 	if (error_code & PF_WRITE) {
960 		/* write, present and write, not present: */
961 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
962 			return 1;
963 		return 0;
964 	}
965 
966 	/* read, present: */
967 	if (unlikely(error_code & PF_PROT))
968 		return 1;
969 
970 	/* read, not present: */
971 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
972 		return 1;
973 
974 	return 0;
975 }
976 
977 static int fault_in_kernel_space(unsigned long address)
978 {
979 	return address >= TASK_SIZE_MAX;
980 }
981 
982 /*
983  * This routine handles page faults.  It determines the address,
984  * and the problem, and then passes it off to one of the appropriate
985  * routines.
986  */
987 dotraplinkage void __kprobes
988 do_page_fault(struct pt_regs *regs, unsigned long error_code)
989 {
990 	struct vm_area_struct *vma;
991 	struct task_struct *tsk;
992 	unsigned long address;
993 	struct mm_struct *mm;
994 	int fault;
995 	int write = error_code & PF_WRITE;
996 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
997 					(write ? FAULT_FLAG_WRITE : 0);
998 
999 	tsk = current;
1000 	mm = tsk->mm;
1001 
1002 	/* Get the faulting address: */
1003 	address = read_cr2();
1004 
1005 	/*
1006 	 * Detect and handle instructions that would cause a page fault for
1007 	 * both a tracked kernel page and a userspace page.
1008 	 */
1009 	if (kmemcheck_active(regs))
1010 		kmemcheck_hide(regs);
1011 	prefetchw(&mm->mmap_sem);
1012 
1013 	if (unlikely(kmmio_fault(regs, address)))
1014 		return;
1015 
1016 	/*
1017 	 * We fault-in kernel-space virtual memory on-demand. The
1018 	 * 'reference' page table is init_mm.pgd.
1019 	 *
1020 	 * NOTE! We MUST NOT take any locks for this case. We may
1021 	 * be in an interrupt or a critical region, and should
1022 	 * only copy the information from the master page table,
1023 	 * nothing more.
1024 	 *
1025 	 * This verifies that the fault happens in kernel space
1026 	 * (error_code & 4) == 0, and that the fault was not a
1027 	 * protection error (error_code & 9) == 0.
1028 	 */
1029 	if (unlikely(fault_in_kernel_space(address))) {
1030 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1031 			if (vmalloc_fault(address) >= 0)
1032 				return;
1033 
1034 			if (kmemcheck_fault(regs, address, error_code))
1035 				return;
1036 		}
1037 
1038 		/* Can handle a stale RO->RW TLB: */
1039 		if (spurious_fault(error_code, address))
1040 			return;
1041 
1042 		/* kprobes don't want to hook the spurious faults: */
1043 		if (notify_page_fault(regs))
1044 			return;
1045 		/*
1046 		 * Don't take the mm semaphore here. If we fixup a prefetch
1047 		 * fault we could otherwise deadlock:
1048 		 */
1049 		bad_area_nosemaphore(regs, error_code, address);
1050 
1051 		return;
1052 	}
1053 
1054 	/* kprobes don't want to hook the spurious faults: */
1055 	if (unlikely(notify_page_fault(regs)))
1056 		return;
1057 	/*
1058 	 * It's safe to allow irq's after cr2 has been saved and the
1059 	 * vmalloc fault has been handled.
1060 	 *
1061 	 * User-mode registers count as a user access even for any
1062 	 * potential system fault or CPU buglet:
1063 	 */
1064 	if (user_mode_vm(regs)) {
1065 		local_irq_enable();
1066 		error_code |= PF_USER;
1067 	} else {
1068 		if (regs->flags & X86_EFLAGS_IF)
1069 			local_irq_enable();
1070 	}
1071 
1072 	if (unlikely(error_code & PF_RSVD))
1073 		pgtable_bad(regs, error_code, address);
1074 
1075 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1076 
1077 	/*
1078 	 * If we're in an interrupt, have no user context or are running
1079 	 * in an atomic region then we must not take the fault:
1080 	 */
1081 	if (unlikely(in_atomic() || !mm)) {
1082 		bad_area_nosemaphore(regs, error_code, address);
1083 		return;
1084 	}
1085 
1086 	/*
1087 	 * When running in the kernel we expect faults to occur only to
1088 	 * addresses in user space.  All other faults represent errors in
1089 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1090 	 * case of an erroneous fault occurring in a code path which already
1091 	 * holds mmap_sem we will deadlock attempting to validate the fault
1092 	 * against the address space.  Luckily the kernel only validly
1093 	 * references user space from well defined areas of code, which are
1094 	 * listed in the exceptions table.
1095 	 *
1096 	 * As the vast majority of faults will be valid we will only perform
1097 	 * the source reference check when there is a possibility of a
1098 	 * deadlock. Attempt to lock the address space, if we cannot we then
1099 	 * validate the source. If this is invalid we can skip the address
1100 	 * space check, thus avoiding the deadlock:
1101 	 */
1102 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1103 		if ((error_code & PF_USER) == 0 &&
1104 		    !search_exception_tables(regs->ip)) {
1105 			bad_area_nosemaphore(regs, error_code, address);
1106 			return;
1107 		}
1108 retry:
1109 		down_read(&mm->mmap_sem);
1110 	} else {
1111 		/*
1112 		 * The above down_read_trylock() might have succeeded in
1113 		 * which case we'll have missed the might_sleep() from
1114 		 * down_read():
1115 		 */
1116 		might_sleep();
1117 	}
1118 
1119 	vma = find_vma(mm, address);
1120 	if (unlikely(!vma)) {
1121 		bad_area(regs, error_code, address);
1122 		return;
1123 	}
1124 	if (likely(vma->vm_start <= address))
1125 		goto good_area;
1126 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1127 		bad_area(regs, error_code, address);
1128 		return;
1129 	}
1130 	if (error_code & PF_USER) {
1131 		/*
1132 		 * Accessing the stack below %sp is always a bug.
1133 		 * The large cushion allows instructions like enter
1134 		 * and pusha to work. ("enter $65535, $31" pushes
1135 		 * 32 pointers and then decrements %sp by 65535.)
1136 		 */
1137 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1138 			bad_area(regs, error_code, address);
1139 			return;
1140 		}
1141 	}
1142 	if (unlikely(expand_stack(vma, address))) {
1143 		bad_area(regs, error_code, address);
1144 		return;
1145 	}
1146 
1147 	/*
1148 	 * Ok, we have a good vm_area for this memory access, so
1149 	 * we can handle it..
1150 	 */
1151 good_area:
1152 	if (unlikely(access_error(error_code, vma))) {
1153 		bad_area_access_error(regs, error_code, address);
1154 		return;
1155 	}
1156 
1157 	/*
1158 	 * If for any reason at all we couldn't handle the fault,
1159 	 * make sure we exit gracefully rather than endlessly redo
1160 	 * the fault:
1161 	 */
1162 	fault = handle_mm_fault(mm, vma, address, flags);
1163 
1164 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1165 		if (mm_fault_error(regs, error_code, address, fault))
1166 			return;
1167 	}
1168 
1169 	/*
1170 	 * Major/minor page fault accounting is only done on the
1171 	 * initial attempt. If we go through a retry, it is extremely
1172 	 * likely that the page will be found in page cache at that point.
1173 	 */
1174 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1175 		if (fault & VM_FAULT_MAJOR) {
1176 			tsk->maj_flt++;
1177 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1178 				      regs, address);
1179 		} else {
1180 			tsk->min_flt++;
1181 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1182 				      regs, address);
1183 		}
1184 		if (fault & VM_FAULT_RETRY) {
1185 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1186 			 * of starvation. */
1187 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1188 			goto retry;
1189 		}
1190 	}
1191 
1192 	check_v8086_mode(regs, address, tsk);
1193 
1194 	up_read(&mm->mmap_sem);
1195 }
1196