xref: /openbmc/linux/arch/x86/mm/fault.c (revision 78c99ba1)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_counter.h>		/* perf_swcounter_event		*/
14 
15 #include <asm/traps.h>			/* dotraplinkage, ...		*/
16 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
17 
18 /*
19  * Page fault error code bits:
20  *
21  *   bit 0 ==	 0: no page found	1: protection fault
22  *   bit 1 ==	 0: read access		1: write access
23  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
24  *   bit 3 ==				1: use of reserved bit detected
25  *   bit 4 ==				1: fault was an instruction fetch
26  */
27 enum x86_pf_error_code {
28 
29 	PF_PROT		=		1 << 0,
30 	PF_WRITE	=		1 << 1,
31 	PF_USER		=		1 << 2,
32 	PF_RSVD		=		1 << 3,
33 	PF_INSTR	=		1 << 4,
34 };
35 
36 /*
37  * Returns 0 if mmiotrace is disabled, or if the fault is not
38  * handled by mmiotrace:
39  */
40 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
41 {
42 	if (unlikely(is_kmmio_active()))
43 		if (kmmio_handler(regs, addr) == 1)
44 			return -1;
45 	return 0;
46 }
47 
48 static inline int notify_page_fault(struct pt_regs *regs)
49 {
50 	int ret = 0;
51 
52 	/* kprobe_running() needs smp_processor_id() */
53 	if (kprobes_built_in() && !user_mode_vm(regs)) {
54 		preempt_disable();
55 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
56 			ret = 1;
57 		preempt_enable();
58 	}
59 
60 	return ret;
61 }
62 
63 /*
64  * Prefetch quirks:
65  *
66  * 32-bit mode:
67  *
68  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
69  *   Check that here and ignore it.
70  *
71  * 64-bit mode:
72  *
73  *   Sometimes the CPU reports invalid exceptions on prefetch.
74  *   Check that here and ignore it.
75  *
76  * Opcode checker based on code by Richard Brunner.
77  */
78 static inline int
79 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
80 		      unsigned char opcode, int *prefetch)
81 {
82 	unsigned char instr_hi = opcode & 0xf0;
83 	unsigned char instr_lo = opcode & 0x0f;
84 
85 	switch (instr_hi) {
86 	case 0x20:
87 	case 0x30:
88 		/*
89 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
90 		 * In X86_64 long mode, the CPU will signal invalid
91 		 * opcode if some of these prefixes are present so
92 		 * X86_64 will never get here anyway
93 		 */
94 		return ((instr_lo & 7) == 0x6);
95 #ifdef CONFIG_X86_64
96 	case 0x40:
97 		/*
98 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
99 		 * Need to figure out under what instruction mode the
100 		 * instruction was issued. Could check the LDT for lm,
101 		 * but for now it's good enough to assume that long
102 		 * mode only uses well known segments or kernel.
103 		 */
104 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
105 #endif
106 	case 0x60:
107 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
108 		return (instr_lo & 0xC) == 0x4;
109 	case 0xF0:
110 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
111 		return !instr_lo || (instr_lo>>1) == 1;
112 	case 0x00:
113 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
114 		if (probe_kernel_address(instr, opcode))
115 			return 0;
116 
117 		*prefetch = (instr_lo == 0xF) &&
118 			(opcode == 0x0D || opcode == 0x18);
119 		return 0;
120 	default:
121 		return 0;
122 	}
123 }
124 
125 static int
126 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
127 {
128 	unsigned char *max_instr;
129 	unsigned char *instr;
130 	int prefetch = 0;
131 
132 	/*
133 	 * If it was a exec (instruction fetch) fault on NX page, then
134 	 * do not ignore the fault:
135 	 */
136 	if (error_code & PF_INSTR)
137 		return 0;
138 
139 	instr = (void *)convert_ip_to_linear(current, regs);
140 	max_instr = instr + 15;
141 
142 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
143 		return 0;
144 
145 	while (instr < max_instr) {
146 		unsigned char opcode;
147 
148 		if (probe_kernel_address(instr, opcode))
149 			break;
150 
151 		instr++;
152 
153 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
154 			break;
155 	}
156 	return prefetch;
157 }
158 
159 static void
160 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
161 		     struct task_struct *tsk)
162 {
163 	siginfo_t info;
164 
165 	info.si_signo	= si_signo;
166 	info.si_errno	= 0;
167 	info.si_code	= si_code;
168 	info.si_addr	= (void __user *)address;
169 
170 	force_sig_info(si_signo, &info, tsk);
171 }
172 
173 DEFINE_SPINLOCK(pgd_lock);
174 LIST_HEAD(pgd_list);
175 
176 #ifdef CONFIG_X86_32
177 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
178 {
179 	unsigned index = pgd_index(address);
180 	pgd_t *pgd_k;
181 	pud_t *pud, *pud_k;
182 	pmd_t *pmd, *pmd_k;
183 
184 	pgd += index;
185 	pgd_k = init_mm.pgd + index;
186 
187 	if (!pgd_present(*pgd_k))
188 		return NULL;
189 
190 	/*
191 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
192 	 * and redundant with the set_pmd() on non-PAE. As would
193 	 * set_pud.
194 	 */
195 	pud = pud_offset(pgd, address);
196 	pud_k = pud_offset(pgd_k, address);
197 	if (!pud_present(*pud_k))
198 		return NULL;
199 
200 	pmd = pmd_offset(pud, address);
201 	pmd_k = pmd_offset(pud_k, address);
202 	if (!pmd_present(*pmd_k))
203 		return NULL;
204 
205 	if (!pmd_present(*pmd))
206 		set_pmd(pmd, *pmd_k);
207 	else
208 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
209 
210 	return pmd_k;
211 }
212 
213 void vmalloc_sync_all(void)
214 {
215 	unsigned long address;
216 
217 	if (SHARED_KERNEL_PMD)
218 		return;
219 
220 	for (address = VMALLOC_START & PMD_MASK;
221 	     address >= TASK_SIZE && address < FIXADDR_TOP;
222 	     address += PMD_SIZE) {
223 
224 		unsigned long flags;
225 		struct page *page;
226 
227 		spin_lock_irqsave(&pgd_lock, flags);
228 		list_for_each_entry(page, &pgd_list, lru) {
229 			if (!vmalloc_sync_one(page_address(page), address))
230 				break;
231 		}
232 		spin_unlock_irqrestore(&pgd_lock, flags);
233 	}
234 }
235 
236 /*
237  * 32-bit:
238  *
239  *   Handle a fault on the vmalloc or module mapping area
240  */
241 static noinline int vmalloc_fault(unsigned long address)
242 {
243 	unsigned long pgd_paddr;
244 	pmd_t *pmd_k;
245 	pte_t *pte_k;
246 
247 	/* Make sure we are in vmalloc area: */
248 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
249 		return -1;
250 
251 	/*
252 	 * Synchronize this task's top level page-table
253 	 * with the 'reference' page table.
254 	 *
255 	 * Do _not_ use "current" here. We might be inside
256 	 * an interrupt in the middle of a task switch..
257 	 */
258 	pgd_paddr = read_cr3();
259 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
260 	if (!pmd_k)
261 		return -1;
262 
263 	pte_k = pte_offset_kernel(pmd_k, address);
264 	if (!pte_present(*pte_k))
265 		return -1;
266 
267 	return 0;
268 }
269 
270 /*
271  * Did it hit the DOS screen memory VA from vm86 mode?
272  */
273 static inline void
274 check_v8086_mode(struct pt_regs *regs, unsigned long address,
275 		 struct task_struct *tsk)
276 {
277 	unsigned long bit;
278 
279 	if (!v8086_mode(regs))
280 		return;
281 
282 	bit = (address - 0xA0000) >> PAGE_SHIFT;
283 	if (bit < 32)
284 		tsk->thread.screen_bitmap |= 1 << bit;
285 }
286 
287 static void dump_pagetable(unsigned long address)
288 {
289 	__typeof__(pte_val(__pte(0))) page;
290 
291 	page = read_cr3();
292 	page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
293 
294 #ifdef CONFIG_X86_PAE
295 	printk("*pdpt = %016Lx ", page);
296 	if ((page >> PAGE_SHIFT) < max_low_pfn
297 	    && page & _PAGE_PRESENT) {
298 		page &= PAGE_MASK;
299 		page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
300 							& (PTRS_PER_PMD - 1)];
301 		printk(KERN_CONT "*pde = %016Lx ", page);
302 		page &= ~_PAGE_NX;
303 	}
304 #else
305 	printk("*pde = %08lx ", page);
306 #endif
307 
308 	/*
309 	 * We must not directly access the pte in the highpte
310 	 * case if the page table is located in highmem.
311 	 * And let's rather not kmap-atomic the pte, just in case
312 	 * it's allocated already:
313 	 */
314 	if ((page >> PAGE_SHIFT) < max_low_pfn
315 	    && (page & _PAGE_PRESENT)
316 	    && !(page & _PAGE_PSE)) {
317 
318 		page &= PAGE_MASK;
319 		page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
320 							& (PTRS_PER_PTE - 1)];
321 		printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
322 	}
323 
324 	printk("\n");
325 }
326 
327 #else /* CONFIG_X86_64: */
328 
329 void vmalloc_sync_all(void)
330 {
331 	unsigned long address;
332 
333 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
334 	     address += PGDIR_SIZE) {
335 
336 		const pgd_t *pgd_ref = pgd_offset_k(address);
337 		unsigned long flags;
338 		struct page *page;
339 
340 		if (pgd_none(*pgd_ref))
341 			continue;
342 
343 		spin_lock_irqsave(&pgd_lock, flags);
344 		list_for_each_entry(page, &pgd_list, lru) {
345 			pgd_t *pgd;
346 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
347 			if (pgd_none(*pgd))
348 				set_pgd(pgd, *pgd_ref);
349 			else
350 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
351 		}
352 		spin_unlock_irqrestore(&pgd_lock, flags);
353 	}
354 }
355 
356 /*
357  * 64-bit:
358  *
359  *   Handle a fault on the vmalloc area
360  *
361  * This assumes no large pages in there.
362  */
363 static noinline int vmalloc_fault(unsigned long address)
364 {
365 	pgd_t *pgd, *pgd_ref;
366 	pud_t *pud, *pud_ref;
367 	pmd_t *pmd, *pmd_ref;
368 	pte_t *pte, *pte_ref;
369 
370 	/* Make sure we are in vmalloc area: */
371 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
372 		return -1;
373 
374 	/*
375 	 * Copy kernel mappings over when needed. This can also
376 	 * happen within a race in page table update. In the later
377 	 * case just flush:
378 	 */
379 	pgd = pgd_offset(current->active_mm, address);
380 	pgd_ref = pgd_offset_k(address);
381 	if (pgd_none(*pgd_ref))
382 		return -1;
383 
384 	if (pgd_none(*pgd))
385 		set_pgd(pgd, *pgd_ref);
386 	else
387 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
388 
389 	/*
390 	 * Below here mismatches are bugs because these lower tables
391 	 * are shared:
392 	 */
393 
394 	pud = pud_offset(pgd, address);
395 	pud_ref = pud_offset(pgd_ref, address);
396 	if (pud_none(*pud_ref))
397 		return -1;
398 
399 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
400 		BUG();
401 
402 	pmd = pmd_offset(pud, address);
403 	pmd_ref = pmd_offset(pud_ref, address);
404 	if (pmd_none(*pmd_ref))
405 		return -1;
406 
407 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
408 		BUG();
409 
410 	pte_ref = pte_offset_kernel(pmd_ref, address);
411 	if (!pte_present(*pte_ref))
412 		return -1;
413 
414 	pte = pte_offset_kernel(pmd, address);
415 
416 	/*
417 	 * Don't use pte_page here, because the mappings can point
418 	 * outside mem_map, and the NUMA hash lookup cannot handle
419 	 * that:
420 	 */
421 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
422 		BUG();
423 
424 	return 0;
425 }
426 
427 static const char errata93_warning[] =
428 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
429 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
430 KERN_ERR "******* Please consider a BIOS update.\n"
431 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
432 
433 /*
434  * No vm86 mode in 64-bit mode:
435  */
436 static inline void
437 check_v8086_mode(struct pt_regs *regs, unsigned long address,
438 		 struct task_struct *tsk)
439 {
440 }
441 
442 static int bad_address(void *p)
443 {
444 	unsigned long dummy;
445 
446 	return probe_kernel_address((unsigned long *)p, dummy);
447 }
448 
449 static void dump_pagetable(unsigned long address)
450 {
451 	pgd_t *pgd;
452 	pud_t *pud;
453 	pmd_t *pmd;
454 	pte_t *pte;
455 
456 	pgd = (pgd_t *)read_cr3();
457 
458 	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
459 
460 	pgd += pgd_index(address);
461 	if (bad_address(pgd))
462 		goto bad;
463 
464 	printk("PGD %lx ", pgd_val(*pgd));
465 
466 	if (!pgd_present(*pgd))
467 		goto out;
468 
469 	pud = pud_offset(pgd, address);
470 	if (bad_address(pud))
471 		goto bad;
472 
473 	printk("PUD %lx ", pud_val(*pud));
474 	if (!pud_present(*pud) || pud_large(*pud))
475 		goto out;
476 
477 	pmd = pmd_offset(pud, address);
478 	if (bad_address(pmd))
479 		goto bad;
480 
481 	printk("PMD %lx ", pmd_val(*pmd));
482 	if (!pmd_present(*pmd) || pmd_large(*pmd))
483 		goto out;
484 
485 	pte = pte_offset_kernel(pmd, address);
486 	if (bad_address(pte))
487 		goto bad;
488 
489 	printk("PTE %lx", pte_val(*pte));
490 out:
491 	printk("\n");
492 	return;
493 bad:
494 	printk("BAD\n");
495 }
496 
497 #endif /* CONFIG_X86_64 */
498 
499 /*
500  * Workaround for K8 erratum #93 & buggy BIOS.
501  *
502  * BIOS SMM functions are required to use a specific workaround
503  * to avoid corruption of the 64bit RIP register on C stepping K8.
504  *
505  * A lot of BIOS that didn't get tested properly miss this.
506  *
507  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
508  * Try to work around it here.
509  *
510  * Note we only handle faults in kernel here.
511  * Does nothing on 32-bit.
512  */
513 static int is_errata93(struct pt_regs *regs, unsigned long address)
514 {
515 #ifdef CONFIG_X86_64
516 	if (address != regs->ip)
517 		return 0;
518 
519 	if ((address >> 32) != 0)
520 		return 0;
521 
522 	address |= 0xffffffffUL << 32;
523 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
524 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
525 		printk_once(errata93_warning);
526 		regs->ip = address;
527 		return 1;
528 	}
529 #endif
530 	return 0;
531 }
532 
533 /*
534  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
535  * to illegal addresses >4GB.
536  *
537  * We catch this in the page fault handler because these addresses
538  * are not reachable. Just detect this case and return.  Any code
539  * segment in LDT is compatibility mode.
540  */
541 static int is_errata100(struct pt_regs *regs, unsigned long address)
542 {
543 #ifdef CONFIG_X86_64
544 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
545 		return 1;
546 #endif
547 	return 0;
548 }
549 
550 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
551 {
552 #ifdef CONFIG_X86_F00F_BUG
553 	unsigned long nr;
554 
555 	/*
556 	 * Pentium F0 0F C7 C8 bug workaround:
557 	 */
558 	if (boot_cpu_data.f00f_bug) {
559 		nr = (address - idt_descr.address) >> 3;
560 
561 		if (nr == 6) {
562 			do_invalid_op(regs, 0);
563 			return 1;
564 		}
565 	}
566 #endif
567 	return 0;
568 }
569 
570 static const char nx_warning[] = KERN_CRIT
571 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
572 
573 static void
574 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
575 		unsigned long address)
576 {
577 	if (!oops_may_print())
578 		return;
579 
580 	if (error_code & PF_INSTR) {
581 		unsigned int level;
582 
583 		pte_t *pte = lookup_address(address, &level);
584 
585 		if (pte && pte_present(*pte) && !pte_exec(*pte))
586 			printk(nx_warning, current_uid());
587 	}
588 
589 	printk(KERN_ALERT "BUG: unable to handle kernel ");
590 	if (address < PAGE_SIZE)
591 		printk(KERN_CONT "NULL pointer dereference");
592 	else
593 		printk(KERN_CONT "paging request");
594 
595 	printk(KERN_CONT " at %p\n", (void *) address);
596 	printk(KERN_ALERT "IP:");
597 	printk_address(regs->ip, 1);
598 
599 	dump_pagetable(address);
600 }
601 
602 static noinline void
603 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
604 	    unsigned long address)
605 {
606 	struct task_struct *tsk;
607 	unsigned long flags;
608 	int sig;
609 
610 	flags = oops_begin();
611 	tsk = current;
612 	sig = SIGKILL;
613 
614 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
615 	       tsk->comm, address);
616 	dump_pagetable(address);
617 
618 	tsk->thread.cr2		= address;
619 	tsk->thread.trap_no	= 14;
620 	tsk->thread.error_code	= error_code;
621 
622 	if (__die("Bad pagetable", regs, error_code))
623 		sig = 0;
624 
625 	oops_end(flags, regs, sig);
626 }
627 
628 static noinline void
629 no_context(struct pt_regs *regs, unsigned long error_code,
630 	   unsigned long address)
631 {
632 	struct task_struct *tsk = current;
633 	unsigned long *stackend;
634 	unsigned long flags;
635 	int sig;
636 
637 	/* Are we prepared to handle this kernel fault? */
638 	if (fixup_exception(regs))
639 		return;
640 
641 	/*
642 	 * 32-bit:
643 	 *
644 	 *   Valid to do another page fault here, because if this fault
645 	 *   had been triggered by is_prefetch fixup_exception would have
646 	 *   handled it.
647 	 *
648 	 * 64-bit:
649 	 *
650 	 *   Hall of shame of CPU/BIOS bugs.
651 	 */
652 	if (is_prefetch(regs, error_code, address))
653 		return;
654 
655 	if (is_errata93(regs, address))
656 		return;
657 
658 	/*
659 	 * Oops. The kernel tried to access some bad page. We'll have to
660 	 * terminate things with extreme prejudice:
661 	 */
662 	flags = oops_begin();
663 
664 	show_fault_oops(regs, error_code, address);
665 
666 	stackend = end_of_stack(tsk);
667 	if (*stackend != STACK_END_MAGIC)
668 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
669 
670 	tsk->thread.cr2		= address;
671 	tsk->thread.trap_no	= 14;
672 	tsk->thread.error_code	= error_code;
673 
674 	sig = SIGKILL;
675 	if (__die("Oops", regs, error_code))
676 		sig = 0;
677 
678 	/* Executive summary in case the body of the oops scrolled away */
679 	printk(KERN_EMERG "CR2: %016lx\n", address);
680 
681 	oops_end(flags, regs, sig);
682 }
683 
684 /*
685  * Print out info about fatal segfaults, if the show_unhandled_signals
686  * sysctl is set:
687  */
688 static inline void
689 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
690 		unsigned long address, struct task_struct *tsk)
691 {
692 	if (!unhandled_signal(tsk, SIGSEGV))
693 		return;
694 
695 	if (!printk_ratelimit())
696 		return;
697 
698 	printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
699 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
700 		tsk->comm, task_pid_nr(tsk), address,
701 		(void *)regs->ip, (void *)regs->sp, error_code);
702 
703 	print_vma_addr(KERN_CONT " in ", regs->ip);
704 
705 	printk(KERN_CONT "\n");
706 }
707 
708 static void
709 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
710 		       unsigned long address, int si_code)
711 {
712 	struct task_struct *tsk = current;
713 
714 	/* User mode accesses just cause a SIGSEGV */
715 	if (error_code & PF_USER) {
716 		/*
717 		 * It's possible to have interrupts off here:
718 		 */
719 		local_irq_enable();
720 
721 		/*
722 		 * Valid to do another page fault here because this one came
723 		 * from user space:
724 		 */
725 		if (is_prefetch(regs, error_code, address))
726 			return;
727 
728 		if (is_errata100(regs, address))
729 			return;
730 
731 		if (unlikely(show_unhandled_signals))
732 			show_signal_msg(regs, error_code, address, tsk);
733 
734 		/* Kernel addresses are always protection faults: */
735 		tsk->thread.cr2		= address;
736 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
737 		tsk->thread.trap_no	= 14;
738 
739 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
740 
741 		return;
742 	}
743 
744 	if (is_f00f_bug(regs, address))
745 		return;
746 
747 	no_context(regs, error_code, address);
748 }
749 
750 static noinline void
751 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
752 		     unsigned long address)
753 {
754 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
755 }
756 
757 static void
758 __bad_area(struct pt_regs *regs, unsigned long error_code,
759 	   unsigned long address, int si_code)
760 {
761 	struct mm_struct *mm = current->mm;
762 
763 	/*
764 	 * Something tried to access memory that isn't in our memory map..
765 	 * Fix it, but check if it's kernel or user first..
766 	 */
767 	up_read(&mm->mmap_sem);
768 
769 	__bad_area_nosemaphore(regs, error_code, address, si_code);
770 }
771 
772 static noinline void
773 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
774 {
775 	__bad_area(regs, error_code, address, SEGV_MAPERR);
776 }
777 
778 static noinline void
779 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
780 		      unsigned long address)
781 {
782 	__bad_area(regs, error_code, address, SEGV_ACCERR);
783 }
784 
785 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
786 static void
787 out_of_memory(struct pt_regs *regs, unsigned long error_code,
788 	      unsigned long address)
789 {
790 	/*
791 	 * We ran out of memory, call the OOM killer, and return the userspace
792 	 * (which will retry the fault, or kill us if we got oom-killed):
793 	 */
794 	up_read(&current->mm->mmap_sem);
795 
796 	pagefault_out_of_memory();
797 }
798 
799 static void
800 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
801 {
802 	struct task_struct *tsk = current;
803 	struct mm_struct *mm = tsk->mm;
804 
805 	up_read(&mm->mmap_sem);
806 
807 	/* Kernel mode? Handle exceptions or die: */
808 	if (!(error_code & PF_USER))
809 		no_context(regs, error_code, address);
810 
811 	/* User-space => ok to do another page fault: */
812 	if (is_prefetch(regs, error_code, address))
813 		return;
814 
815 	tsk->thread.cr2		= address;
816 	tsk->thread.error_code	= error_code;
817 	tsk->thread.trap_no	= 14;
818 
819 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
820 }
821 
822 static noinline void
823 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
824 	       unsigned long address, unsigned int fault)
825 {
826 	if (fault & VM_FAULT_OOM) {
827 		out_of_memory(regs, error_code, address);
828 	} else {
829 		if (fault & VM_FAULT_SIGBUS)
830 			do_sigbus(regs, error_code, address);
831 		else
832 			BUG();
833 	}
834 }
835 
836 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
837 {
838 	if ((error_code & PF_WRITE) && !pte_write(*pte))
839 		return 0;
840 
841 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
842 		return 0;
843 
844 	return 1;
845 }
846 
847 /*
848  * Handle a spurious fault caused by a stale TLB entry.
849  *
850  * This allows us to lazily refresh the TLB when increasing the
851  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
852  * eagerly is very expensive since that implies doing a full
853  * cross-processor TLB flush, even if no stale TLB entries exist
854  * on other processors.
855  *
856  * There are no security implications to leaving a stale TLB when
857  * increasing the permissions on a page.
858  */
859 static noinline int
860 spurious_fault(unsigned long error_code, unsigned long address)
861 {
862 	pgd_t *pgd;
863 	pud_t *pud;
864 	pmd_t *pmd;
865 	pte_t *pte;
866 	int ret;
867 
868 	/* Reserved-bit violation or user access to kernel space? */
869 	if (error_code & (PF_USER | PF_RSVD))
870 		return 0;
871 
872 	pgd = init_mm.pgd + pgd_index(address);
873 	if (!pgd_present(*pgd))
874 		return 0;
875 
876 	pud = pud_offset(pgd, address);
877 	if (!pud_present(*pud))
878 		return 0;
879 
880 	if (pud_large(*pud))
881 		return spurious_fault_check(error_code, (pte_t *) pud);
882 
883 	pmd = pmd_offset(pud, address);
884 	if (!pmd_present(*pmd))
885 		return 0;
886 
887 	if (pmd_large(*pmd))
888 		return spurious_fault_check(error_code, (pte_t *) pmd);
889 
890 	pte = pte_offset_kernel(pmd, address);
891 	if (!pte_present(*pte))
892 		return 0;
893 
894 	ret = spurious_fault_check(error_code, pte);
895 	if (!ret)
896 		return 0;
897 
898 	/*
899 	 * Make sure we have permissions in PMD.
900 	 * If not, then there's a bug in the page tables:
901 	 */
902 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
903 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
904 
905 	return ret;
906 }
907 
908 int show_unhandled_signals = 1;
909 
910 static inline int
911 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
912 {
913 	if (write) {
914 		/* write, present and write, not present: */
915 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
916 			return 1;
917 		return 0;
918 	}
919 
920 	/* read, present: */
921 	if (unlikely(error_code & PF_PROT))
922 		return 1;
923 
924 	/* read, not present: */
925 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
926 		return 1;
927 
928 	return 0;
929 }
930 
931 static int fault_in_kernel_space(unsigned long address)
932 {
933 	return address >= TASK_SIZE_MAX;
934 }
935 
936 /*
937  * This routine handles page faults.  It determines the address,
938  * and the problem, and then passes it off to one of the appropriate
939  * routines.
940  */
941 dotraplinkage void __kprobes
942 do_page_fault(struct pt_regs *regs, unsigned long error_code)
943 {
944 	struct vm_area_struct *vma;
945 	struct task_struct *tsk;
946 	unsigned long address;
947 	struct mm_struct *mm;
948 	int write;
949 	int fault;
950 
951 	tsk = current;
952 	mm = tsk->mm;
953 
954 	prefetchw(&mm->mmap_sem);
955 
956 	/* Get the faulting address: */
957 	address = read_cr2();
958 
959 	if (unlikely(kmmio_fault(regs, address)))
960 		return;
961 
962 	/*
963 	 * We fault-in kernel-space virtual memory on-demand. The
964 	 * 'reference' page table is init_mm.pgd.
965 	 *
966 	 * NOTE! We MUST NOT take any locks for this case. We may
967 	 * be in an interrupt or a critical region, and should
968 	 * only copy the information from the master page table,
969 	 * nothing more.
970 	 *
971 	 * This verifies that the fault happens in kernel space
972 	 * (error_code & 4) == 0, and that the fault was not a
973 	 * protection error (error_code & 9) == 0.
974 	 */
975 	if (unlikely(fault_in_kernel_space(address))) {
976 		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
977 		    vmalloc_fault(address) >= 0)
978 			return;
979 
980 		/* Can handle a stale RO->RW TLB: */
981 		if (spurious_fault(error_code, address))
982 			return;
983 
984 		/* kprobes don't want to hook the spurious faults: */
985 		if (notify_page_fault(regs))
986 			return;
987 		/*
988 		 * Don't take the mm semaphore here. If we fixup a prefetch
989 		 * fault we could otherwise deadlock:
990 		 */
991 		bad_area_nosemaphore(regs, error_code, address);
992 
993 		return;
994 	}
995 
996 	/* kprobes don't want to hook the spurious faults: */
997 	if (unlikely(notify_page_fault(regs)))
998 		return;
999 	/*
1000 	 * It's safe to allow irq's after cr2 has been saved and the
1001 	 * vmalloc fault has been handled.
1002 	 *
1003 	 * User-mode registers count as a user access even for any
1004 	 * potential system fault or CPU buglet:
1005 	 */
1006 	if (user_mode_vm(regs)) {
1007 		local_irq_enable();
1008 		error_code |= PF_USER;
1009 	} else {
1010 		if (regs->flags & X86_EFLAGS_IF)
1011 			local_irq_enable();
1012 	}
1013 
1014 	if (unlikely(error_code & PF_RSVD))
1015 		pgtable_bad(regs, error_code, address);
1016 
1017 	perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1018 
1019 	/*
1020 	 * If we're in an interrupt, have no user context or are running
1021 	 * in an atomic region then we must not take the fault:
1022 	 */
1023 	if (unlikely(in_atomic() || !mm)) {
1024 		bad_area_nosemaphore(regs, error_code, address);
1025 		return;
1026 	}
1027 
1028 	/*
1029 	 * When running in the kernel we expect faults to occur only to
1030 	 * addresses in user space.  All other faults represent errors in
1031 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1032 	 * case of an erroneous fault occurring in a code path which already
1033 	 * holds mmap_sem we will deadlock attempting to validate the fault
1034 	 * against the address space.  Luckily the kernel only validly
1035 	 * references user space from well defined areas of code, which are
1036 	 * listed in the exceptions table.
1037 	 *
1038 	 * As the vast majority of faults will be valid we will only perform
1039 	 * the source reference check when there is a possibility of a
1040 	 * deadlock. Attempt to lock the address space, if we cannot we then
1041 	 * validate the source. If this is invalid we can skip the address
1042 	 * space check, thus avoiding the deadlock:
1043 	 */
1044 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1045 		if ((error_code & PF_USER) == 0 &&
1046 		    !search_exception_tables(regs->ip)) {
1047 			bad_area_nosemaphore(regs, error_code, address);
1048 			return;
1049 		}
1050 		down_read(&mm->mmap_sem);
1051 	} else {
1052 		/*
1053 		 * The above down_read_trylock() might have succeeded in
1054 		 * which case we'll have missed the might_sleep() from
1055 		 * down_read():
1056 		 */
1057 		might_sleep();
1058 	}
1059 
1060 	vma = find_vma(mm, address);
1061 	if (unlikely(!vma)) {
1062 		bad_area(regs, error_code, address);
1063 		return;
1064 	}
1065 	if (likely(vma->vm_start <= address))
1066 		goto good_area;
1067 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1068 		bad_area(regs, error_code, address);
1069 		return;
1070 	}
1071 	if (error_code & PF_USER) {
1072 		/*
1073 		 * Accessing the stack below %sp is always a bug.
1074 		 * The large cushion allows instructions like enter
1075 		 * and pusha to work. ("enter $65535, $31" pushes
1076 		 * 32 pointers and then decrements %sp by 65535.)
1077 		 */
1078 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1079 			bad_area(regs, error_code, address);
1080 			return;
1081 		}
1082 	}
1083 	if (unlikely(expand_stack(vma, address))) {
1084 		bad_area(regs, error_code, address);
1085 		return;
1086 	}
1087 
1088 	/*
1089 	 * Ok, we have a good vm_area for this memory access, so
1090 	 * we can handle it..
1091 	 */
1092 good_area:
1093 	write = error_code & PF_WRITE;
1094 
1095 	if (unlikely(access_error(error_code, write, vma))) {
1096 		bad_area_access_error(regs, error_code, address);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * If for any reason at all we couldn't handle the fault,
1102 	 * make sure we exit gracefully rather than endlessly redo
1103 	 * the fault:
1104 	 */
1105 	fault = handle_mm_fault(mm, vma, address, write);
1106 
1107 	if (unlikely(fault & VM_FAULT_ERROR)) {
1108 		mm_fault_error(regs, error_code, address, fault);
1109 		return;
1110 	}
1111 
1112 	if (fault & VM_FAULT_MAJOR) {
1113 		tsk->maj_flt++;
1114 		perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1115 				     regs, address);
1116 	} else {
1117 		tsk->min_flt++;
1118 		perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1119 				     regs, address);
1120 	}
1121 
1122 	check_v8086_mode(regs, address, tsk);
1123 
1124 	up_read(&mm->mmap_sem);
1125 }
1126