1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/magic.h> /* STACK_END_MAGIC */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/kdebug.h> /* oops_begin/end, ... */ 9 #include <linux/module.h> /* search_exception_table */ 10 #include <linux/bootmem.h> /* max_low_pfn */ 11 #include <linux/kprobes.h> /* __kprobes, ... */ 12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 13 #include <linux/perf_counter.h> /* perf_swcounter_event */ 14 15 #include <asm/traps.h> /* dotraplinkage, ... */ 16 #include <asm/pgalloc.h> /* pgd_*(), ... */ 17 18 /* 19 * Page fault error code bits: 20 * 21 * bit 0 == 0: no page found 1: protection fault 22 * bit 1 == 0: read access 1: write access 23 * bit 2 == 0: kernel-mode access 1: user-mode access 24 * bit 3 == 1: use of reserved bit detected 25 * bit 4 == 1: fault was an instruction fetch 26 */ 27 enum x86_pf_error_code { 28 29 PF_PROT = 1 << 0, 30 PF_WRITE = 1 << 1, 31 PF_USER = 1 << 2, 32 PF_RSVD = 1 << 3, 33 PF_INSTR = 1 << 4, 34 }; 35 36 /* 37 * Returns 0 if mmiotrace is disabled, or if the fault is not 38 * handled by mmiotrace: 39 */ 40 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) 41 { 42 if (unlikely(is_kmmio_active())) 43 if (kmmio_handler(regs, addr) == 1) 44 return -1; 45 return 0; 46 } 47 48 static inline int notify_page_fault(struct pt_regs *regs) 49 { 50 int ret = 0; 51 52 /* kprobe_running() needs smp_processor_id() */ 53 if (kprobes_built_in() && !user_mode_vm(regs)) { 54 preempt_disable(); 55 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 56 ret = 1; 57 preempt_enable(); 58 } 59 60 return ret; 61 } 62 63 /* 64 * Prefetch quirks: 65 * 66 * 32-bit mode: 67 * 68 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 69 * Check that here and ignore it. 70 * 71 * 64-bit mode: 72 * 73 * Sometimes the CPU reports invalid exceptions on prefetch. 74 * Check that here and ignore it. 75 * 76 * Opcode checker based on code by Richard Brunner. 77 */ 78 static inline int 79 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 80 unsigned char opcode, int *prefetch) 81 { 82 unsigned char instr_hi = opcode & 0xf0; 83 unsigned char instr_lo = opcode & 0x0f; 84 85 switch (instr_hi) { 86 case 0x20: 87 case 0x30: 88 /* 89 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 90 * In X86_64 long mode, the CPU will signal invalid 91 * opcode if some of these prefixes are present so 92 * X86_64 will never get here anyway 93 */ 94 return ((instr_lo & 7) == 0x6); 95 #ifdef CONFIG_X86_64 96 case 0x40: 97 /* 98 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 99 * Need to figure out under what instruction mode the 100 * instruction was issued. Could check the LDT for lm, 101 * but for now it's good enough to assume that long 102 * mode only uses well known segments or kernel. 103 */ 104 return (!user_mode(regs)) || (regs->cs == __USER_CS); 105 #endif 106 case 0x60: 107 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 108 return (instr_lo & 0xC) == 0x4; 109 case 0xF0: 110 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 111 return !instr_lo || (instr_lo>>1) == 1; 112 case 0x00: 113 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 114 if (probe_kernel_address(instr, opcode)) 115 return 0; 116 117 *prefetch = (instr_lo == 0xF) && 118 (opcode == 0x0D || opcode == 0x18); 119 return 0; 120 default: 121 return 0; 122 } 123 } 124 125 static int 126 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 127 { 128 unsigned char *max_instr; 129 unsigned char *instr; 130 int prefetch = 0; 131 132 /* 133 * If it was a exec (instruction fetch) fault on NX page, then 134 * do not ignore the fault: 135 */ 136 if (error_code & PF_INSTR) 137 return 0; 138 139 instr = (void *)convert_ip_to_linear(current, regs); 140 max_instr = instr + 15; 141 142 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 143 return 0; 144 145 while (instr < max_instr) { 146 unsigned char opcode; 147 148 if (probe_kernel_address(instr, opcode)) 149 break; 150 151 instr++; 152 153 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 154 break; 155 } 156 return prefetch; 157 } 158 159 static void 160 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 161 struct task_struct *tsk) 162 { 163 siginfo_t info; 164 165 info.si_signo = si_signo; 166 info.si_errno = 0; 167 info.si_code = si_code; 168 info.si_addr = (void __user *)address; 169 170 force_sig_info(si_signo, &info, tsk); 171 } 172 173 DEFINE_SPINLOCK(pgd_lock); 174 LIST_HEAD(pgd_list); 175 176 #ifdef CONFIG_X86_32 177 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 178 { 179 unsigned index = pgd_index(address); 180 pgd_t *pgd_k; 181 pud_t *pud, *pud_k; 182 pmd_t *pmd, *pmd_k; 183 184 pgd += index; 185 pgd_k = init_mm.pgd + index; 186 187 if (!pgd_present(*pgd_k)) 188 return NULL; 189 190 /* 191 * set_pgd(pgd, *pgd_k); here would be useless on PAE 192 * and redundant with the set_pmd() on non-PAE. As would 193 * set_pud. 194 */ 195 pud = pud_offset(pgd, address); 196 pud_k = pud_offset(pgd_k, address); 197 if (!pud_present(*pud_k)) 198 return NULL; 199 200 pmd = pmd_offset(pud, address); 201 pmd_k = pmd_offset(pud_k, address); 202 if (!pmd_present(*pmd_k)) 203 return NULL; 204 205 if (!pmd_present(*pmd)) 206 set_pmd(pmd, *pmd_k); 207 else 208 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 209 210 return pmd_k; 211 } 212 213 void vmalloc_sync_all(void) 214 { 215 unsigned long address; 216 217 if (SHARED_KERNEL_PMD) 218 return; 219 220 for (address = VMALLOC_START & PMD_MASK; 221 address >= TASK_SIZE && address < FIXADDR_TOP; 222 address += PMD_SIZE) { 223 224 unsigned long flags; 225 struct page *page; 226 227 spin_lock_irqsave(&pgd_lock, flags); 228 list_for_each_entry(page, &pgd_list, lru) { 229 if (!vmalloc_sync_one(page_address(page), address)) 230 break; 231 } 232 spin_unlock_irqrestore(&pgd_lock, flags); 233 } 234 } 235 236 /* 237 * 32-bit: 238 * 239 * Handle a fault on the vmalloc or module mapping area 240 */ 241 static noinline int vmalloc_fault(unsigned long address) 242 { 243 unsigned long pgd_paddr; 244 pmd_t *pmd_k; 245 pte_t *pte_k; 246 247 /* Make sure we are in vmalloc area: */ 248 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 249 return -1; 250 251 /* 252 * Synchronize this task's top level page-table 253 * with the 'reference' page table. 254 * 255 * Do _not_ use "current" here. We might be inside 256 * an interrupt in the middle of a task switch.. 257 */ 258 pgd_paddr = read_cr3(); 259 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 260 if (!pmd_k) 261 return -1; 262 263 pte_k = pte_offset_kernel(pmd_k, address); 264 if (!pte_present(*pte_k)) 265 return -1; 266 267 return 0; 268 } 269 270 /* 271 * Did it hit the DOS screen memory VA from vm86 mode? 272 */ 273 static inline void 274 check_v8086_mode(struct pt_regs *regs, unsigned long address, 275 struct task_struct *tsk) 276 { 277 unsigned long bit; 278 279 if (!v8086_mode(regs)) 280 return; 281 282 bit = (address - 0xA0000) >> PAGE_SHIFT; 283 if (bit < 32) 284 tsk->thread.screen_bitmap |= 1 << bit; 285 } 286 287 static void dump_pagetable(unsigned long address) 288 { 289 __typeof__(pte_val(__pte(0))) page; 290 291 page = read_cr3(); 292 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; 293 294 #ifdef CONFIG_X86_PAE 295 printk("*pdpt = %016Lx ", page); 296 if ((page >> PAGE_SHIFT) < max_low_pfn 297 && page & _PAGE_PRESENT) { 298 page &= PAGE_MASK; 299 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) 300 & (PTRS_PER_PMD - 1)]; 301 printk(KERN_CONT "*pde = %016Lx ", page); 302 page &= ~_PAGE_NX; 303 } 304 #else 305 printk("*pde = %08lx ", page); 306 #endif 307 308 /* 309 * We must not directly access the pte in the highpte 310 * case if the page table is located in highmem. 311 * And let's rather not kmap-atomic the pte, just in case 312 * it's allocated already: 313 */ 314 if ((page >> PAGE_SHIFT) < max_low_pfn 315 && (page & _PAGE_PRESENT) 316 && !(page & _PAGE_PSE)) { 317 318 page &= PAGE_MASK; 319 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) 320 & (PTRS_PER_PTE - 1)]; 321 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); 322 } 323 324 printk("\n"); 325 } 326 327 #else /* CONFIG_X86_64: */ 328 329 void vmalloc_sync_all(void) 330 { 331 unsigned long address; 332 333 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; 334 address += PGDIR_SIZE) { 335 336 const pgd_t *pgd_ref = pgd_offset_k(address); 337 unsigned long flags; 338 struct page *page; 339 340 if (pgd_none(*pgd_ref)) 341 continue; 342 343 spin_lock_irqsave(&pgd_lock, flags); 344 list_for_each_entry(page, &pgd_list, lru) { 345 pgd_t *pgd; 346 pgd = (pgd_t *)page_address(page) + pgd_index(address); 347 if (pgd_none(*pgd)) 348 set_pgd(pgd, *pgd_ref); 349 else 350 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 351 } 352 spin_unlock_irqrestore(&pgd_lock, flags); 353 } 354 } 355 356 /* 357 * 64-bit: 358 * 359 * Handle a fault on the vmalloc area 360 * 361 * This assumes no large pages in there. 362 */ 363 static noinline int vmalloc_fault(unsigned long address) 364 { 365 pgd_t *pgd, *pgd_ref; 366 pud_t *pud, *pud_ref; 367 pmd_t *pmd, *pmd_ref; 368 pte_t *pte, *pte_ref; 369 370 /* Make sure we are in vmalloc area: */ 371 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 372 return -1; 373 374 /* 375 * Copy kernel mappings over when needed. This can also 376 * happen within a race in page table update. In the later 377 * case just flush: 378 */ 379 pgd = pgd_offset(current->active_mm, address); 380 pgd_ref = pgd_offset_k(address); 381 if (pgd_none(*pgd_ref)) 382 return -1; 383 384 if (pgd_none(*pgd)) 385 set_pgd(pgd, *pgd_ref); 386 else 387 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 388 389 /* 390 * Below here mismatches are bugs because these lower tables 391 * are shared: 392 */ 393 394 pud = pud_offset(pgd, address); 395 pud_ref = pud_offset(pgd_ref, address); 396 if (pud_none(*pud_ref)) 397 return -1; 398 399 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 400 BUG(); 401 402 pmd = pmd_offset(pud, address); 403 pmd_ref = pmd_offset(pud_ref, address); 404 if (pmd_none(*pmd_ref)) 405 return -1; 406 407 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 408 BUG(); 409 410 pte_ref = pte_offset_kernel(pmd_ref, address); 411 if (!pte_present(*pte_ref)) 412 return -1; 413 414 pte = pte_offset_kernel(pmd, address); 415 416 /* 417 * Don't use pte_page here, because the mappings can point 418 * outside mem_map, and the NUMA hash lookup cannot handle 419 * that: 420 */ 421 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 422 BUG(); 423 424 return 0; 425 } 426 427 static const char errata93_warning[] = 428 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 429 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" 430 KERN_ERR "******* Please consider a BIOS update.\n" 431 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; 432 433 /* 434 * No vm86 mode in 64-bit mode: 435 */ 436 static inline void 437 check_v8086_mode(struct pt_regs *regs, unsigned long address, 438 struct task_struct *tsk) 439 { 440 } 441 442 static int bad_address(void *p) 443 { 444 unsigned long dummy; 445 446 return probe_kernel_address((unsigned long *)p, dummy); 447 } 448 449 static void dump_pagetable(unsigned long address) 450 { 451 pgd_t *pgd; 452 pud_t *pud; 453 pmd_t *pmd; 454 pte_t *pte; 455 456 pgd = (pgd_t *)read_cr3(); 457 458 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 459 460 pgd += pgd_index(address); 461 if (bad_address(pgd)) 462 goto bad; 463 464 printk("PGD %lx ", pgd_val(*pgd)); 465 466 if (!pgd_present(*pgd)) 467 goto out; 468 469 pud = pud_offset(pgd, address); 470 if (bad_address(pud)) 471 goto bad; 472 473 printk("PUD %lx ", pud_val(*pud)); 474 if (!pud_present(*pud) || pud_large(*pud)) 475 goto out; 476 477 pmd = pmd_offset(pud, address); 478 if (bad_address(pmd)) 479 goto bad; 480 481 printk("PMD %lx ", pmd_val(*pmd)); 482 if (!pmd_present(*pmd) || pmd_large(*pmd)) 483 goto out; 484 485 pte = pte_offset_kernel(pmd, address); 486 if (bad_address(pte)) 487 goto bad; 488 489 printk("PTE %lx", pte_val(*pte)); 490 out: 491 printk("\n"); 492 return; 493 bad: 494 printk("BAD\n"); 495 } 496 497 #endif /* CONFIG_X86_64 */ 498 499 /* 500 * Workaround for K8 erratum #93 & buggy BIOS. 501 * 502 * BIOS SMM functions are required to use a specific workaround 503 * to avoid corruption of the 64bit RIP register on C stepping K8. 504 * 505 * A lot of BIOS that didn't get tested properly miss this. 506 * 507 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 508 * Try to work around it here. 509 * 510 * Note we only handle faults in kernel here. 511 * Does nothing on 32-bit. 512 */ 513 static int is_errata93(struct pt_regs *regs, unsigned long address) 514 { 515 #ifdef CONFIG_X86_64 516 if (address != regs->ip) 517 return 0; 518 519 if ((address >> 32) != 0) 520 return 0; 521 522 address |= 0xffffffffUL << 32; 523 if ((address >= (u64)_stext && address <= (u64)_etext) || 524 (address >= MODULES_VADDR && address <= MODULES_END)) { 525 printk_once(errata93_warning); 526 regs->ip = address; 527 return 1; 528 } 529 #endif 530 return 0; 531 } 532 533 /* 534 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 535 * to illegal addresses >4GB. 536 * 537 * We catch this in the page fault handler because these addresses 538 * are not reachable. Just detect this case and return. Any code 539 * segment in LDT is compatibility mode. 540 */ 541 static int is_errata100(struct pt_regs *regs, unsigned long address) 542 { 543 #ifdef CONFIG_X86_64 544 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 545 return 1; 546 #endif 547 return 0; 548 } 549 550 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 551 { 552 #ifdef CONFIG_X86_F00F_BUG 553 unsigned long nr; 554 555 /* 556 * Pentium F0 0F C7 C8 bug workaround: 557 */ 558 if (boot_cpu_data.f00f_bug) { 559 nr = (address - idt_descr.address) >> 3; 560 561 if (nr == 6) { 562 do_invalid_op(regs, 0); 563 return 1; 564 } 565 } 566 #endif 567 return 0; 568 } 569 570 static const char nx_warning[] = KERN_CRIT 571 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 572 573 static void 574 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 575 unsigned long address) 576 { 577 if (!oops_may_print()) 578 return; 579 580 if (error_code & PF_INSTR) { 581 unsigned int level; 582 583 pte_t *pte = lookup_address(address, &level); 584 585 if (pte && pte_present(*pte) && !pte_exec(*pte)) 586 printk(nx_warning, current_uid()); 587 } 588 589 printk(KERN_ALERT "BUG: unable to handle kernel "); 590 if (address < PAGE_SIZE) 591 printk(KERN_CONT "NULL pointer dereference"); 592 else 593 printk(KERN_CONT "paging request"); 594 595 printk(KERN_CONT " at %p\n", (void *) address); 596 printk(KERN_ALERT "IP:"); 597 printk_address(regs->ip, 1); 598 599 dump_pagetable(address); 600 } 601 602 static noinline void 603 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 604 unsigned long address) 605 { 606 struct task_struct *tsk; 607 unsigned long flags; 608 int sig; 609 610 flags = oops_begin(); 611 tsk = current; 612 sig = SIGKILL; 613 614 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 615 tsk->comm, address); 616 dump_pagetable(address); 617 618 tsk->thread.cr2 = address; 619 tsk->thread.trap_no = 14; 620 tsk->thread.error_code = error_code; 621 622 if (__die("Bad pagetable", regs, error_code)) 623 sig = 0; 624 625 oops_end(flags, regs, sig); 626 } 627 628 static noinline void 629 no_context(struct pt_regs *regs, unsigned long error_code, 630 unsigned long address) 631 { 632 struct task_struct *tsk = current; 633 unsigned long *stackend; 634 unsigned long flags; 635 int sig; 636 637 /* Are we prepared to handle this kernel fault? */ 638 if (fixup_exception(regs)) 639 return; 640 641 /* 642 * 32-bit: 643 * 644 * Valid to do another page fault here, because if this fault 645 * had been triggered by is_prefetch fixup_exception would have 646 * handled it. 647 * 648 * 64-bit: 649 * 650 * Hall of shame of CPU/BIOS bugs. 651 */ 652 if (is_prefetch(regs, error_code, address)) 653 return; 654 655 if (is_errata93(regs, address)) 656 return; 657 658 /* 659 * Oops. The kernel tried to access some bad page. We'll have to 660 * terminate things with extreme prejudice: 661 */ 662 flags = oops_begin(); 663 664 show_fault_oops(regs, error_code, address); 665 666 stackend = end_of_stack(tsk); 667 if (*stackend != STACK_END_MAGIC) 668 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 669 670 tsk->thread.cr2 = address; 671 tsk->thread.trap_no = 14; 672 tsk->thread.error_code = error_code; 673 674 sig = SIGKILL; 675 if (__die("Oops", regs, error_code)) 676 sig = 0; 677 678 /* Executive summary in case the body of the oops scrolled away */ 679 printk(KERN_EMERG "CR2: %016lx\n", address); 680 681 oops_end(flags, regs, sig); 682 } 683 684 /* 685 * Print out info about fatal segfaults, if the show_unhandled_signals 686 * sysctl is set: 687 */ 688 static inline void 689 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 690 unsigned long address, struct task_struct *tsk) 691 { 692 if (!unhandled_signal(tsk, SIGSEGV)) 693 return; 694 695 if (!printk_ratelimit()) 696 return; 697 698 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 699 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 700 tsk->comm, task_pid_nr(tsk), address, 701 (void *)regs->ip, (void *)regs->sp, error_code); 702 703 print_vma_addr(KERN_CONT " in ", regs->ip); 704 705 printk(KERN_CONT "\n"); 706 } 707 708 static void 709 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 710 unsigned long address, int si_code) 711 { 712 struct task_struct *tsk = current; 713 714 /* User mode accesses just cause a SIGSEGV */ 715 if (error_code & PF_USER) { 716 /* 717 * It's possible to have interrupts off here: 718 */ 719 local_irq_enable(); 720 721 /* 722 * Valid to do another page fault here because this one came 723 * from user space: 724 */ 725 if (is_prefetch(regs, error_code, address)) 726 return; 727 728 if (is_errata100(regs, address)) 729 return; 730 731 if (unlikely(show_unhandled_signals)) 732 show_signal_msg(regs, error_code, address, tsk); 733 734 /* Kernel addresses are always protection faults: */ 735 tsk->thread.cr2 = address; 736 tsk->thread.error_code = error_code | (address >= TASK_SIZE); 737 tsk->thread.trap_no = 14; 738 739 force_sig_info_fault(SIGSEGV, si_code, address, tsk); 740 741 return; 742 } 743 744 if (is_f00f_bug(regs, address)) 745 return; 746 747 no_context(regs, error_code, address); 748 } 749 750 static noinline void 751 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 752 unsigned long address) 753 { 754 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 755 } 756 757 static void 758 __bad_area(struct pt_regs *regs, unsigned long error_code, 759 unsigned long address, int si_code) 760 { 761 struct mm_struct *mm = current->mm; 762 763 /* 764 * Something tried to access memory that isn't in our memory map.. 765 * Fix it, but check if it's kernel or user first.. 766 */ 767 up_read(&mm->mmap_sem); 768 769 __bad_area_nosemaphore(regs, error_code, address, si_code); 770 } 771 772 static noinline void 773 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 774 { 775 __bad_area(regs, error_code, address, SEGV_MAPERR); 776 } 777 778 static noinline void 779 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 780 unsigned long address) 781 { 782 __bad_area(regs, error_code, address, SEGV_ACCERR); 783 } 784 785 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 786 static void 787 out_of_memory(struct pt_regs *regs, unsigned long error_code, 788 unsigned long address) 789 { 790 /* 791 * We ran out of memory, call the OOM killer, and return the userspace 792 * (which will retry the fault, or kill us if we got oom-killed): 793 */ 794 up_read(¤t->mm->mmap_sem); 795 796 pagefault_out_of_memory(); 797 } 798 799 static void 800 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) 801 { 802 struct task_struct *tsk = current; 803 struct mm_struct *mm = tsk->mm; 804 805 up_read(&mm->mmap_sem); 806 807 /* Kernel mode? Handle exceptions or die: */ 808 if (!(error_code & PF_USER)) 809 no_context(regs, error_code, address); 810 811 /* User-space => ok to do another page fault: */ 812 if (is_prefetch(regs, error_code, address)) 813 return; 814 815 tsk->thread.cr2 = address; 816 tsk->thread.error_code = error_code; 817 tsk->thread.trap_no = 14; 818 819 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); 820 } 821 822 static noinline void 823 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 824 unsigned long address, unsigned int fault) 825 { 826 if (fault & VM_FAULT_OOM) { 827 out_of_memory(regs, error_code, address); 828 } else { 829 if (fault & VM_FAULT_SIGBUS) 830 do_sigbus(regs, error_code, address); 831 else 832 BUG(); 833 } 834 } 835 836 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 837 { 838 if ((error_code & PF_WRITE) && !pte_write(*pte)) 839 return 0; 840 841 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 842 return 0; 843 844 return 1; 845 } 846 847 /* 848 * Handle a spurious fault caused by a stale TLB entry. 849 * 850 * This allows us to lazily refresh the TLB when increasing the 851 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 852 * eagerly is very expensive since that implies doing a full 853 * cross-processor TLB flush, even if no stale TLB entries exist 854 * on other processors. 855 * 856 * There are no security implications to leaving a stale TLB when 857 * increasing the permissions on a page. 858 */ 859 static noinline int 860 spurious_fault(unsigned long error_code, unsigned long address) 861 { 862 pgd_t *pgd; 863 pud_t *pud; 864 pmd_t *pmd; 865 pte_t *pte; 866 int ret; 867 868 /* Reserved-bit violation or user access to kernel space? */ 869 if (error_code & (PF_USER | PF_RSVD)) 870 return 0; 871 872 pgd = init_mm.pgd + pgd_index(address); 873 if (!pgd_present(*pgd)) 874 return 0; 875 876 pud = pud_offset(pgd, address); 877 if (!pud_present(*pud)) 878 return 0; 879 880 if (pud_large(*pud)) 881 return spurious_fault_check(error_code, (pte_t *) pud); 882 883 pmd = pmd_offset(pud, address); 884 if (!pmd_present(*pmd)) 885 return 0; 886 887 if (pmd_large(*pmd)) 888 return spurious_fault_check(error_code, (pte_t *) pmd); 889 890 pte = pte_offset_kernel(pmd, address); 891 if (!pte_present(*pte)) 892 return 0; 893 894 ret = spurious_fault_check(error_code, pte); 895 if (!ret) 896 return 0; 897 898 /* 899 * Make sure we have permissions in PMD. 900 * If not, then there's a bug in the page tables: 901 */ 902 ret = spurious_fault_check(error_code, (pte_t *) pmd); 903 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 904 905 return ret; 906 } 907 908 int show_unhandled_signals = 1; 909 910 static inline int 911 access_error(unsigned long error_code, int write, struct vm_area_struct *vma) 912 { 913 if (write) { 914 /* write, present and write, not present: */ 915 if (unlikely(!(vma->vm_flags & VM_WRITE))) 916 return 1; 917 return 0; 918 } 919 920 /* read, present: */ 921 if (unlikely(error_code & PF_PROT)) 922 return 1; 923 924 /* read, not present: */ 925 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 926 return 1; 927 928 return 0; 929 } 930 931 static int fault_in_kernel_space(unsigned long address) 932 { 933 return address >= TASK_SIZE_MAX; 934 } 935 936 /* 937 * This routine handles page faults. It determines the address, 938 * and the problem, and then passes it off to one of the appropriate 939 * routines. 940 */ 941 dotraplinkage void __kprobes 942 do_page_fault(struct pt_regs *regs, unsigned long error_code) 943 { 944 struct vm_area_struct *vma; 945 struct task_struct *tsk; 946 unsigned long address; 947 struct mm_struct *mm; 948 int write; 949 int fault; 950 951 tsk = current; 952 mm = tsk->mm; 953 954 prefetchw(&mm->mmap_sem); 955 956 /* Get the faulting address: */ 957 address = read_cr2(); 958 959 if (unlikely(kmmio_fault(regs, address))) 960 return; 961 962 /* 963 * We fault-in kernel-space virtual memory on-demand. The 964 * 'reference' page table is init_mm.pgd. 965 * 966 * NOTE! We MUST NOT take any locks for this case. We may 967 * be in an interrupt or a critical region, and should 968 * only copy the information from the master page table, 969 * nothing more. 970 * 971 * This verifies that the fault happens in kernel space 972 * (error_code & 4) == 0, and that the fault was not a 973 * protection error (error_code & 9) == 0. 974 */ 975 if (unlikely(fault_in_kernel_space(address))) { 976 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && 977 vmalloc_fault(address) >= 0) 978 return; 979 980 /* Can handle a stale RO->RW TLB: */ 981 if (spurious_fault(error_code, address)) 982 return; 983 984 /* kprobes don't want to hook the spurious faults: */ 985 if (notify_page_fault(regs)) 986 return; 987 /* 988 * Don't take the mm semaphore here. If we fixup a prefetch 989 * fault we could otherwise deadlock: 990 */ 991 bad_area_nosemaphore(regs, error_code, address); 992 993 return; 994 } 995 996 /* kprobes don't want to hook the spurious faults: */ 997 if (unlikely(notify_page_fault(regs))) 998 return; 999 /* 1000 * It's safe to allow irq's after cr2 has been saved and the 1001 * vmalloc fault has been handled. 1002 * 1003 * User-mode registers count as a user access even for any 1004 * potential system fault or CPU buglet: 1005 */ 1006 if (user_mode_vm(regs)) { 1007 local_irq_enable(); 1008 error_code |= PF_USER; 1009 } else { 1010 if (regs->flags & X86_EFLAGS_IF) 1011 local_irq_enable(); 1012 } 1013 1014 if (unlikely(error_code & PF_RSVD)) 1015 pgtable_bad(regs, error_code, address); 1016 1017 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); 1018 1019 /* 1020 * If we're in an interrupt, have no user context or are running 1021 * in an atomic region then we must not take the fault: 1022 */ 1023 if (unlikely(in_atomic() || !mm)) { 1024 bad_area_nosemaphore(regs, error_code, address); 1025 return; 1026 } 1027 1028 /* 1029 * When running in the kernel we expect faults to occur only to 1030 * addresses in user space. All other faults represent errors in 1031 * the kernel and should generate an OOPS. Unfortunately, in the 1032 * case of an erroneous fault occurring in a code path which already 1033 * holds mmap_sem we will deadlock attempting to validate the fault 1034 * against the address space. Luckily the kernel only validly 1035 * references user space from well defined areas of code, which are 1036 * listed in the exceptions table. 1037 * 1038 * As the vast majority of faults will be valid we will only perform 1039 * the source reference check when there is a possibility of a 1040 * deadlock. Attempt to lock the address space, if we cannot we then 1041 * validate the source. If this is invalid we can skip the address 1042 * space check, thus avoiding the deadlock: 1043 */ 1044 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1045 if ((error_code & PF_USER) == 0 && 1046 !search_exception_tables(regs->ip)) { 1047 bad_area_nosemaphore(regs, error_code, address); 1048 return; 1049 } 1050 down_read(&mm->mmap_sem); 1051 } else { 1052 /* 1053 * The above down_read_trylock() might have succeeded in 1054 * which case we'll have missed the might_sleep() from 1055 * down_read(): 1056 */ 1057 might_sleep(); 1058 } 1059 1060 vma = find_vma(mm, address); 1061 if (unlikely(!vma)) { 1062 bad_area(regs, error_code, address); 1063 return; 1064 } 1065 if (likely(vma->vm_start <= address)) 1066 goto good_area; 1067 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1068 bad_area(regs, error_code, address); 1069 return; 1070 } 1071 if (error_code & PF_USER) { 1072 /* 1073 * Accessing the stack below %sp is always a bug. 1074 * The large cushion allows instructions like enter 1075 * and pusha to work. ("enter $65535, $31" pushes 1076 * 32 pointers and then decrements %sp by 65535.) 1077 */ 1078 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1079 bad_area(regs, error_code, address); 1080 return; 1081 } 1082 } 1083 if (unlikely(expand_stack(vma, address))) { 1084 bad_area(regs, error_code, address); 1085 return; 1086 } 1087 1088 /* 1089 * Ok, we have a good vm_area for this memory access, so 1090 * we can handle it.. 1091 */ 1092 good_area: 1093 write = error_code & PF_WRITE; 1094 1095 if (unlikely(access_error(error_code, write, vma))) { 1096 bad_area_access_error(regs, error_code, address); 1097 return; 1098 } 1099 1100 /* 1101 * If for any reason at all we couldn't handle the fault, 1102 * make sure we exit gracefully rather than endlessly redo 1103 * the fault: 1104 */ 1105 fault = handle_mm_fault(mm, vma, address, write); 1106 1107 if (unlikely(fault & VM_FAULT_ERROR)) { 1108 mm_fault_error(regs, error_code, address, fault); 1109 return; 1110 } 1111 1112 if (fault & VM_FAULT_MAJOR) { 1113 tsk->maj_flt++; 1114 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, 1115 regs, address); 1116 } else { 1117 tsk->min_flt++; 1118 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, 1119 regs, address); 1120 } 1121 1122 check_v8086_mode(regs, address, tsk); 1123 1124 up_read(&mm->mmap_sem); 1125 } 1126