1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/bootmem.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 21 #include <asm/traps.h> /* dotraplinkage, ... */ 22 #include <asm/pgalloc.h> /* pgd_*(), ... */ 23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 24 #include <asm/vsyscall.h> /* emulate_vsyscall */ 25 #include <asm/vm86.h> /* struct vm86 */ 26 #include <asm/mmu_context.h> /* vma_pkey() */ 27 28 #define CREATE_TRACE_POINTS 29 #include <asm/trace/exceptions.h> 30 31 /* 32 * Returns 0 if mmiotrace is disabled, or if the fault is not 33 * handled by mmiotrace: 34 */ 35 static nokprobe_inline int 36 kmmio_fault(struct pt_regs *regs, unsigned long addr) 37 { 38 if (unlikely(is_kmmio_active())) 39 if (kmmio_handler(regs, addr) == 1) 40 return -1; 41 return 0; 42 } 43 44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 45 { 46 int ret = 0; 47 48 /* kprobe_running() needs smp_processor_id() */ 49 if (kprobes_built_in() && !user_mode(regs)) { 50 preempt_disable(); 51 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 52 ret = 1; 53 preempt_enable(); 54 } 55 56 return ret; 57 } 58 59 /* 60 * Prefetch quirks: 61 * 62 * 32-bit mode: 63 * 64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 65 * Check that here and ignore it. 66 * 67 * 64-bit mode: 68 * 69 * Sometimes the CPU reports invalid exceptions on prefetch. 70 * Check that here and ignore it. 71 * 72 * Opcode checker based on code by Richard Brunner. 73 */ 74 static inline int 75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 76 unsigned char opcode, int *prefetch) 77 { 78 unsigned char instr_hi = opcode & 0xf0; 79 unsigned char instr_lo = opcode & 0x0f; 80 81 switch (instr_hi) { 82 case 0x20: 83 case 0x30: 84 /* 85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 86 * In X86_64 long mode, the CPU will signal invalid 87 * opcode if some of these prefixes are present so 88 * X86_64 will never get here anyway 89 */ 90 return ((instr_lo & 7) == 0x6); 91 #ifdef CONFIG_X86_64 92 case 0x40: 93 /* 94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 95 * Need to figure out under what instruction mode the 96 * instruction was issued. Could check the LDT for lm, 97 * but for now it's good enough to assume that long 98 * mode only uses well known segments or kernel. 99 */ 100 return (!user_mode(regs) || user_64bit_mode(regs)); 101 #endif 102 case 0x60: 103 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 104 return (instr_lo & 0xC) == 0x4; 105 case 0xF0: 106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 107 return !instr_lo || (instr_lo>>1) == 1; 108 case 0x00: 109 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 110 if (probe_kernel_address(instr, opcode)) 111 return 0; 112 113 *prefetch = (instr_lo == 0xF) && 114 (opcode == 0x0D || opcode == 0x18); 115 return 0; 116 default: 117 return 0; 118 } 119 } 120 121 static int 122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 123 { 124 unsigned char *max_instr; 125 unsigned char *instr; 126 int prefetch = 0; 127 128 /* 129 * If it was a exec (instruction fetch) fault on NX page, then 130 * do not ignore the fault: 131 */ 132 if (error_code & X86_PF_INSTR) 133 return 0; 134 135 instr = (void *)convert_ip_to_linear(current, regs); 136 max_instr = instr + 15; 137 138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 139 return 0; 140 141 while (instr < max_instr) { 142 unsigned char opcode; 143 144 if (probe_kernel_address(instr, opcode)) 145 break; 146 147 instr++; 148 149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 150 break; 151 } 152 return prefetch; 153 } 154 155 /* 156 * A protection key fault means that the PKRU value did not allow 157 * access to some PTE. Userspace can figure out what PKRU was 158 * from the XSAVE state, and this function fills out a field in 159 * siginfo so userspace can discover which protection key was set 160 * on the PTE. 161 * 162 * If we get here, we know that the hardware signaled a X86_PF_PK 163 * fault and that there was a VMA once we got in the fault 164 * handler. It does *not* guarantee that the VMA we find here 165 * was the one that we faulted on. 166 * 167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 168 * 2. T1 : set PKRU to deny access to pkey=4, touches page 169 * 3. T1 : faults... 170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 171 * 5. T1 : enters fault handler, takes mmap_sem, etc... 172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 173 * faulted on a pte with its pkey=4. 174 */ 175 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey) 176 { 177 /* This is effectively an #ifdef */ 178 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 179 return; 180 181 /* Fault not from Protection Keys: nothing to do */ 182 if (si_code != SEGV_PKUERR) 183 return; 184 /* 185 * force_sig_info_fault() is called from a number of 186 * contexts, some of which have a VMA and some of which 187 * do not. The X86_PF_PK handing happens after we have a 188 * valid VMA, so we should never reach this without a 189 * valid VMA. 190 */ 191 if (!pkey) { 192 WARN_ONCE(1, "PKU fault with no VMA passed in"); 193 info->si_pkey = 0; 194 return; 195 } 196 /* 197 * si_pkey should be thought of as a strong hint, but not 198 * absolutely guranteed to be 100% accurate because of 199 * the race explained above. 200 */ 201 info->si_pkey = *pkey; 202 } 203 204 static void 205 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 206 struct task_struct *tsk, u32 *pkey, int fault) 207 { 208 unsigned lsb = 0; 209 siginfo_t info; 210 211 info.si_signo = si_signo; 212 info.si_errno = 0; 213 info.si_code = si_code; 214 info.si_addr = (void __user *)address; 215 if (fault & VM_FAULT_HWPOISON_LARGE) 216 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 217 if (fault & VM_FAULT_HWPOISON) 218 lsb = PAGE_SHIFT; 219 info.si_addr_lsb = lsb; 220 221 fill_sig_info_pkey(si_code, &info, pkey); 222 223 force_sig_info(si_signo, &info, tsk); 224 } 225 226 DEFINE_SPINLOCK(pgd_lock); 227 LIST_HEAD(pgd_list); 228 229 #ifdef CONFIG_X86_32 230 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 231 { 232 unsigned index = pgd_index(address); 233 pgd_t *pgd_k; 234 p4d_t *p4d, *p4d_k; 235 pud_t *pud, *pud_k; 236 pmd_t *pmd, *pmd_k; 237 238 pgd += index; 239 pgd_k = init_mm.pgd + index; 240 241 if (!pgd_present(*pgd_k)) 242 return NULL; 243 244 /* 245 * set_pgd(pgd, *pgd_k); here would be useless on PAE 246 * and redundant with the set_pmd() on non-PAE. As would 247 * set_p4d/set_pud. 248 */ 249 p4d = p4d_offset(pgd, address); 250 p4d_k = p4d_offset(pgd_k, address); 251 if (!p4d_present(*p4d_k)) 252 return NULL; 253 254 pud = pud_offset(p4d, address); 255 pud_k = pud_offset(p4d_k, address); 256 if (!pud_present(*pud_k)) 257 return NULL; 258 259 pmd = pmd_offset(pud, address); 260 pmd_k = pmd_offset(pud_k, address); 261 if (!pmd_present(*pmd_k)) 262 return NULL; 263 264 if (!pmd_present(*pmd)) 265 set_pmd(pmd, *pmd_k); 266 else 267 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 268 269 return pmd_k; 270 } 271 272 void vmalloc_sync_all(void) 273 { 274 unsigned long address; 275 276 if (SHARED_KERNEL_PMD) 277 return; 278 279 for (address = VMALLOC_START & PMD_MASK; 280 address >= TASK_SIZE_MAX && address < FIXADDR_TOP; 281 address += PMD_SIZE) { 282 struct page *page; 283 284 spin_lock(&pgd_lock); 285 list_for_each_entry(page, &pgd_list, lru) { 286 spinlock_t *pgt_lock; 287 pmd_t *ret; 288 289 /* the pgt_lock only for Xen */ 290 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 291 292 spin_lock(pgt_lock); 293 ret = vmalloc_sync_one(page_address(page), address); 294 spin_unlock(pgt_lock); 295 296 if (!ret) 297 break; 298 } 299 spin_unlock(&pgd_lock); 300 } 301 } 302 303 /* 304 * 32-bit: 305 * 306 * Handle a fault on the vmalloc or module mapping area 307 */ 308 static noinline int vmalloc_fault(unsigned long address) 309 { 310 unsigned long pgd_paddr; 311 pmd_t *pmd_k; 312 pte_t *pte_k; 313 314 /* Make sure we are in vmalloc area: */ 315 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 316 return -1; 317 318 WARN_ON_ONCE(in_nmi()); 319 320 /* 321 * Synchronize this task's top level page-table 322 * with the 'reference' page table. 323 * 324 * Do _not_ use "current" here. We might be inside 325 * an interrupt in the middle of a task switch.. 326 */ 327 pgd_paddr = read_cr3_pa(); 328 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 329 if (!pmd_k) 330 return -1; 331 332 if (pmd_huge(*pmd_k)) 333 return 0; 334 335 pte_k = pte_offset_kernel(pmd_k, address); 336 if (!pte_present(*pte_k)) 337 return -1; 338 339 return 0; 340 } 341 NOKPROBE_SYMBOL(vmalloc_fault); 342 343 /* 344 * Did it hit the DOS screen memory VA from vm86 mode? 345 */ 346 static inline void 347 check_v8086_mode(struct pt_regs *regs, unsigned long address, 348 struct task_struct *tsk) 349 { 350 #ifdef CONFIG_VM86 351 unsigned long bit; 352 353 if (!v8086_mode(regs) || !tsk->thread.vm86) 354 return; 355 356 bit = (address - 0xA0000) >> PAGE_SHIFT; 357 if (bit < 32) 358 tsk->thread.vm86->screen_bitmap |= 1 << bit; 359 #endif 360 } 361 362 static bool low_pfn(unsigned long pfn) 363 { 364 return pfn < max_low_pfn; 365 } 366 367 static void dump_pagetable(unsigned long address) 368 { 369 pgd_t *base = __va(read_cr3_pa()); 370 pgd_t *pgd = &base[pgd_index(address)]; 371 p4d_t *p4d; 372 pud_t *pud; 373 pmd_t *pmd; 374 pte_t *pte; 375 376 #ifdef CONFIG_X86_PAE 377 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 378 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 379 goto out; 380 #define pr_pde pr_cont 381 #else 382 #define pr_pde pr_info 383 #endif 384 p4d = p4d_offset(pgd, address); 385 pud = pud_offset(p4d, address); 386 pmd = pmd_offset(pud, address); 387 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 388 #undef pr_pde 389 390 /* 391 * We must not directly access the pte in the highpte 392 * case if the page table is located in highmem. 393 * And let's rather not kmap-atomic the pte, just in case 394 * it's allocated already: 395 */ 396 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 397 goto out; 398 399 pte = pte_offset_kernel(pmd, address); 400 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 401 out: 402 pr_cont("\n"); 403 } 404 405 #else /* CONFIG_X86_64: */ 406 407 void vmalloc_sync_all(void) 408 { 409 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 410 } 411 412 /* 413 * 64-bit: 414 * 415 * Handle a fault on the vmalloc area 416 */ 417 static noinline int vmalloc_fault(unsigned long address) 418 { 419 pgd_t *pgd, *pgd_ref; 420 p4d_t *p4d, *p4d_ref; 421 pud_t *pud, *pud_ref; 422 pmd_t *pmd, *pmd_ref; 423 pte_t *pte, *pte_ref; 424 425 /* Make sure we are in vmalloc area: */ 426 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 427 return -1; 428 429 WARN_ON_ONCE(in_nmi()); 430 431 /* 432 * Copy kernel mappings over when needed. This can also 433 * happen within a race in page table update. In the later 434 * case just flush: 435 */ 436 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); 437 pgd_ref = pgd_offset_k(address); 438 if (pgd_none(*pgd_ref)) 439 return -1; 440 441 if (pgd_none(*pgd)) { 442 set_pgd(pgd, *pgd_ref); 443 arch_flush_lazy_mmu_mode(); 444 } else if (CONFIG_PGTABLE_LEVELS > 4) { 445 /* 446 * With folded p4d, pgd_none() is always false, so the pgd may 447 * point to an empty page table entry and pgd_page_vaddr() 448 * will return garbage. 449 * 450 * We will do the correct sanity check on the p4d level. 451 */ 452 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 453 } 454 455 /* With 4-level paging, copying happens on the p4d level. */ 456 p4d = p4d_offset(pgd, address); 457 p4d_ref = p4d_offset(pgd_ref, address); 458 if (p4d_none(*p4d_ref)) 459 return -1; 460 461 if (p4d_none(*p4d)) { 462 set_p4d(p4d, *p4d_ref); 463 arch_flush_lazy_mmu_mode(); 464 } else { 465 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref)); 466 } 467 468 /* 469 * Below here mismatches are bugs because these lower tables 470 * are shared: 471 */ 472 473 pud = pud_offset(p4d, address); 474 pud_ref = pud_offset(p4d_ref, address); 475 if (pud_none(*pud_ref)) 476 return -1; 477 478 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref)) 479 BUG(); 480 481 if (pud_huge(*pud)) 482 return 0; 483 484 pmd = pmd_offset(pud, address); 485 pmd_ref = pmd_offset(pud_ref, address); 486 if (pmd_none(*pmd_ref)) 487 return -1; 488 489 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref)) 490 BUG(); 491 492 if (pmd_huge(*pmd)) 493 return 0; 494 495 pte_ref = pte_offset_kernel(pmd_ref, address); 496 if (!pte_present(*pte_ref)) 497 return -1; 498 499 pte = pte_offset_kernel(pmd, address); 500 501 /* 502 * Don't use pte_page here, because the mappings can point 503 * outside mem_map, and the NUMA hash lookup cannot handle 504 * that: 505 */ 506 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 507 BUG(); 508 509 return 0; 510 } 511 NOKPROBE_SYMBOL(vmalloc_fault); 512 513 #ifdef CONFIG_CPU_SUP_AMD 514 static const char errata93_warning[] = 515 KERN_ERR 516 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 517 "******* Working around it, but it may cause SEGVs or burn power.\n" 518 "******* Please consider a BIOS update.\n" 519 "******* Disabling USB legacy in the BIOS may also help.\n"; 520 #endif 521 522 /* 523 * No vm86 mode in 64-bit mode: 524 */ 525 static inline void 526 check_v8086_mode(struct pt_regs *regs, unsigned long address, 527 struct task_struct *tsk) 528 { 529 } 530 531 static int bad_address(void *p) 532 { 533 unsigned long dummy; 534 535 return probe_kernel_address((unsigned long *)p, dummy); 536 } 537 538 static void dump_pagetable(unsigned long address) 539 { 540 pgd_t *base = __va(read_cr3_pa()); 541 pgd_t *pgd = base + pgd_index(address); 542 p4d_t *p4d; 543 pud_t *pud; 544 pmd_t *pmd; 545 pte_t *pte; 546 547 if (bad_address(pgd)) 548 goto bad; 549 550 pr_info("PGD %lx ", pgd_val(*pgd)); 551 552 if (!pgd_present(*pgd)) 553 goto out; 554 555 p4d = p4d_offset(pgd, address); 556 if (bad_address(p4d)) 557 goto bad; 558 559 pr_cont("P4D %lx ", p4d_val(*p4d)); 560 if (!p4d_present(*p4d) || p4d_large(*p4d)) 561 goto out; 562 563 pud = pud_offset(p4d, address); 564 if (bad_address(pud)) 565 goto bad; 566 567 pr_cont("PUD %lx ", pud_val(*pud)); 568 if (!pud_present(*pud) || pud_large(*pud)) 569 goto out; 570 571 pmd = pmd_offset(pud, address); 572 if (bad_address(pmd)) 573 goto bad; 574 575 pr_cont("PMD %lx ", pmd_val(*pmd)); 576 if (!pmd_present(*pmd) || pmd_large(*pmd)) 577 goto out; 578 579 pte = pte_offset_kernel(pmd, address); 580 if (bad_address(pte)) 581 goto bad; 582 583 pr_cont("PTE %lx", pte_val(*pte)); 584 out: 585 pr_cont("\n"); 586 return; 587 bad: 588 pr_info("BAD\n"); 589 } 590 591 #endif /* CONFIG_X86_64 */ 592 593 /* 594 * Workaround for K8 erratum #93 & buggy BIOS. 595 * 596 * BIOS SMM functions are required to use a specific workaround 597 * to avoid corruption of the 64bit RIP register on C stepping K8. 598 * 599 * A lot of BIOS that didn't get tested properly miss this. 600 * 601 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 602 * Try to work around it here. 603 * 604 * Note we only handle faults in kernel here. 605 * Does nothing on 32-bit. 606 */ 607 static int is_errata93(struct pt_regs *regs, unsigned long address) 608 { 609 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 610 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 611 || boot_cpu_data.x86 != 0xf) 612 return 0; 613 614 if (address != regs->ip) 615 return 0; 616 617 if ((address >> 32) != 0) 618 return 0; 619 620 address |= 0xffffffffUL << 32; 621 if ((address >= (u64)_stext && address <= (u64)_etext) || 622 (address >= MODULES_VADDR && address <= MODULES_END)) { 623 printk_once(errata93_warning); 624 regs->ip = address; 625 return 1; 626 } 627 #endif 628 return 0; 629 } 630 631 /* 632 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 633 * to illegal addresses >4GB. 634 * 635 * We catch this in the page fault handler because these addresses 636 * are not reachable. Just detect this case and return. Any code 637 * segment in LDT is compatibility mode. 638 */ 639 static int is_errata100(struct pt_regs *regs, unsigned long address) 640 { 641 #ifdef CONFIG_X86_64 642 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 643 return 1; 644 #endif 645 return 0; 646 } 647 648 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 649 { 650 #ifdef CONFIG_X86_F00F_BUG 651 unsigned long nr; 652 653 /* 654 * Pentium F0 0F C7 C8 bug workaround: 655 */ 656 if (boot_cpu_has_bug(X86_BUG_F00F)) { 657 nr = (address - idt_descr.address) >> 3; 658 659 if (nr == 6) { 660 do_invalid_op(regs, 0); 661 return 1; 662 } 663 } 664 #endif 665 return 0; 666 } 667 668 static const char nx_warning[] = KERN_CRIT 669 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 670 static const char smep_warning[] = KERN_CRIT 671 "unable to execute userspace code (SMEP?) (uid: %d)\n"; 672 673 static void 674 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 675 unsigned long address) 676 { 677 if (!oops_may_print()) 678 return; 679 680 if (error_code & X86_PF_INSTR) { 681 unsigned int level; 682 pgd_t *pgd; 683 pte_t *pte; 684 685 pgd = __va(read_cr3_pa()); 686 pgd += pgd_index(address); 687 688 pte = lookup_address_in_pgd(pgd, address, &level); 689 690 if (pte && pte_present(*pte) && !pte_exec(*pte)) 691 printk(nx_warning, from_kuid(&init_user_ns, current_uid())); 692 if (pte && pte_present(*pte) && pte_exec(*pte) && 693 (pgd_flags(*pgd) & _PAGE_USER) && 694 (__read_cr4() & X86_CR4_SMEP)) 695 printk(smep_warning, from_kuid(&init_user_ns, current_uid())); 696 } 697 698 printk(KERN_ALERT "BUG: unable to handle kernel "); 699 if (address < PAGE_SIZE) 700 printk(KERN_CONT "NULL pointer dereference"); 701 else 702 printk(KERN_CONT "paging request"); 703 704 printk(KERN_CONT " at %px\n", (void *) address); 705 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip); 706 707 dump_pagetable(address); 708 } 709 710 static noinline void 711 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 712 unsigned long address) 713 { 714 struct task_struct *tsk; 715 unsigned long flags; 716 int sig; 717 718 flags = oops_begin(); 719 tsk = current; 720 sig = SIGKILL; 721 722 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 723 tsk->comm, address); 724 dump_pagetable(address); 725 726 tsk->thread.cr2 = address; 727 tsk->thread.trap_nr = X86_TRAP_PF; 728 tsk->thread.error_code = error_code; 729 730 if (__die("Bad pagetable", regs, error_code)) 731 sig = 0; 732 733 oops_end(flags, regs, sig); 734 } 735 736 static noinline void 737 no_context(struct pt_regs *regs, unsigned long error_code, 738 unsigned long address, int signal, int si_code) 739 { 740 struct task_struct *tsk = current; 741 unsigned long flags; 742 int sig; 743 744 /* Are we prepared to handle this kernel fault? */ 745 if (fixup_exception(regs, X86_TRAP_PF)) { 746 /* 747 * Any interrupt that takes a fault gets the fixup. This makes 748 * the below recursive fault logic only apply to a faults from 749 * task context. 750 */ 751 if (in_interrupt()) 752 return; 753 754 /* 755 * Per the above we're !in_interrupt(), aka. task context. 756 * 757 * In this case we need to make sure we're not recursively 758 * faulting through the emulate_vsyscall() logic. 759 */ 760 if (current->thread.sig_on_uaccess_err && signal) { 761 tsk->thread.trap_nr = X86_TRAP_PF; 762 tsk->thread.error_code = error_code | X86_PF_USER; 763 tsk->thread.cr2 = address; 764 765 /* XXX: hwpoison faults will set the wrong code. */ 766 force_sig_info_fault(signal, si_code, address, 767 tsk, NULL, 0); 768 } 769 770 /* 771 * Barring that, we can do the fixup and be happy. 772 */ 773 return; 774 } 775 776 #ifdef CONFIG_VMAP_STACK 777 /* 778 * Stack overflow? During boot, we can fault near the initial 779 * stack in the direct map, but that's not an overflow -- check 780 * that we're in vmalloc space to avoid this. 781 */ 782 if (is_vmalloc_addr((void *)address) && 783 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 784 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 785 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); 786 /* 787 * We're likely to be running with very little stack space 788 * left. It's plausible that we'd hit this condition but 789 * double-fault even before we get this far, in which case 790 * we're fine: the double-fault handler will deal with it. 791 * 792 * We don't want to make it all the way into the oops code 793 * and then double-fault, though, because we're likely to 794 * break the console driver and lose most of the stack dump. 795 */ 796 asm volatile ("movq %[stack], %%rsp\n\t" 797 "call handle_stack_overflow\n\t" 798 "1: jmp 1b" 799 : ASM_CALL_CONSTRAINT 800 : "D" ("kernel stack overflow (page fault)"), 801 "S" (regs), "d" (address), 802 [stack] "rm" (stack)); 803 unreachable(); 804 } 805 #endif 806 807 /* 808 * 32-bit: 809 * 810 * Valid to do another page fault here, because if this fault 811 * had been triggered by is_prefetch fixup_exception would have 812 * handled it. 813 * 814 * 64-bit: 815 * 816 * Hall of shame of CPU/BIOS bugs. 817 */ 818 if (is_prefetch(regs, error_code, address)) 819 return; 820 821 if (is_errata93(regs, address)) 822 return; 823 824 /* 825 * Oops. The kernel tried to access some bad page. We'll have to 826 * terminate things with extreme prejudice: 827 */ 828 flags = oops_begin(); 829 830 show_fault_oops(regs, error_code, address); 831 832 if (task_stack_end_corrupted(tsk)) 833 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 834 835 tsk->thread.cr2 = address; 836 tsk->thread.trap_nr = X86_TRAP_PF; 837 tsk->thread.error_code = error_code; 838 839 sig = SIGKILL; 840 if (__die("Oops", regs, error_code)) 841 sig = 0; 842 843 /* Executive summary in case the body of the oops scrolled away */ 844 printk(KERN_DEFAULT "CR2: %016lx\n", address); 845 846 oops_end(flags, regs, sig); 847 } 848 849 /* 850 * Print out info about fatal segfaults, if the show_unhandled_signals 851 * sysctl is set: 852 */ 853 static inline void 854 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 855 unsigned long address, struct task_struct *tsk) 856 { 857 if (!unhandled_signal(tsk, SIGSEGV)) 858 return; 859 860 if (!printk_ratelimit()) 861 return; 862 863 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 864 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 865 tsk->comm, task_pid_nr(tsk), address, 866 (void *)regs->ip, (void *)regs->sp, error_code); 867 868 print_vma_addr(KERN_CONT " in ", regs->ip); 869 870 printk(KERN_CONT "\n"); 871 } 872 873 static void 874 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 875 unsigned long address, u32 *pkey, int si_code) 876 { 877 struct task_struct *tsk = current; 878 879 /* User mode accesses just cause a SIGSEGV */ 880 if (error_code & X86_PF_USER) { 881 /* 882 * It's possible to have interrupts off here: 883 */ 884 local_irq_enable(); 885 886 /* 887 * Valid to do another page fault here because this one came 888 * from user space: 889 */ 890 if (is_prefetch(regs, error_code, address)) 891 return; 892 893 if (is_errata100(regs, address)) 894 return; 895 896 #ifdef CONFIG_X86_64 897 /* 898 * Instruction fetch faults in the vsyscall page might need 899 * emulation. 900 */ 901 if (unlikely((error_code & X86_PF_INSTR) && 902 ((address & ~0xfff) == VSYSCALL_ADDR))) { 903 if (emulate_vsyscall(regs, address)) 904 return; 905 } 906 #endif 907 908 /* 909 * To avoid leaking information about the kernel page table 910 * layout, pretend that user-mode accesses to kernel addresses 911 * are always protection faults. 912 */ 913 if (address >= TASK_SIZE_MAX) 914 error_code |= X86_PF_PROT; 915 916 if (likely(show_unhandled_signals)) 917 show_signal_msg(regs, error_code, address, tsk); 918 919 tsk->thread.cr2 = address; 920 tsk->thread.error_code = error_code; 921 tsk->thread.trap_nr = X86_TRAP_PF; 922 923 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0); 924 925 return; 926 } 927 928 if (is_f00f_bug(regs, address)) 929 return; 930 931 no_context(regs, error_code, address, SIGSEGV, si_code); 932 } 933 934 static noinline void 935 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 936 unsigned long address, u32 *pkey) 937 { 938 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR); 939 } 940 941 static void 942 __bad_area(struct pt_regs *regs, unsigned long error_code, 943 unsigned long address, struct vm_area_struct *vma, int si_code) 944 { 945 struct mm_struct *mm = current->mm; 946 u32 pkey; 947 948 if (vma) 949 pkey = vma_pkey(vma); 950 951 /* 952 * Something tried to access memory that isn't in our memory map.. 953 * Fix it, but check if it's kernel or user first.. 954 */ 955 up_read(&mm->mmap_sem); 956 957 __bad_area_nosemaphore(regs, error_code, address, 958 (vma) ? &pkey : NULL, si_code); 959 } 960 961 static noinline void 962 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 963 { 964 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR); 965 } 966 967 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 968 struct vm_area_struct *vma) 969 { 970 /* This code is always called on the current mm */ 971 bool foreign = false; 972 973 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 974 return false; 975 if (error_code & X86_PF_PK) 976 return true; 977 /* this checks permission keys on the VMA: */ 978 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 979 (error_code & X86_PF_INSTR), foreign)) 980 return true; 981 return false; 982 } 983 984 static noinline void 985 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 986 unsigned long address, struct vm_area_struct *vma) 987 { 988 /* 989 * This OSPKE check is not strictly necessary at runtime. 990 * But, doing it this way allows compiler optimizations 991 * if pkeys are compiled out. 992 */ 993 if (bad_area_access_from_pkeys(error_code, vma)) 994 __bad_area(regs, error_code, address, vma, SEGV_PKUERR); 995 else 996 __bad_area(regs, error_code, address, vma, SEGV_ACCERR); 997 } 998 999 static void 1000 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 1001 u32 *pkey, unsigned int fault) 1002 { 1003 struct task_struct *tsk = current; 1004 int code = BUS_ADRERR; 1005 1006 /* Kernel mode? Handle exceptions or die: */ 1007 if (!(error_code & X86_PF_USER)) { 1008 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1009 return; 1010 } 1011 1012 /* User-space => ok to do another page fault: */ 1013 if (is_prefetch(regs, error_code, address)) 1014 return; 1015 1016 tsk->thread.cr2 = address; 1017 tsk->thread.error_code = error_code; 1018 tsk->thread.trap_nr = X86_TRAP_PF; 1019 1020 #ifdef CONFIG_MEMORY_FAILURE 1021 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 1022 printk(KERN_ERR 1023 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 1024 tsk->comm, tsk->pid, address); 1025 code = BUS_MCEERR_AR; 1026 } 1027 #endif 1028 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault); 1029 } 1030 1031 static noinline void 1032 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 1033 unsigned long address, u32 *pkey, unsigned int fault) 1034 { 1035 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { 1036 no_context(regs, error_code, address, 0, 0); 1037 return; 1038 } 1039 1040 if (fault & VM_FAULT_OOM) { 1041 /* Kernel mode? Handle exceptions or die: */ 1042 if (!(error_code & X86_PF_USER)) { 1043 no_context(regs, error_code, address, 1044 SIGSEGV, SEGV_MAPERR); 1045 return; 1046 } 1047 1048 /* 1049 * We ran out of memory, call the OOM killer, and return the 1050 * userspace (which will retry the fault, or kill us if we got 1051 * oom-killed): 1052 */ 1053 pagefault_out_of_memory(); 1054 } else { 1055 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1056 VM_FAULT_HWPOISON_LARGE)) 1057 do_sigbus(regs, error_code, address, pkey, fault); 1058 else if (fault & VM_FAULT_SIGSEGV) 1059 bad_area_nosemaphore(regs, error_code, address, pkey); 1060 else 1061 BUG(); 1062 } 1063 } 1064 1065 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 1066 { 1067 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 1068 return 0; 1069 1070 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 1071 return 0; 1072 /* 1073 * Note: We do not do lazy flushing on protection key 1074 * changes, so no spurious fault will ever set X86_PF_PK. 1075 */ 1076 if ((error_code & X86_PF_PK)) 1077 return 1; 1078 1079 return 1; 1080 } 1081 1082 /* 1083 * Handle a spurious fault caused by a stale TLB entry. 1084 * 1085 * This allows us to lazily refresh the TLB when increasing the 1086 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1087 * eagerly is very expensive since that implies doing a full 1088 * cross-processor TLB flush, even if no stale TLB entries exist 1089 * on other processors. 1090 * 1091 * Spurious faults may only occur if the TLB contains an entry with 1092 * fewer permission than the page table entry. Non-present (P = 0) 1093 * and reserved bit (R = 1) faults are never spurious. 1094 * 1095 * There are no security implications to leaving a stale TLB when 1096 * increasing the permissions on a page. 1097 * 1098 * Returns non-zero if a spurious fault was handled, zero otherwise. 1099 * 1100 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1101 * (Optional Invalidation). 1102 */ 1103 static noinline int 1104 spurious_fault(unsigned long error_code, unsigned long address) 1105 { 1106 pgd_t *pgd; 1107 p4d_t *p4d; 1108 pud_t *pud; 1109 pmd_t *pmd; 1110 pte_t *pte; 1111 int ret; 1112 1113 /* 1114 * Only writes to RO or instruction fetches from NX may cause 1115 * spurious faults. 1116 * 1117 * These could be from user or supervisor accesses but the TLB 1118 * is only lazily flushed after a kernel mapping protection 1119 * change, so user accesses are not expected to cause spurious 1120 * faults. 1121 */ 1122 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1123 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1124 return 0; 1125 1126 pgd = init_mm.pgd + pgd_index(address); 1127 if (!pgd_present(*pgd)) 1128 return 0; 1129 1130 p4d = p4d_offset(pgd, address); 1131 if (!p4d_present(*p4d)) 1132 return 0; 1133 1134 if (p4d_large(*p4d)) 1135 return spurious_fault_check(error_code, (pte_t *) p4d); 1136 1137 pud = pud_offset(p4d, address); 1138 if (!pud_present(*pud)) 1139 return 0; 1140 1141 if (pud_large(*pud)) 1142 return spurious_fault_check(error_code, (pte_t *) pud); 1143 1144 pmd = pmd_offset(pud, address); 1145 if (!pmd_present(*pmd)) 1146 return 0; 1147 1148 if (pmd_large(*pmd)) 1149 return spurious_fault_check(error_code, (pte_t *) pmd); 1150 1151 pte = pte_offset_kernel(pmd, address); 1152 if (!pte_present(*pte)) 1153 return 0; 1154 1155 ret = spurious_fault_check(error_code, pte); 1156 if (!ret) 1157 return 0; 1158 1159 /* 1160 * Make sure we have permissions in PMD. 1161 * If not, then there's a bug in the page tables: 1162 */ 1163 ret = spurious_fault_check(error_code, (pte_t *) pmd); 1164 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1165 1166 return ret; 1167 } 1168 NOKPROBE_SYMBOL(spurious_fault); 1169 1170 int show_unhandled_signals = 1; 1171 1172 static inline int 1173 access_error(unsigned long error_code, struct vm_area_struct *vma) 1174 { 1175 /* This is only called for the current mm, so: */ 1176 bool foreign = false; 1177 1178 /* 1179 * Read or write was blocked by protection keys. This is 1180 * always an unconditional error and can never result in 1181 * a follow-up action to resolve the fault, like a COW. 1182 */ 1183 if (error_code & X86_PF_PK) 1184 return 1; 1185 1186 /* 1187 * Make sure to check the VMA so that we do not perform 1188 * faults just to hit a X86_PF_PK as soon as we fill in a 1189 * page. 1190 */ 1191 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1192 (error_code & X86_PF_INSTR), foreign)) 1193 return 1; 1194 1195 if (error_code & X86_PF_WRITE) { 1196 /* write, present and write, not present: */ 1197 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1198 return 1; 1199 return 0; 1200 } 1201 1202 /* read, present: */ 1203 if (unlikely(error_code & X86_PF_PROT)) 1204 return 1; 1205 1206 /* read, not present: */ 1207 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1208 return 1; 1209 1210 return 0; 1211 } 1212 1213 static int fault_in_kernel_space(unsigned long address) 1214 { 1215 return address >= TASK_SIZE_MAX; 1216 } 1217 1218 static inline bool smap_violation(int error_code, struct pt_regs *regs) 1219 { 1220 if (!IS_ENABLED(CONFIG_X86_SMAP)) 1221 return false; 1222 1223 if (!static_cpu_has(X86_FEATURE_SMAP)) 1224 return false; 1225 1226 if (error_code & X86_PF_USER) 1227 return false; 1228 1229 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 /* 1236 * This routine handles page faults. It determines the address, 1237 * and the problem, and then passes it off to one of the appropriate 1238 * routines. 1239 */ 1240 static noinline void 1241 __do_page_fault(struct pt_regs *regs, unsigned long error_code, 1242 unsigned long address) 1243 { 1244 struct vm_area_struct *vma; 1245 struct task_struct *tsk; 1246 struct mm_struct *mm; 1247 int fault, major = 0; 1248 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1249 u32 pkey; 1250 1251 tsk = current; 1252 mm = tsk->mm; 1253 1254 /* 1255 * Detect and handle instructions that would cause a page fault for 1256 * both a tracked kernel page and a userspace page. 1257 */ 1258 prefetchw(&mm->mmap_sem); 1259 1260 if (unlikely(kmmio_fault(regs, address))) 1261 return; 1262 1263 /* 1264 * We fault-in kernel-space virtual memory on-demand. The 1265 * 'reference' page table is init_mm.pgd. 1266 * 1267 * NOTE! We MUST NOT take any locks for this case. We may 1268 * be in an interrupt or a critical region, and should 1269 * only copy the information from the master page table, 1270 * nothing more. 1271 * 1272 * This verifies that the fault happens in kernel space 1273 * (error_code & 4) == 0, and that the fault was not a 1274 * protection error (error_code & 9) == 0. 1275 */ 1276 if (unlikely(fault_in_kernel_space(address))) { 1277 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1278 if (vmalloc_fault(address) >= 0) 1279 return; 1280 } 1281 1282 /* Can handle a stale RO->RW TLB: */ 1283 if (spurious_fault(error_code, address)) 1284 return; 1285 1286 /* kprobes don't want to hook the spurious faults: */ 1287 if (kprobes_fault(regs)) 1288 return; 1289 /* 1290 * Don't take the mm semaphore here. If we fixup a prefetch 1291 * fault we could otherwise deadlock: 1292 */ 1293 bad_area_nosemaphore(regs, error_code, address, NULL); 1294 1295 return; 1296 } 1297 1298 /* kprobes don't want to hook the spurious faults: */ 1299 if (unlikely(kprobes_fault(regs))) 1300 return; 1301 1302 if (unlikely(error_code & X86_PF_RSVD)) 1303 pgtable_bad(regs, error_code, address); 1304 1305 if (unlikely(smap_violation(error_code, regs))) { 1306 bad_area_nosemaphore(regs, error_code, address, NULL); 1307 return; 1308 } 1309 1310 /* 1311 * If we're in an interrupt, have no user context or are running 1312 * in a region with pagefaults disabled then we must not take the fault 1313 */ 1314 if (unlikely(faulthandler_disabled() || !mm)) { 1315 bad_area_nosemaphore(regs, error_code, address, NULL); 1316 return; 1317 } 1318 1319 /* 1320 * It's safe to allow irq's after cr2 has been saved and the 1321 * vmalloc fault has been handled. 1322 * 1323 * User-mode registers count as a user access even for any 1324 * potential system fault or CPU buglet: 1325 */ 1326 if (user_mode(regs)) { 1327 local_irq_enable(); 1328 error_code |= X86_PF_USER; 1329 flags |= FAULT_FLAG_USER; 1330 } else { 1331 if (regs->flags & X86_EFLAGS_IF) 1332 local_irq_enable(); 1333 } 1334 1335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1336 1337 if (error_code & X86_PF_WRITE) 1338 flags |= FAULT_FLAG_WRITE; 1339 if (error_code & X86_PF_INSTR) 1340 flags |= FAULT_FLAG_INSTRUCTION; 1341 1342 /* 1343 * When running in the kernel we expect faults to occur only to 1344 * addresses in user space. All other faults represent errors in 1345 * the kernel and should generate an OOPS. Unfortunately, in the 1346 * case of an erroneous fault occurring in a code path which already 1347 * holds mmap_sem we will deadlock attempting to validate the fault 1348 * against the address space. Luckily the kernel only validly 1349 * references user space from well defined areas of code, which are 1350 * listed in the exceptions table. 1351 * 1352 * As the vast majority of faults will be valid we will only perform 1353 * the source reference check when there is a possibility of a 1354 * deadlock. Attempt to lock the address space, if we cannot we then 1355 * validate the source. If this is invalid we can skip the address 1356 * space check, thus avoiding the deadlock: 1357 */ 1358 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1359 if (!(error_code & X86_PF_USER) && 1360 !search_exception_tables(regs->ip)) { 1361 bad_area_nosemaphore(regs, error_code, address, NULL); 1362 return; 1363 } 1364 retry: 1365 down_read(&mm->mmap_sem); 1366 } else { 1367 /* 1368 * The above down_read_trylock() might have succeeded in 1369 * which case we'll have missed the might_sleep() from 1370 * down_read(): 1371 */ 1372 might_sleep(); 1373 } 1374 1375 vma = find_vma(mm, address); 1376 if (unlikely(!vma)) { 1377 bad_area(regs, error_code, address); 1378 return; 1379 } 1380 if (likely(vma->vm_start <= address)) 1381 goto good_area; 1382 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1383 bad_area(regs, error_code, address); 1384 return; 1385 } 1386 if (error_code & X86_PF_USER) { 1387 /* 1388 * Accessing the stack below %sp is always a bug. 1389 * The large cushion allows instructions like enter 1390 * and pusha to work. ("enter $65535, $31" pushes 1391 * 32 pointers and then decrements %sp by 65535.) 1392 */ 1393 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1394 bad_area(regs, error_code, address); 1395 return; 1396 } 1397 } 1398 if (unlikely(expand_stack(vma, address))) { 1399 bad_area(regs, error_code, address); 1400 return; 1401 } 1402 1403 /* 1404 * Ok, we have a good vm_area for this memory access, so 1405 * we can handle it.. 1406 */ 1407 good_area: 1408 if (unlikely(access_error(error_code, vma))) { 1409 bad_area_access_error(regs, error_code, address, vma); 1410 return; 1411 } 1412 1413 /* 1414 * If for any reason at all we couldn't handle the fault, 1415 * make sure we exit gracefully rather than endlessly redo 1416 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1417 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1418 * 1419 * Note that handle_userfault() may also release and reacquire mmap_sem 1420 * (and not return with VM_FAULT_RETRY), when returning to userland to 1421 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1422 * (potentially after handling any pending signal during the return to 1423 * userland). The return to userland is identified whenever 1424 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1425 * Thus we have to be careful about not touching vma after handling the 1426 * fault, so we read the pkey beforehand. 1427 */ 1428 pkey = vma_pkey(vma); 1429 fault = handle_mm_fault(vma, address, flags); 1430 major |= fault & VM_FAULT_MAJOR; 1431 1432 /* 1433 * If we need to retry the mmap_sem has already been released, 1434 * and if there is a fatal signal pending there is no guarantee 1435 * that we made any progress. Handle this case first. 1436 */ 1437 if (unlikely(fault & VM_FAULT_RETRY)) { 1438 /* Retry at most once */ 1439 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1440 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1441 flags |= FAULT_FLAG_TRIED; 1442 if (!fatal_signal_pending(tsk)) 1443 goto retry; 1444 } 1445 1446 /* User mode? Just return to handle the fatal exception */ 1447 if (flags & FAULT_FLAG_USER) 1448 return; 1449 1450 /* Not returning to user mode? Handle exceptions or die: */ 1451 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1452 return; 1453 } 1454 1455 up_read(&mm->mmap_sem); 1456 if (unlikely(fault & VM_FAULT_ERROR)) { 1457 mm_fault_error(regs, error_code, address, &pkey, fault); 1458 return; 1459 } 1460 1461 /* 1462 * Major/minor page fault accounting. If any of the events 1463 * returned VM_FAULT_MAJOR, we account it as a major fault. 1464 */ 1465 if (major) { 1466 tsk->maj_flt++; 1467 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1468 } else { 1469 tsk->min_flt++; 1470 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1471 } 1472 1473 check_v8086_mode(regs, address, tsk); 1474 } 1475 NOKPROBE_SYMBOL(__do_page_fault); 1476 1477 static nokprobe_inline void 1478 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1479 unsigned long error_code) 1480 { 1481 if (user_mode(regs)) 1482 trace_page_fault_user(address, regs, error_code); 1483 else 1484 trace_page_fault_kernel(address, regs, error_code); 1485 } 1486 1487 /* 1488 * We must have this function blacklisted from kprobes, tagged with notrace 1489 * and call read_cr2() before calling anything else. To avoid calling any 1490 * kind of tracing machinery before we've observed the CR2 value. 1491 * 1492 * exception_{enter,exit}() contains all sorts of tracepoints. 1493 */ 1494 dotraplinkage void notrace 1495 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1496 { 1497 unsigned long address = read_cr2(); /* Get the faulting address */ 1498 enum ctx_state prev_state; 1499 1500 prev_state = exception_enter(); 1501 if (trace_pagefault_enabled()) 1502 trace_page_fault_entries(address, regs, error_code); 1503 1504 __do_page_fault(regs, error_code, address); 1505 exception_exit(prev_state); 1506 } 1507 NOKPROBE_SYMBOL(do_page_fault); 1508