xref: /openbmc/linux/arch/x86/mm/fault.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Returns 0 if mmiotrace is disabled, or if the fault is not
33  * handled by mmiotrace:
34  */
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
37 {
38 	if (unlikely(is_kmmio_active()))
39 		if (kmmio_handler(regs, addr) == 1)
40 			return -1;
41 	return 0;
42 }
43 
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45 {
46 	int ret = 0;
47 
48 	/* kprobe_running() needs smp_processor_id() */
49 	if (kprobes_built_in() && !user_mode(regs)) {
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 
59 /*
60  * Prefetch quirks:
61  *
62  * 32-bit mode:
63  *
64  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65  *   Check that here and ignore it.
66  *
67  * 64-bit mode:
68  *
69  *   Sometimes the CPU reports invalid exceptions on prefetch.
70  *   Check that here and ignore it.
71  *
72  * Opcode checker based on code by Richard Brunner.
73  */
74 static inline int
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 		      unsigned char opcode, int *prefetch)
77 {
78 	unsigned char instr_hi = opcode & 0xf0;
79 	unsigned char instr_lo = opcode & 0x0f;
80 
81 	switch (instr_hi) {
82 	case 0x20:
83 	case 0x30:
84 		/*
85 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 		 * In X86_64 long mode, the CPU will signal invalid
87 		 * opcode if some of these prefixes are present so
88 		 * X86_64 will never get here anyway
89 		 */
90 		return ((instr_lo & 7) == 0x6);
91 #ifdef CONFIG_X86_64
92 	case 0x40:
93 		/*
94 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 		 * Need to figure out under what instruction mode the
96 		 * instruction was issued. Could check the LDT for lm,
97 		 * but for now it's good enough to assume that long
98 		 * mode only uses well known segments or kernel.
99 		 */
100 		return (!user_mode(regs) || user_64bit_mode(regs));
101 #endif
102 	case 0x60:
103 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
104 		return (instr_lo & 0xC) == 0x4;
105 	case 0xF0:
106 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 		return !instr_lo || (instr_lo>>1) == 1;
108 	case 0x00:
109 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
110 		if (probe_kernel_address(instr, opcode))
111 			return 0;
112 
113 		*prefetch = (instr_lo == 0xF) &&
114 			(opcode == 0x0D || opcode == 0x18);
115 		return 0;
116 	default:
117 		return 0;
118 	}
119 }
120 
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 	unsigned char *max_instr;
125 	unsigned char *instr;
126 	int prefetch = 0;
127 
128 	/*
129 	 * If it was a exec (instruction fetch) fault on NX page, then
130 	 * do not ignore the fault:
131 	 */
132 	if (error_code & X86_PF_INSTR)
133 		return 0;
134 
135 	instr = (void *)convert_ip_to_linear(current, regs);
136 	max_instr = instr + 15;
137 
138 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 		return 0;
140 
141 	while (instr < max_instr) {
142 		unsigned char opcode;
143 
144 		if (probe_kernel_address(instr, opcode))
145 			break;
146 
147 		instr++;
148 
149 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 			break;
151 	}
152 	return prefetch;
153 }
154 
155 /*
156  * A protection key fault means that the PKRU value did not allow
157  * access to some PTE.  Userspace can figure out what PKRU was
158  * from the XSAVE state, and this function fills out a field in
159  * siginfo so userspace can discover which protection key was set
160  * on the PTE.
161  *
162  * If we get here, we know that the hardware signaled a X86_PF_PK
163  * fault and that there was a VMA once we got in the fault
164  * handler.  It does *not* guarantee that the VMA we find here
165  * was the one that we faulted on.
166  *
167  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
168  * 2. T1   : set PKRU to deny access to pkey=4, touches page
169  * 3. T1   : faults...
170  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171  * 5. T1   : enters fault handler, takes mmap_sem, etc...
172  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
173  *	     faulted on a pte with its pkey=4.
174  */
175 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
176 {
177 	/* This is effectively an #ifdef */
178 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
179 		return;
180 
181 	/* Fault not from Protection Keys: nothing to do */
182 	if (si_code != SEGV_PKUERR)
183 		return;
184 	/*
185 	 * force_sig_info_fault() is called from a number of
186 	 * contexts, some of which have a VMA and some of which
187 	 * do not.  The X86_PF_PK handing happens after we have a
188 	 * valid VMA, so we should never reach this without a
189 	 * valid VMA.
190 	 */
191 	if (!pkey) {
192 		WARN_ONCE(1, "PKU fault with no VMA passed in");
193 		info->si_pkey = 0;
194 		return;
195 	}
196 	/*
197 	 * si_pkey should be thought of as a strong hint, but not
198 	 * absolutely guranteed to be 100% accurate because of
199 	 * the race explained above.
200 	 */
201 	info->si_pkey = *pkey;
202 }
203 
204 static void
205 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
206 		     struct task_struct *tsk, u32 *pkey, int fault)
207 {
208 	unsigned lsb = 0;
209 	siginfo_t info;
210 
211 	info.si_signo	= si_signo;
212 	info.si_errno	= 0;
213 	info.si_code	= si_code;
214 	info.si_addr	= (void __user *)address;
215 	if (fault & VM_FAULT_HWPOISON_LARGE)
216 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
217 	if (fault & VM_FAULT_HWPOISON)
218 		lsb = PAGE_SHIFT;
219 	info.si_addr_lsb = lsb;
220 
221 	fill_sig_info_pkey(si_code, &info, pkey);
222 
223 	force_sig_info(si_signo, &info, tsk);
224 }
225 
226 DEFINE_SPINLOCK(pgd_lock);
227 LIST_HEAD(pgd_list);
228 
229 #ifdef CONFIG_X86_32
230 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
231 {
232 	unsigned index = pgd_index(address);
233 	pgd_t *pgd_k;
234 	p4d_t *p4d, *p4d_k;
235 	pud_t *pud, *pud_k;
236 	pmd_t *pmd, *pmd_k;
237 
238 	pgd += index;
239 	pgd_k = init_mm.pgd + index;
240 
241 	if (!pgd_present(*pgd_k))
242 		return NULL;
243 
244 	/*
245 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
246 	 * and redundant with the set_pmd() on non-PAE. As would
247 	 * set_p4d/set_pud.
248 	 */
249 	p4d = p4d_offset(pgd, address);
250 	p4d_k = p4d_offset(pgd_k, address);
251 	if (!p4d_present(*p4d_k))
252 		return NULL;
253 
254 	pud = pud_offset(p4d, address);
255 	pud_k = pud_offset(p4d_k, address);
256 	if (!pud_present(*pud_k))
257 		return NULL;
258 
259 	pmd = pmd_offset(pud, address);
260 	pmd_k = pmd_offset(pud_k, address);
261 	if (!pmd_present(*pmd_k))
262 		return NULL;
263 
264 	if (!pmd_present(*pmd))
265 		set_pmd(pmd, *pmd_k);
266 	else
267 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
268 
269 	return pmd_k;
270 }
271 
272 void vmalloc_sync_all(void)
273 {
274 	unsigned long address;
275 
276 	if (SHARED_KERNEL_PMD)
277 		return;
278 
279 	for (address = VMALLOC_START & PMD_MASK;
280 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
281 	     address += PMD_SIZE) {
282 		struct page *page;
283 
284 		spin_lock(&pgd_lock);
285 		list_for_each_entry(page, &pgd_list, lru) {
286 			spinlock_t *pgt_lock;
287 			pmd_t *ret;
288 
289 			/* the pgt_lock only for Xen */
290 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
291 
292 			spin_lock(pgt_lock);
293 			ret = vmalloc_sync_one(page_address(page), address);
294 			spin_unlock(pgt_lock);
295 
296 			if (!ret)
297 				break;
298 		}
299 		spin_unlock(&pgd_lock);
300 	}
301 }
302 
303 /*
304  * 32-bit:
305  *
306  *   Handle a fault on the vmalloc or module mapping area
307  */
308 static noinline int vmalloc_fault(unsigned long address)
309 {
310 	unsigned long pgd_paddr;
311 	pmd_t *pmd_k;
312 	pte_t *pte_k;
313 
314 	/* Make sure we are in vmalloc area: */
315 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
316 		return -1;
317 
318 	WARN_ON_ONCE(in_nmi());
319 
320 	/*
321 	 * Synchronize this task's top level page-table
322 	 * with the 'reference' page table.
323 	 *
324 	 * Do _not_ use "current" here. We might be inside
325 	 * an interrupt in the middle of a task switch..
326 	 */
327 	pgd_paddr = read_cr3_pa();
328 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
329 	if (!pmd_k)
330 		return -1;
331 
332 	if (pmd_huge(*pmd_k))
333 		return 0;
334 
335 	pte_k = pte_offset_kernel(pmd_k, address);
336 	if (!pte_present(*pte_k))
337 		return -1;
338 
339 	return 0;
340 }
341 NOKPROBE_SYMBOL(vmalloc_fault);
342 
343 /*
344  * Did it hit the DOS screen memory VA from vm86 mode?
345  */
346 static inline void
347 check_v8086_mode(struct pt_regs *regs, unsigned long address,
348 		 struct task_struct *tsk)
349 {
350 #ifdef CONFIG_VM86
351 	unsigned long bit;
352 
353 	if (!v8086_mode(regs) || !tsk->thread.vm86)
354 		return;
355 
356 	bit = (address - 0xA0000) >> PAGE_SHIFT;
357 	if (bit < 32)
358 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
359 #endif
360 }
361 
362 static bool low_pfn(unsigned long pfn)
363 {
364 	return pfn < max_low_pfn;
365 }
366 
367 static void dump_pagetable(unsigned long address)
368 {
369 	pgd_t *base = __va(read_cr3_pa());
370 	pgd_t *pgd = &base[pgd_index(address)];
371 	p4d_t *p4d;
372 	pud_t *pud;
373 	pmd_t *pmd;
374 	pte_t *pte;
375 
376 #ifdef CONFIG_X86_PAE
377 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
378 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
379 		goto out;
380 #define pr_pde pr_cont
381 #else
382 #define pr_pde pr_info
383 #endif
384 	p4d = p4d_offset(pgd, address);
385 	pud = pud_offset(p4d, address);
386 	pmd = pmd_offset(pud, address);
387 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
388 #undef pr_pde
389 
390 	/*
391 	 * We must not directly access the pte in the highpte
392 	 * case if the page table is located in highmem.
393 	 * And let's rather not kmap-atomic the pte, just in case
394 	 * it's allocated already:
395 	 */
396 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
397 		goto out;
398 
399 	pte = pte_offset_kernel(pmd, address);
400 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
401 out:
402 	pr_cont("\n");
403 }
404 
405 #else /* CONFIG_X86_64: */
406 
407 void vmalloc_sync_all(void)
408 {
409 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
410 }
411 
412 /*
413  * 64-bit:
414  *
415  *   Handle a fault on the vmalloc area
416  */
417 static noinline int vmalloc_fault(unsigned long address)
418 {
419 	pgd_t *pgd, *pgd_ref;
420 	p4d_t *p4d, *p4d_ref;
421 	pud_t *pud, *pud_ref;
422 	pmd_t *pmd, *pmd_ref;
423 	pte_t *pte, *pte_ref;
424 
425 	/* Make sure we are in vmalloc area: */
426 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
427 		return -1;
428 
429 	WARN_ON_ONCE(in_nmi());
430 
431 	/*
432 	 * Copy kernel mappings over when needed. This can also
433 	 * happen within a race in page table update. In the later
434 	 * case just flush:
435 	 */
436 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
437 	pgd_ref = pgd_offset_k(address);
438 	if (pgd_none(*pgd_ref))
439 		return -1;
440 
441 	if (pgd_none(*pgd)) {
442 		set_pgd(pgd, *pgd_ref);
443 		arch_flush_lazy_mmu_mode();
444 	} else if (CONFIG_PGTABLE_LEVELS > 4) {
445 		/*
446 		 * With folded p4d, pgd_none() is always false, so the pgd may
447 		 * point to an empty page table entry and pgd_page_vaddr()
448 		 * will return garbage.
449 		 *
450 		 * We will do the correct sanity check on the p4d level.
451 		 */
452 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
453 	}
454 
455 	/* With 4-level paging, copying happens on the p4d level. */
456 	p4d = p4d_offset(pgd, address);
457 	p4d_ref = p4d_offset(pgd_ref, address);
458 	if (p4d_none(*p4d_ref))
459 		return -1;
460 
461 	if (p4d_none(*p4d)) {
462 		set_p4d(p4d, *p4d_ref);
463 		arch_flush_lazy_mmu_mode();
464 	} else {
465 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
466 	}
467 
468 	/*
469 	 * Below here mismatches are bugs because these lower tables
470 	 * are shared:
471 	 */
472 
473 	pud = pud_offset(p4d, address);
474 	pud_ref = pud_offset(p4d_ref, address);
475 	if (pud_none(*pud_ref))
476 		return -1;
477 
478 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
479 		BUG();
480 
481 	if (pud_huge(*pud))
482 		return 0;
483 
484 	pmd = pmd_offset(pud, address);
485 	pmd_ref = pmd_offset(pud_ref, address);
486 	if (pmd_none(*pmd_ref))
487 		return -1;
488 
489 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
490 		BUG();
491 
492 	if (pmd_huge(*pmd))
493 		return 0;
494 
495 	pte_ref = pte_offset_kernel(pmd_ref, address);
496 	if (!pte_present(*pte_ref))
497 		return -1;
498 
499 	pte = pte_offset_kernel(pmd, address);
500 
501 	/*
502 	 * Don't use pte_page here, because the mappings can point
503 	 * outside mem_map, and the NUMA hash lookup cannot handle
504 	 * that:
505 	 */
506 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
507 		BUG();
508 
509 	return 0;
510 }
511 NOKPROBE_SYMBOL(vmalloc_fault);
512 
513 #ifdef CONFIG_CPU_SUP_AMD
514 static const char errata93_warning[] =
515 KERN_ERR
516 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
517 "******* Working around it, but it may cause SEGVs or burn power.\n"
518 "******* Please consider a BIOS update.\n"
519 "******* Disabling USB legacy in the BIOS may also help.\n";
520 #endif
521 
522 /*
523  * No vm86 mode in 64-bit mode:
524  */
525 static inline void
526 check_v8086_mode(struct pt_regs *regs, unsigned long address,
527 		 struct task_struct *tsk)
528 {
529 }
530 
531 static int bad_address(void *p)
532 {
533 	unsigned long dummy;
534 
535 	return probe_kernel_address((unsigned long *)p, dummy);
536 }
537 
538 static void dump_pagetable(unsigned long address)
539 {
540 	pgd_t *base = __va(read_cr3_pa());
541 	pgd_t *pgd = base + pgd_index(address);
542 	p4d_t *p4d;
543 	pud_t *pud;
544 	pmd_t *pmd;
545 	pte_t *pte;
546 
547 	if (bad_address(pgd))
548 		goto bad;
549 
550 	pr_info("PGD %lx ", pgd_val(*pgd));
551 
552 	if (!pgd_present(*pgd))
553 		goto out;
554 
555 	p4d = p4d_offset(pgd, address);
556 	if (bad_address(p4d))
557 		goto bad;
558 
559 	pr_cont("P4D %lx ", p4d_val(*p4d));
560 	if (!p4d_present(*p4d) || p4d_large(*p4d))
561 		goto out;
562 
563 	pud = pud_offset(p4d, address);
564 	if (bad_address(pud))
565 		goto bad;
566 
567 	pr_cont("PUD %lx ", pud_val(*pud));
568 	if (!pud_present(*pud) || pud_large(*pud))
569 		goto out;
570 
571 	pmd = pmd_offset(pud, address);
572 	if (bad_address(pmd))
573 		goto bad;
574 
575 	pr_cont("PMD %lx ", pmd_val(*pmd));
576 	if (!pmd_present(*pmd) || pmd_large(*pmd))
577 		goto out;
578 
579 	pte = pte_offset_kernel(pmd, address);
580 	if (bad_address(pte))
581 		goto bad;
582 
583 	pr_cont("PTE %lx", pte_val(*pte));
584 out:
585 	pr_cont("\n");
586 	return;
587 bad:
588 	pr_info("BAD\n");
589 }
590 
591 #endif /* CONFIG_X86_64 */
592 
593 /*
594  * Workaround for K8 erratum #93 & buggy BIOS.
595  *
596  * BIOS SMM functions are required to use a specific workaround
597  * to avoid corruption of the 64bit RIP register on C stepping K8.
598  *
599  * A lot of BIOS that didn't get tested properly miss this.
600  *
601  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
602  * Try to work around it here.
603  *
604  * Note we only handle faults in kernel here.
605  * Does nothing on 32-bit.
606  */
607 static int is_errata93(struct pt_regs *regs, unsigned long address)
608 {
609 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
610 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
611 	    || boot_cpu_data.x86 != 0xf)
612 		return 0;
613 
614 	if (address != regs->ip)
615 		return 0;
616 
617 	if ((address >> 32) != 0)
618 		return 0;
619 
620 	address |= 0xffffffffUL << 32;
621 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
622 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
623 		printk_once(errata93_warning);
624 		regs->ip = address;
625 		return 1;
626 	}
627 #endif
628 	return 0;
629 }
630 
631 /*
632  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
633  * to illegal addresses >4GB.
634  *
635  * We catch this in the page fault handler because these addresses
636  * are not reachable. Just detect this case and return.  Any code
637  * segment in LDT is compatibility mode.
638  */
639 static int is_errata100(struct pt_regs *regs, unsigned long address)
640 {
641 #ifdef CONFIG_X86_64
642 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
643 		return 1;
644 #endif
645 	return 0;
646 }
647 
648 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
649 {
650 #ifdef CONFIG_X86_F00F_BUG
651 	unsigned long nr;
652 
653 	/*
654 	 * Pentium F0 0F C7 C8 bug workaround:
655 	 */
656 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
657 		nr = (address - idt_descr.address) >> 3;
658 
659 		if (nr == 6) {
660 			do_invalid_op(regs, 0);
661 			return 1;
662 		}
663 	}
664 #endif
665 	return 0;
666 }
667 
668 static const char nx_warning[] = KERN_CRIT
669 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
670 static const char smep_warning[] = KERN_CRIT
671 "unable to execute userspace code (SMEP?) (uid: %d)\n";
672 
673 static void
674 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
675 		unsigned long address)
676 {
677 	if (!oops_may_print())
678 		return;
679 
680 	if (error_code & X86_PF_INSTR) {
681 		unsigned int level;
682 		pgd_t *pgd;
683 		pte_t *pte;
684 
685 		pgd = __va(read_cr3_pa());
686 		pgd += pgd_index(address);
687 
688 		pte = lookup_address_in_pgd(pgd, address, &level);
689 
690 		if (pte && pte_present(*pte) && !pte_exec(*pte))
691 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
692 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
693 				(pgd_flags(*pgd) & _PAGE_USER) &&
694 				(__read_cr4() & X86_CR4_SMEP))
695 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
696 	}
697 
698 	printk(KERN_ALERT "BUG: unable to handle kernel ");
699 	if (address < PAGE_SIZE)
700 		printk(KERN_CONT "NULL pointer dereference");
701 	else
702 		printk(KERN_CONT "paging request");
703 
704 	printk(KERN_CONT " at %px\n", (void *) address);
705 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
706 
707 	dump_pagetable(address);
708 }
709 
710 static noinline void
711 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
712 	    unsigned long address)
713 {
714 	struct task_struct *tsk;
715 	unsigned long flags;
716 	int sig;
717 
718 	flags = oops_begin();
719 	tsk = current;
720 	sig = SIGKILL;
721 
722 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
723 	       tsk->comm, address);
724 	dump_pagetable(address);
725 
726 	tsk->thread.cr2		= address;
727 	tsk->thread.trap_nr	= X86_TRAP_PF;
728 	tsk->thread.error_code	= error_code;
729 
730 	if (__die("Bad pagetable", regs, error_code))
731 		sig = 0;
732 
733 	oops_end(flags, regs, sig);
734 }
735 
736 static noinline void
737 no_context(struct pt_regs *regs, unsigned long error_code,
738 	   unsigned long address, int signal, int si_code)
739 {
740 	struct task_struct *tsk = current;
741 	unsigned long flags;
742 	int sig;
743 
744 	/* Are we prepared to handle this kernel fault? */
745 	if (fixup_exception(regs, X86_TRAP_PF)) {
746 		/*
747 		 * Any interrupt that takes a fault gets the fixup. This makes
748 		 * the below recursive fault logic only apply to a faults from
749 		 * task context.
750 		 */
751 		if (in_interrupt())
752 			return;
753 
754 		/*
755 		 * Per the above we're !in_interrupt(), aka. task context.
756 		 *
757 		 * In this case we need to make sure we're not recursively
758 		 * faulting through the emulate_vsyscall() logic.
759 		 */
760 		if (current->thread.sig_on_uaccess_err && signal) {
761 			tsk->thread.trap_nr = X86_TRAP_PF;
762 			tsk->thread.error_code = error_code | X86_PF_USER;
763 			tsk->thread.cr2 = address;
764 
765 			/* XXX: hwpoison faults will set the wrong code. */
766 			force_sig_info_fault(signal, si_code, address,
767 					     tsk, NULL, 0);
768 		}
769 
770 		/*
771 		 * Barring that, we can do the fixup and be happy.
772 		 */
773 		return;
774 	}
775 
776 #ifdef CONFIG_VMAP_STACK
777 	/*
778 	 * Stack overflow?  During boot, we can fault near the initial
779 	 * stack in the direct map, but that's not an overflow -- check
780 	 * that we're in vmalloc space to avoid this.
781 	 */
782 	if (is_vmalloc_addr((void *)address) &&
783 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
784 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
785 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
786 		/*
787 		 * We're likely to be running with very little stack space
788 		 * left.  It's plausible that we'd hit this condition but
789 		 * double-fault even before we get this far, in which case
790 		 * we're fine: the double-fault handler will deal with it.
791 		 *
792 		 * We don't want to make it all the way into the oops code
793 		 * and then double-fault, though, because we're likely to
794 		 * break the console driver and lose most of the stack dump.
795 		 */
796 		asm volatile ("movq %[stack], %%rsp\n\t"
797 			      "call handle_stack_overflow\n\t"
798 			      "1: jmp 1b"
799 			      : ASM_CALL_CONSTRAINT
800 			      : "D" ("kernel stack overflow (page fault)"),
801 				"S" (regs), "d" (address),
802 				[stack] "rm" (stack));
803 		unreachable();
804 	}
805 #endif
806 
807 	/*
808 	 * 32-bit:
809 	 *
810 	 *   Valid to do another page fault here, because if this fault
811 	 *   had been triggered by is_prefetch fixup_exception would have
812 	 *   handled it.
813 	 *
814 	 * 64-bit:
815 	 *
816 	 *   Hall of shame of CPU/BIOS bugs.
817 	 */
818 	if (is_prefetch(regs, error_code, address))
819 		return;
820 
821 	if (is_errata93(regs, address))
822 		return;
823 
824 	/*
825 	 * Oops. The kernel tried to access some bad page. We'll have to
826 	 * terminate things with extreme prejudice:
827 	 */
828 	flags = oops_begin();
829 
830 	show_fault_oops(regs, error_code, address);
831 
832 	if (task_stack_end_corrupted(tsk))
833 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
834 
835 	tsk->thread.cr2		= address;
836 	tsk->thread.trap_nr	= X86_TRAP_PF;
837 	tsk->thread.error_code	= error_code;
838 
839 	sig = SIGKILL;
840 	if (__die("Oops", regs, error_code))
841 		sig = 0;
842 
843 	/* Executive summary in case the body of the oops scrolled away */
844 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
845 
846 	oops_end(flags, regs, sig);
847 }
848 
849 /*
850  * Print out info about fatal segfaults, if the show_unhandled_signals
851  * sysctl is set:
852  */
853 static inline void
854 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
855 		unsigned long address, struct task_struct *tsk)
856 {
857 	if (!unhandled_signal(tsk, SIGSEGV))
858 		return;
859 
860 	if (!printk_ratelimit())
861 		return;
862 
863 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
864 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
865 		tsk->comm, task_pid_nr(tsk), address,
866 		(void *)regs->ip, (void *)regs->sp, error_code);
867 
868 	print_vma_addr(KERN_CONT " in ", regs->ip);
869 
870 	printk(KERN_CONT "\n");
871 }
872 
873 static void
874 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
875 		       unsigned long address, u32 *pkey, int si_code)
876 {
877 	struct task_struct *tsk = current;
878 
879 	/* User mode accesses just cause a SIGSEGV */
880 	if (error_code & X86_PF_USER) {
881 		/*
882 		 * It's possible to have interrupts off here:
883 		 */
884 		local_irq_enable();
885 
886 		/*
887 		 * Valid to do another page fault here because this one came
888 		 * from user space:
889 		 */
890 		if (is_prefetch(regs, error_code, address))
891 			return;
892 
893 		if (is_errata100(regs, address))
894 			return;
895 
896 #ifdef CONFIG_X86_64
897 		/*
898 		 * Instruction fetch faults in the vsyscall page might need
899 		 * emulation.
900 		 */
901 		if (unlikely((error_code & X86_PF_INSTR) &&
902 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
903 			if (emulate_vsyscall(regs, address))
904 				return;
905 		}
906 #endif
907 
908 		/*
909 		 * To avoid leaking information about the kernel page table
910 		 * layout, pretend that user-mode accesses to kernel addresses
911 		 * are always protection faults.
912 		 */
913 		if (address >= TASK_SIZE_MAX)
914 			error_code |= X86_PF_PROT;
915 
916 		if (likely(show_unhandled_signals))
917 			show_signal_msg(regs, error_code, address, tsk);
918 
919 		tsk->thread.cr2		= address;
920 		tsk->thread.error_code	= error_code;
921 		tsk->thread.trap_nr	= X86_TRAP_PF;
922 
923 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
924 
925 		return;
926 	}
927 
928 	if (is_f00f_bug(regs, address))
929 		return;
930 
931 	no_context(regs, error_code, address, SIGSEGV, si_code);
932 }
933 
934 static noinline void
935 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
936 		     unsigned long address, u32 *pkey)
937 {
938 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
939 }
940 
941 static void
942 __bad_area(struct pt_regs *regs, unsigned long error_code,
943 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
944 {
945 	struct mm_struct *mm = current->mm;
946 	u32 pkey;
947 
948 	if (vma)
949 		pkey = vma_pkey(vma);
950 
951 	/*
952 	 * Something tried to access memory that isn't in our memory map..
953 	 * Fix it, but check if it's kernel or user first..
954 	 */
955 	up_read(&mm->mmap_sem);
956 
957 	__bad_area_nosemaphore(regs, error_code, address,
958 			       (vma) ? &pkey : NULL, si_code);
959 }
960 
961 static noinline void
962 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
963 {
964 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
965 }
966 
967 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
968 		struct vm_area_struct *vma)
969 {
970 	/* This code is always called on the current mm */
971 	bool foreign = false;
972 
973 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
974 		return false;
975 	if (error_code & X86_PF_PK)
976 		return true;
977 	/* this checks permission keys on the VMA: */
978 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
979 				       (error_code & X86_PF_INSTR), foreign))
980 		return true;
981 	return false;
982 }
983 
984 static noinline void
985 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
986 		      unsigned long address, struct vm_area_struct *vma)
987 {
988 	/*
989 	 * This OSPKE check is not strictly necessary at runtime.
990 	 * But, doing it this way allows compiler optimizations
991 	 * if pkeys are compiled out.
992 	 */
993 	if (bad_area_access_from_pkeys(error_code, vma))
994 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
995 	else
996 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
997 }
998 
999 static void
1000 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1001 	  u32 *pkey, unsigned int fault)
1002 {
1003 	struct task_struct *tsk = current;
1004 	int code = BUS_ADRERR;
1005 
1006 	/* Kernel mode? Handle exceptions or die: */
1007 	if (!(error_code & X86_PF_USER)) {
1008 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1009 		return;
1010 	}
1011 
1012 	/* User-space => ok to do another page fault: */
1013 	if (is_prefetch(regs, error_code, address))
1014 		return;
1015 
1016 	tsk->thread.cr2		= address;
1017 	tsk->thread.error_code	= error_code;
1018 	tsk->thread.trap_nr	= X86_TRAP_PF;
1019 
1020 #ifdef CONFIG_MEMORY_FAILURE
1021 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1022 		printk(KERN_ERR
1023 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1024 			tsk->comm, tsk->pid, address);
1025 		code = BUS_MCEERR_AR;
1026 	}
1027 #endif
1028 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1029 }
1030 
1031 static noinline void
1032 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1033 	       unsigned long address, u32 *pkey, unsigned int fault)
1034 {
1035 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1036 		no_context(regs, error_code, address, 0, 0);
1037 		return;
1038 	}
1039 
1040 	if (fault & VM_FAULT_OOM) {
1041 		/* Kernel mode? Handle exceptions or die: */
1042 		if (!(error_code & X86_PF_USER)) {
1043 			no_context(regs, error_code, address,
1044 				   SIGSEGV, SEGV_MAPERR);
1045 			return;
1046 		}
1047 
1048 		/*
1049 		 * We ran out of memory, call the OOM killer, and return the
1050 		 * userspace (which will retry the fault, or kill us if we got
1051 		 * oom-killed):
1052 		 */
1053 		pagefault_out_of_memory();
1054 	} else {
1055 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1056 			     VM_FAULT_HWPOISON_LARGE))
1057 			do_sigbus(regs, error_code, address, pkey, fault);
1058 		else if (fault & VM_FAULT_SIGSEGV)
1059 			bad_area_nosemaphore(regs, error_code, address, pkey);
1060 		else
1061 			BUG();
1062 	}
1063 }
1064 
1065 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1066 {
1067 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1068 		return 0;
1069 
1070 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1071 		return 0;
1072 	/*
1073 	 * Note: We do not do lazy flushing on protection key
1074 	 * changes, so no spurious fault will ever set X86_PF_PK.
1075 	 */
1076 	if ((error_code & X86_PF_PK))
1077 		return 1;
1078 
1079 	return 1;
1080 }
1081 
1082 /*
1083  * Handle a spurious fault caused by a stale TLB entry.
1084  *
1085  * This allows us to lazily refresh the TLB when increasing the
1086  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1087  * eagerly is very expensive since that implies doing a full
1088  * cross-processor TLB flush, even if no stale TLB entries exist
1089  * on other processors.
1090  *
1091  * Spurious faults may only occur if the TLB contains an entry with
1092  * fewer permission than the page table entry.  Non-present (P = 0)
1093  * and reserved bit (R = 1) faults are never spurious.
1094  *
1095  * There are no security implications to leaving a stale TLB when
1096  * increasing the permissions on a page.
1097  *
1098  * Returns non-zero if a spurious fault was handled, zero otherwise.
1099  *
1100  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1101  * (Optional Invalidation).
1102  */
1103 static noinline int
1104 spurious_fault(unsigned long error_code, unsigned long address)
1105 {
1106 	pgd_t *pgd;
1107 	p4d_t *p4d;
1108 	pud_t *pud;
1109 	pmd_t *pmd;
1110 	pte_t *pte;
1111 	int ret;
1112 
1113 	/*
1114 	 * Only writes to RO or instruction fetches from NX may cause
1115 	 * spurious faults.
1116 	 *
1117 	 * These could be from user or supervisor accesses but the TLB
1118 	 * is only lazily flushed after a kernel mapping protection
1119 	 * change, so user accesses are not expected to cause spurious
1120 	 * faults.
1121 	 */
1122 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1123 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1124 		return 0;
1125 
1126 	pgd = init_mm.pgd + pgd_index(address);
1127 	if (!pgd_present(*pgd))
1128 		return 0;
1129 
1130 	p4d = p4d_offset(pgd, address);
1131 	if (!p4d_present(*p4d))
1132 		return 0;
1133 
1134 	if (p4d_large(*p4d))
1135 		return spurious_fault_check(error_code, (pte_t *) p4d);
1136 
1137 	pud = pud_offset(p4d, address);
1138 	if (!pud_present(*pud))
1139 		return 0;
1140 
1141 	if (pud_large(*pud))
1142 		return spurious_fault_check(error_code, (pte_t *) pud);
1143 
1144 	pmd = pmd_offset(pud, address);
1145 	if (!pmd_present(*pmd))
1146 		return 0;
1147 
1148 	if (pmd_large(*pmd))
1149 		return spurious_fault_check(error_code, (pte_t *) pmd);
1150 
1151 	pte = pte_offset_kernel(pmd, address);
1152 	if (!pte_present(*pte))
1153 		return 0;
1154 
1155 	ret = spurious_fault_check(error_code, pte);
1156 	if (!ret)
1157 		return 0;
1158 
1159 	/*
1160 	 * Make sure we have permissions in PMD.
1161 	 * If not, then there's a bug in the page tables:
1162 	 */
1163 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1164 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1165 
1166 	return ret;
1167 }
1168 NOKPROBE_SYMBOL(spurious_fault);
1169 
1170 int show_unhandled_signals = 1;
1171 
1172 static inline int
1173 access_error(unsigned long error_code, struct vm_area_struct *vma)
1174 {
1175 	/* This is only called for the current mm, so: */
1176 	bool foreign = false;
1177 
1178 	/*
1179 	 * Read or write was blocked by protection keys.  This is
1180 	 * always an unconditional error and can never result in
1181 	 * a follow-up action to resolve the fault, like a COW.
1182 	 */
1183 	if (error_code & X86_PF_PK)
1184 		return 1;
1185 
1186 	/*
1187 	 * Make sure to check the VMA so that we do not perform
1188 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1189 	 * page.
1190 	 */
1191 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1192 				       (error_code & X86_PF_INSTR), foreign))
1193 		return 1;
1194 
1195 	if (error_code & X86_PF_WRITE) {
1196 		/* write, present and write, not present: */
1197 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1198 			return 1;
1199 		return 0;
1200 	}
1201 
1202 	/* read, present: */
1203 	if (unlikely(error_code & X86_PF_PROT))
1204 		return 1;
1205 
1206 	/* read, not present: */
1207 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1208 		return 1;
1209 
1210 	return 0;
1211 }
1212 
1213 static int fault_in_kernel_space(unsigned long address)
1214 {
1215 	return address >= TASK_SIZE_MAX;
1216 }
1217 
1218 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1219 {
1220 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1221 		return false;
1222 
1223 	if (!static_cpu_has(X86_FEATURE_SMAP))
1224 		return false;
1225 
1226 	if (error_code & X86_PF_USER)
1227 		return false;
1228 
1229 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 /*
1236  * This routine handles page faults.  It determines the address,
1237  * and the problem, and then passes it off to one of the appropriate
1238  * routines.
1239  */
1240 static noinline void
1241 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1242 		unsigned long address)
1243 {
1244 	struct vm_area_struct *vma;
1245 	struct task_struct *tsk;
1246 	struct mm_struct *mm;
1247 	int fault, major = 0;
1248 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1249 	u32 pkey;
1250 
1251 	tsk = current;
1252 	mm = tsk->mm;
1253 
1254 	/*
1255 	 * Detect and handle instructions that would cause a page fault for
1256 	 * both a tracked kernel page and a userspace page.
1257 	 */
1258 	prefetchw(&mm->mmap_sem);
1259 
1260 	if (unlikely(kmmio_fault(regs, address)))
1261 		return;
1262 
1263 	/*
1264 	 * We fault-in kernel-space virtual memory on-demand. The
1265 	 * 'reference' page table is init_mm.pgd.
1266 	 *
1267 	 * NOTE! We MUST NOT take any locks for this case. We may
1268 	 * be in an interrupt or a critical region, and should
1269 	 * only copy the information from the master page table,
1270 	 * nothing more.
1271 	 *
1272 	 * This verifies that the fault happens in kernel space
1273 	 * (error_code & 4) == 0, and that the fault was not a
1274 	 * protection error (error_code & 9) == 0.
1275 	 */
1276 	if (unlikely(fault_in_kernel_space(address))) {
1277 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1278 			if (vmalloc_fault(address) >= 0)
1279 				return;
1280 		}
1281 
1282 		/* Can handle a stale RO->RW TLB: */
1283 		if (spurious_fault(error_code, address))
1284 			return;
1285 
1286 		/* kprobes don't want to hook the spurious faults: */
1287 		if (kprobes_fault(regs))
1288 			return;
1289 		/*
1290 		 * Don't take the mm semaphore here. If we fixup a prefetch
1291 		 * fault we could otherwise deadlock:
1292 		 */
1293 		bad_area_nosemaphore(regs, error_code, address, NULL);
1294 
1295 		return;
1296 	}
1297 
1298 	/* kprobes don't want to hook the spurious faults: */
1299 	if (unlikely(kprobes_fault(regs)))
1300 		return;
1301 
1302 	if (unlikely(error_code & X86_PF_RSVD))
1303 		pgtable_bad(regs, error_code, address);
1304 
1305 	if (unlikely(smap_violation(error_code, regs))) {
1306 		bad_area_nosemaphore(regs, error_code, address, NULL);
1307 		return;
1308 	}
1309 
1310 	/*
1311 	 * If we're in an interrupt, have no user context or are running
1312 	 * in a region with pagefaults disabled then we must not take the fault
1313 	 */
1314 	if (unlikely(faulthandler_disabled() || !mm)) {
1315 		bad_area_nosemaphore(regs, error_code, address, NULL);
1316 		return;
1317 	}
1318 
1319 	/*
1320 	 * It's safe to allow irq's after cr2 has been saved and the
1321 	 * vmalloc fault has been handled.
1322 	 *
1323 	 * User-mode registers count as a user access even for any
1324 	 * potential system fault or CPU buglet:
1325 	 */
1326 	if (user_mode(regs)) {
1327 		local_irq_enable();
1328 		error_code |= X86_PF_USER;
1329 		flags |= FAULT_FLAG_USER;
1330 	} else {
1331 		if (regs->flags & X86_EFLAGS_IF)
1332 			local_irq_enable();
1333 	}
1334 
1335 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1336 
1337 	if (error_code & X86_PF_WRITE)
1338 		flags |= FAULT_FLAG_WRITE;
1339 	if (error_code & X86_PF_INSTR)
1340 		flags |= FAULT_FLAG_INSTRUCTION;
1341 
1342 	/*
1343 	 * When running in the kernel we expect faults to occur only to
1344 	 * addresses in user space.  All other faults represent errors in
1345 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1346 	 * case of an erroneous fault occurring in a code path which already
1347 	 * holds mmap_sem we will deadlock attempting to validate the fault
1348 	 * against the address space.  Luckily the kernel only validly
1349 	 * references user space from well defined areas of code, which are
1350 	 * listed in the exceptions table.
1351 	 *
1352 	 * As the vast majority of faults will be valid we will only perform
1353 	 * the source reference check when there is a possibility of a
1354 	 * deadlock. Attempt to lock the address space, if we cannot we then
1355 	 * validate the source. If this is invalid we can skip the address
1356 	 * space check, thus avoiding the deadlock:
1357 	 */
1358 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1359 		if (!(error_code & X86_PF_USER) &&
1360 		    !search_exception_tables(regs->ip)) {
1361 			bad_area_nosemaphore(regs, error_code, address, NULL);
1362 			return;
1363 		}
1364 retry:
1365 		down_read(&mm->mmap_sem);
1366 	} else {
1367 		/*
1368 		 * The above down_read_trylock() might have succeeded in
1369 		 * which case we'll have missed the might_sleep() from
1370 		 * down_read():
1371 		 */
1372 		might_sleep();
1373 	}
1374 
1375 	vma = find_vma(mm, address);
1376 	if (unlikely(!vma)) {
1377 		bad_area(regs, error_code, address);
1378 		return;
1379 	}
1380 	if (likely(vma->vm_start <= address))
1381 		goto good_area;
1382 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1383 		bad_area(regs, error_code, address);
1384 		return;
1385 	}
1386 	if (error_code & X86_PF_USER) {
1387 		/*
1388 		 * Accessing the stack below %sp is always a bug.
1389 		 * The large cushion allows instructions like enter
1390 		 * and pusha to work. ("enter $65535, $31" pushes
1391 		 * 32 pointers and then decrements %sp by 65535.)
1392 		 */
1393 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1394 			bad_area(regs, error_code, address);
1395 			return;
1396 		}
1397 	}
1398 	if (unlikely(expand_stack(vma, address))) {
1399 		bad_area(regs, error_code, address);
1400 		return;
1401 	}
1402 
1403 	/*
1404 	 * Ok, we have a good vm_area for this memory access, so
1405 	 * we can handle it..
1406 	 */
1407 good_area:
1408 	if (unlikely(access_error(error_code, vma))) {
1409 		bad_area_access_error(regs, error_code, address, vma);
1410 		return;
1411 	}
1412 
1413 	/*
1414 	 * If for any reason at all we couldn't handle the fault,
1415 	 * make sure we exit gracefully rather than endlessly redo
1416 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1417 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1418 	 *
1419 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1420 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1421 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1422 	 * (potentially after handling any pending signal during the return to
1423 	 * userland). The return to userland is identified whenever
1424 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1425 	 * Thus we have to be careful about not touching vma after handling the
1426 	 * fault, so we read the pkey beforehand.
1427 	 */
1428 	pkey = vma_pkey(vma);
1429 	fault = handle_mm_fault(vma, address, flags);
1430 	major |= fault & VM_FAULT_MAJOR;
1431 
1432 	/*
1433 	 * If we need to retry the mmap_sem has already been released,
1434 	 * and if there is a fatal signal pending there is no guarantee
1435 	 * that we made any progress. Handle this case first.
1436 	 */
1437 	if (unlikely(fault & VM_FAULT_RETRY)) {
1438 		/* Retry at most once */
1439 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1440 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1441 			flags |= FAULT_FLAG_TRIED;
1442 			if (!fatal_signal_pending(tsk))
1443 				goto retry;
1444 		}
1445 
1446 		/* User mode? Just return to handle the fatal exception */
1447 		if (flags & FAULT_FLAG_USER)
1448 			return;
1449 
1450 		/* Not returning to user mode? Handle exceptions or die: */
1451 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1452 		return;
1453 	}
1454 
1455 	up_read(&mm->mmap_sem);
1456 	if (unlikely(fault & VM_FAULT_ERROR)) {
1457 		mm_fault_error(regs, error_code, address, &pkey, fault);
1458 		return;
1459 	}
1460 
1461 	/*
1462 	 * Major/minor page fault accounting. If any of the events
1463 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1464 	 */
1465 	if (major) {
1466 		tsk->maj_flt++;
1467 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1468 	} else {
1469 		tsk->min_flt++;
1470 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1471 	}
1472 
1473 	check_v8086_mode(regs, address, tsk);
1474 }
1475 NOKPROBE_SYMBOL(__do_page_fault);
1476 
1477 static nokprobe_inline void
1478 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1479 			 unsigned long error_code)
1480 {
1481 	if (user_mode(regs))
1482 		trace_page_fault_user(address, regs, error_code);
1483 	else
1484 		trace_page_fault_kernel(address, regs, error_code);
1485 }
1486 
1487 /*
1488  * We must have this function blacklisted from kprobes, tagged with notrace
1489  * and call read_cr2() before calling anything else. To avoid calling any
1490  * kind of tracing machinery before we've observed the CR2 value.
1491  *
1492  * exception_{enter,exit}() contains all sorts of tracepoints.
1493  */
1494 dotraplinkage void notrace
1495 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1496 {
1497 	unsigned long address = read_cr2(); /* Get the faulting address */
1498 	enum ctx_state prev_state;
1499 
1500 	prev_state = exception_enter();
1501 	if (trace_pagefault_enabled())
1502 		trace_page_fault_entries(address, regs, error_code);
1503 
1504 	__do_page_fault(regs, error_code, address);
1505 	exception_exit(prev_state);
1506 }
1507 NOKPROBE_SYMBOL(do_page_fault);
1508