1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/magic.h> /* STACK_END_MAGIC */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/kdebug.h> /* oops_begin/end, ... */ 9 #include <linux/module.h> /* search_exception_table */ 10 #include <linux/bootmem.h> /* max_low_pfn */ 11 #include <linux/kprobes.h> /* __kprobes, ... */ 12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 13 #include <linux/perf_event.h> /* perf_sw_event */ 14 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 15 #include <linux/prefetch.h> /* prefetchw */ 16 17 #include <asm/traps.h> /* dotraplinkage, ... */ 18 #include <asm/pgalloc.h> /* pgd_*(), ... */ 19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 20 #include <asm/fixmap.h> /* VSYSCALL_START */ 21 22 /* 23 * Page fault error code bits: 24 * 25 * bit 0 == 0: no page found 1: protection fault 26 * bit 1 == 0: read access 1: write access 27 * bit 2 == 0: kernel-mode access 1: user-mode access 28 * bit 3 == 1: use of reserved bit detected 29 * bit 4 == 1: fault was an instruction fetch 30 */ 31 enum x86_pf_error_code { 32 33 PF_PROT = 1 << 0, 34 PF_WRITE = 1 << 1, 35 PF_USER = 1 << 2, 36 PF_RSVD = 1 << 3, 37 PF_INSTR = 1 << 4, 38 }; 39 40 /* 41 * Returns 0 if mmiotrace is disabled, or if the fault is not 42 * handled by mmiotrace: 43 */ 44 static inline int __kprobes 45 kmmio_fault(struct pt_regs *regs, unsigned long addr) 46 { 47 if (unlikely(is_kmmio_active())) 48 if (kmmio_handler(regs, addr) == 1) 49 return -1; 50 return 0; 51 } 52 53 static inline int __kprobes notify_page_fault(struct pt_regs *regs) 54 { 55 int ret = 0; 56 57 /* kprobe_running() needs smp_processor_id() */ 58 if (kprobes_built_in() && !user_mode_vm(regs)) { 59 preempt_disable(); 60 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 61 ret = 1; 62 preempt_enable(); 63 } 64 65 return ret; 66 } 67 68 /* 69 * Prefetch quirks: 70 * 71 * 32-bit mode: 72 * 73 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 74 * Check that here and ignore it. 75 * 76 * 64-bit mode: 77 * 78 * Sometimes the CPU reports invalid exceptions on prefetch. 79 * Check that here and ignore it. 80 * 81 * Opcode checker based on code by Richard Brunner. 82 */ 83 static inline int 84 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 85 unsigned char opcode, int *prefetch) 86 { 87 unsigned char instr_hi = opcode & 0xf0; 88 unsigned char instr_lo = opcode & 0x0f; 89 90 switch (instr_hi) { 91 case 0x20: 92 case 0x30: 93 /* 94 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 95 * In X86_64 long mode, the CPU will signal invalid 96 * opcode if some of these prefixes are present so 97 * X86_64 will never get here anyway 98 */ 99 return ((instr_lo & 7) == 0x6); 100 #ifdef CONFIG_X86_64 101 case 0x40: 102 /* 103 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 104 * Need to figure out under what instruction mode the 105 * instruction was issued. Could check the LDT for lm, 106 * but for now it's good enough to assume that long 107 * mode only uses well known segments or kernel. 108 */ 109 return (!user_mode(regs) || user_64bit_mode(regs)); 110 #endif 111 case 0x60: 112 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 113 return (instr_lo & 0xC) == 0x4; 114 case 0xF0: 115 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 116 return !instr_lo || (instr_lo>>1) == 1; 117 case 0x00: 118 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 119 if (probe_kernel_address(instr, opcode)) 120 return 0; 121 122 *prefetch = (instr_lo == 0xF) && 123 (opcode == 0x0D || opcode == 0x18); 124 return 0; 125 default: 126 return 0; 127 } 128 } 129 130 static int 131 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 132 { 133 unsigned char *max_instr; 134 unsigned char *instr; 135 int prefetch = 0; 136 137 /* 138 * If it was a exec (instruction fetch) fault on NX page, then 139 * do not ignore the fault: 140 */ 141 if (error_code & PF_INSTR) 142 return 0; 143 144 instr = (void *)convert_ip_to_linear(current, regs); 145 max_instr = instr + 15; 146 147 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 148 return 0; 149 150 while (instr < max_instr) { 151 unsigned char opcode; 152 153 if (probe_kernel_address(instr, opcode)) 154 break; 155 156 instr++; 157 158 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 159 break; 160 } 161 return prefetch; 162 } 163 164 static void 165 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 166 struct task_struct *tsk, int fault) 167 { 168 unsigned lsb = 0; 169 siginfo_t info; 170 171 info.si_signo = si_signo; 172 info.si_errno = 0; 173 info.si_code = si_code; 174 info.si_addr = (void __user *)address; 175 if (fault & VM_FAULT_HWPOISON_LARGE) 176 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 177 if (fault & VM_FAULT_HWPOISON) 178 lsb = PAGE_SHIFT; 179 info.si_addr_lsb = lsb; 180 181 force_sig_info(si_signo, &info, tsk); 182 } 183 184 DEFINE_SPINLOCK(pgd_lock); 185 LIST_HEAD(pgd_list); 186 187 #ifdef CONFIG_X86_32 188 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 189 { 190 unsigned index = pgd_index(address); 191 pgd_t *pgd_k; 192 pud_t *pud, *pud_k; 193 pmd_t *pmd, *pmd_k; 194 195 pgd += index; 196 pgd_k = init_mm.pgd + index; 197 198 if (!pgd_present(*pgd_k)) 199 return NULL; 200 201 /* 202 * set_pgd(pgd, *pgd_k); here would be useless on PAE 203 * and redundant with the set_pmd() on non-PAE. As would 204 * set_pud. 205 */ 206 pud = pud_offset(pgd, address); 207 pud_k = pud_offset(pgd_k, address); 208 if (!pud_present(*pud_k)) 209 return NULL; 210 211 pmd = pmd_offset(pud, address); 212 pmd_k = pmd_offset(pud_k, address); 213 if (!pmd_present(*pmd_k)) 214 return NULL; 215 216 if (!pmd_present(*pmd)) 217 set_pmd(pmd, *pmd_k); 218 else 219 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 220 221 return pmd_k; 222 } 223 224 void vmalloc_sync_all(void) 225 { 226 unsigned long address; 227 228 if (SHARED_KERNEL_PMD) 229 return; 230 231 for (address = VMALLOC_START & PMD_MASK; 232 address >= TASK_SIZE && address < FIXADDR_TOP; 233 address += PMD_SIZE) { 234 struct page *page; 235 236 spin_lock(&pgd_lock); 237 list_for_each_entry(page, &pgd_list, lru) { 238 spinlock_t *pgt_lock; 239 pmd_t *ret; 240 241 /* the pgt_lock only for Xen */ 242 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 243 244 spin_lock(pgt_lock); 245 ret = vmalloc_sync_one(page_address(page), address); 246 spin_unlock(pgt_lock); 247 248 if (!ret) 249 break; 250 } 251 spin_unlock(&pgd_lock); 252 } 253 } 254 255 /* 256 * 32-bit: 257 * 258 * Handle a fault on the vmalloc or module mapping area 259 */ 260 static noinline __kprobes int vmalloc_fault(unsigned long address) 261 { 262 unsigned long pgd_paddr; 263 pmd_t *pmd_k; 264 pte_t *pte_k; 265 266 /* Make sure we are in vmalloc area: */ 267 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 268 return -1; 269 270 WARN_ON_ONCE(in_nmi()); 271 272 /* 273 * Synchronize this task's top level page-table 274 * with the 'reference' page table. 275 * 276 * Do _not_ use "current" here. We might be inside 277 * an interrupt in the middle of a task switch.. 278 */ 279 pgd_paddr = read_cr3(); 280 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 281 if (!pmd_k) 282 return -1; 283 284 pte_k = pte_offset_kernel(pmd_k, address); 285 if (!pte_present(*pte_k)) 286 return -1; 287 288 return 0; 289 } 290 291 /* 292 * Did it hit the DOS screen memory VA from vm86 mode? 293 */ 294 static inline void 295 check_v8086_mode(struct pt_regs *regs, unsigned long address, 296 struct task_struct *tsk) 297 { 298 unsigned long bit; 299 300 if (!v8086_mode(regs)) 301 return; 302 303 bit = (address - 0xA0000) >> PAGE_SHIFT; 304 if (bit < 32) 305 tsk->thread.screen_bitmap |= 1 << bit; 306 } 307 308 static bool low_pfn(unsigned long pfn) 309 { 310 return pfn < max_low_pfn; 311 } 312 313 static void dump_pagetable(unsigned long address) 314 { 315 pgd_t *base = __va(read_cr3()); 316 pgd_t *pgd = &base[pgd_index(address)]; 317 pmd_t *pmd; 318 pte_t *pte; 319 320 #ifdef CONFIG_X86_PAE 321 printk("*pdpt = %016Lx ", pgd_val(*pgd)); 322 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 323 goto out; 324 #endif 325 pmd = pmd_offset(pud_offset(pgd, address), address); 326 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 327 328 /* 329 * We must not directly access the pte in the highpte 330 * case if the page table is located in highmem. 331 * And let's rather not kmap-atomic the pte, just in case 332 * it's allocated already: 333 */ 334 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 335 goto out; 336 337 pte = pte_offset_kernel(pmd, address); 338 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 339 out: 340 printk("\n"); 341 } 342 343 #else /* CONFIG_X86_64: */ 344 345 void vmalloc_sync_all(void) 346 { 347 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 348 } 349 350 /* 351 * 64-bit: 352 * 353 * Handle a fault on the vmalloc area 354 * 355 * This assumes no large pages in there. 356 */ 357 static noinline __kprobes int vmalloc_fault(unsigned long address) 358 { 359 pgd_t *pgd, *pgd_ref; 360 pud_t *pud, *pud_ref; 361 pmd_t *pmd, *pmd_ref; 362 pte_t *pte, *pte_ref; 363 364 /* Make sure we are in vmalloc area: */ 365 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 366 return -1; 367 368 WARN_ON_ONCE(in_nmi()); 369 370 /* 371 * Copy kernel mappings over when needed. This can also 372 * happen within a race in page table update. In the later 373 * case just flush: 374 */ 375 pgd = pgd_offset(current->active_mm, address); 376 pgd_ref = pgd_offset_k(address); 377 if (pgd_none(*pgd_ref)) 378 return -1; 379 380 if (pgd_none(*pgd)) 381 set_pgd(pgd, *pgd_ref); 382 else 383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 384 385 /* 386 * Below here mismatches are bugs because these lower tables 387 * are shared: 388 */ 389 390 pud = pud_offset(pgd, address); 391 pud_ref = pud_offset(pgd_ref, address); 392 if (pud_none(*pud_ref)) 393 return -1; 394 395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 396 BUG(); 397 398 pmd = pmd_offset(pud, address); 399 pmd_ref = pmd_offset(pud_ref, address); 400 if (pmd_none(*pmd_ref)) 401 return -1; 402 403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 404 BUG(); 405 406 pte_ref = pte_offset_kernel(pmd_ref, address); 407 if (!pte_present(*pte_ref)) 408 return -1; 409 410 pte = pte_offset_kernel(pmd, address); 411 412 /* 413 * Don't use pte_page here, because the mappings can point 414 * outside mem_map, and the NUMA hash lookup cannot handle 415 * that: 416 */ 417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 418 BUG(); 419 420 return 0; 421 } 422 423 #ifdef CONFIG_CPU_SUP_AMD 424 static const char errata93_warning[] = 425 KERN_ERR 426 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 427 "******* Working around it, but it may cause SEGVs or burn power.\n" 428 "******* Please consider a BIOS update.\n" 429 "******* Disabling USB legacy in the BIOS may also help.\n"; 430 #endif 431 432 /* 433 * No vm86 mode in 64-bit mode: 434 */ 435 static inline void 436 check_v8086_mode(struct pt_regs *regs, unsigned long address, 437 struct task_struct *tsk) 438 { 439 } 440 441 static int bad_address(void *p) 442 { 443 unsigned long dummy; 444 445 return probe_kernel_address((unsigned long *)p, dummy); 446 } 447 448 static void dump_pagetable(unsigned long address) 449 { 450 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK); 451 pgd_t *pgd = base + pgd_index(address); 452 pud_t *pud; 453 pmd_t *pmd; 454 pte_t *pte; 455 456 if (bad_address(pgd)) 457 goto bad; 458 459 printk("PGD %lx ", pgd_val(*pgd)); 460 461 if (!pgd_present(*pgd)) 462 goto out; 463 464 pud = pud_offset(pgd, address); 465 if (bad_address(pud)) 466 goto bad; 467 468 printk("PUD %lx ", pud_val(*pud)); 469 if (!pud_present(*pud) || pud_large(*pud)) 470 goto out; 471 472 pmd = pmd_offset(pud, address); 473 if (bad_address(pmd)) 474 goto bad; 475 476 printk("PMD %lx ", pmd_val(*pmd)); 477 if (!pmd_present(*pmd) || pmd_large(*pmd)) 478 goto out; 479 480 pte = pte_offset_kernel(pmd, address); 481 if (bad_address(pte)) 482 goto bad; 483 484 printk("PTE %lx", pte_val(*pte)); 485 out: 486 printk("\n"); 487 return; 488 bad: 489 printk("BAD\n"); 490 } 491 492 #endif /* CONFIG_X86_64 */ 493 494 /* 495 * Workaround for K8 erratum #93 & buggy BIOS. 496 * 497 * BIOS SMM functions are required to use a specific workaround 498 * to avoid corruption of the 64bit RIP register on C stepping K8. 499 * 500 * A lot of BIOS that didn't get tested properly miss this. 501 * 502 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 503 * Try to work around it here. 504 * 505 * Note we only handle faults in kernel here. 506 * Does nothing on 32-bit. 507 */ 508 static int is_errata93(struct pt_regs *regs, unsigned long address) 509 { 510 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 511 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 512 || boot_cpu_data.x86 != 0xf) 513 return 0; 514 515 if (address != regs->ip) 516 return 0; 517 518 if ((address >> 32) != 0) 519 return 0; 520 521 address |= 0xffffffffUL << 32; 522 if ((address >= (u64)_stext && address <= (u64)_etext) || 523 (address >= MODULES_VADDR && address <= MODULES_END)) { 524 printk_once(errata93_warning); 525 regs->ip = address; 526 return 1; 527 } 528 #endif 529 return 0; 530 } 531 532 /* 533 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 534 * to illegal addresses >4GB. 535 * 536 * We catch this in the page fault handler because these addresses 537 * are not reachable. Just detect this case and return. Any code 538 * segment in LDT is compatibility mode. 539 */ 540 static int is_errata100(struct pt_regs *regs, unsigned long address) 541 { 542 #ifdef CONFIG_X86_64 543 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 544 return 1; 545 #endif 546 return 0; 547 } 548 549 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 550 { 551 #ifdef CONFIG_X86_F00F_BUG 552 unsigned long nr; 553 554 /* 555 * Pentium F0 0F C7 C8 bug workaround: 556 */ 557 if (boot_cpu_data.f00f_bug) { 558 nr = (address - idt_descr.address) >> 3; 559 560 if (nr == 6) { 561 do_invalid_op(regs, 0); 562 return 1; 563 } 564 } 565 #endif 566 return 0; 567 } 568 569 static const char nx_warning[] = KERN_CRIT 570 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 571 572 static void 573 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 574 unsigned long address) 575 { 576 if (!oops_may_print()) 577 return; 578 579 if (error_code & PF_INSTR) { 580 unsigned int level; 581 582 pte_t *pte = lookup_address(address, &level); 583 584 if (pte && pte_present(*pte) && !pte_exec(*pte)) 585 printk(nx_warning, current_uid()); 586 } 587 588 printk(KERN_ALERT "BUG: unable to handle kernel "); 589 if (address < PAGE_SIZE) 590 printk(KERN_CONT "NULL pointer dereference"); 591 else 592 printk(KERN_CONT "paging request"); 593 594 printk(KERN_CONT " at %p\n", (void *) address); 595 printk(KERN_ALERT "IP:"); 596 printk_address(regs->ip, 1); 597 598 dump_pagetable(address); 599 } 600 601 static noinline void 602 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 603 unsigned long address) 604 { 605 struct task_struct *tsk; 606 unsigned long flags; 607 int sig; 608 609 flags = oops_begin(); 610 tsk = current; 611 sig = SIGKILL; 612 613 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 614 tsk->comm, address); 615 dump_pagetable(address); 616 617 tsk->thread.cr2 = address; 618 tsk->thread.trap_nr = X86_TRAP_PF; 619 tsk->thread.error_code = error_code; 620 621 if (__die("Bad pagetable", regs, error_code)) 622 sig = 0; 623 624 oops_end(flags, regs, sig); 625 } 626 627 static noinline void 628 no_context(struct pt_regs *regs, unsigned long error_code, 629 unsigned long address, int signal, int si_code) 630 { 631 struct task_struct *tsk = current; 632 unsigned long *stackend; 633 unsigned long flags; 634 int sig; 635 636 /* Are we prepared to handle this kernel fault? */ 637 if (fixup_exception(regs)) { 638 if (current_thread_info()->sig_on_uaccess_error && signal) { 639 tsk->thread.trap_nr = X86_TRAP_PF; 640 tsk->thread.error_code = error_code | PF_USER; 641 tsk->thread.cr2 = address; 642 643 /* XXX: hwpoison faults will set the wrong code. */ 644 force_sig_info_fault(signal, si_code, address, tsk, 0); 645 } 646 return; 647 } 648 649 /* 650 * 32-bit: 651 * 652 * Valid to do another page fault here, because if this fault 653 * had been triggered by is_prefetch fixup_exception would have 654 * handled it. 655 * 656 * 64-bit: 657 * 658 * Hall of shame of CPU/BIOS bugs. 659 */ 660 if (is_prefetch(regs, error_code, address)) 661 return; 662 663 if (is_errata93(regs, address)) 664 return; 665 666 /* 667 * Oops. The kernel tried to access some bad page. We'll have to 668 * terminate things with extreme prejudice: 669 */ 670 flags = oops_begin(); 671 672 show_fault_oops(regs, error_code, address); 673 674 stackend = end_of_stack(tsk); 675 if (tsk != &init_task && *stackend != STACK_END_MAGIC) 676 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 677 678 tsk->thread.cr2 = address; 679 tsk->thread.trap_nr = X86_TRAP_PF; 680 tsk->thread.error_code = error_code; 681 682 sig = SIGKILL; 683 if (__die("Oops", regs, error_code)) 684 sig = 0; 685 686 /* Executive summary in case the body of the oops scrolled away */ 687 printk(KERN_DEFAULT "CR2: %016lx\n", address); 688 689 oops_end(flags, regs, sig); 690 } 691 692 /* 693 * Print out info about fatal segfaults, if the show_unhandled_signals 694 * sysctl is set: 695 */ 696 static inline void 697 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 698 unsigned long address, struct task_struct *tsk) 699 { 700 if (!unhandled_signal(tsk, SIGSEGV)) 701 return; 702 703 if (!printk_ratelimit()) 704 return; 705 706 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 707 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 708 tsk->comm, task_pid_nr(tsk), address, 709 (void *)regs->ip, (void *)regs->sp, error_code); 710 711 print_vma_addr(KERN_CONT " in ", regs->ip); 712 713 printk(KERN_CONT "\n"); 714 } 715 716 static void 717 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 718 unsigned long address, int si_code) 719 { 720 struct task_struct *tsk = current; 721 722 /* User mode accesses just cause a SIGSEGV */ 723 if (error_code & PF_USER) { 724 /* 725 * It's possible to have interrupts off here: 726 */ 727 local_irq_enable(); 728 729 /* 730 * Valid to do another page fault here because this one came 731 * from user space: 732 */ 733 if (is_prefetch(regs, error_code, address)) 734 return; 735 736 if (is_errata100(regs, address)) 737 return; 738 739 #ifdef CONFIG_X86_64 740 /* 741 * Instruction fetch faults in the vsyscall page might need 742 * emulation. 743 */ 744 if (unlikely((error_code & PF_INSTR) && 745 ((address & ~0xfff) == VSYSCALL_START))) { 746 if (emulate_vsyscall(regs, address)) 747 return; 748 } 749 #endif 750 751 if (unlikely(show_unhandled_signals)) 752 show_signal_msg(regs, error_code, address, tsk); 753 754 /* Kernel addresses are always protection faults: */ 755 tsk->thread.cr2 = address; 756 tsk->thread.error_code = error_code | (address >= TASK_SIZE); 757 tsk->thread.trap_nr = X86_TRAP_PF; 758 759 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0); 760 761 return; 762 } 763 764 if (is_f00f_bug(regs, address)) 765 return; 766 767 no_context(regs, error_code, address, SIGSEGV, si_code); 768 } 769 770 static noinline void 771 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 772 unsigned long address) 773 { 774 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 775 } 776 777 static void 778 __bad_area(struct pt_regs *regs, unsigned long error_code, 779 unsigned long address, int si_code) 780 { 781 struct mm_struct *mm = current->mm; 782 783 /* 784 * Something tried to access memory that isn't in our memory map.. 785 * Fix it, but check if it's kernel or user first.. 786 */ 787 up_read(&mm->mmap_sem); 788 789 __bad_area_nosemaphore(regs, error_code, address, si_code); 790 } 791 792 static noinline void 793 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 794 { 795 __bad_area(regs, error_code, address, SEGV_MAPERR); 796 } 797 798 static noinline void 799 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 800 unsigned long address) 801 { 802 __bad_area(regs, error_code, address, SEGV_ACCERR); 803 } 804 805 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 806 static void 807 out_of_memory(struct pt_regs *regs, unsigned long error_code, 808 unsigned long address) 809 { 810 /* 811 * We ran out of memory, call the OOM killer, and return the userspace 812 * (which will retry the fault, or kill us if we got oom-killed): 813 */ 814 up_read(¤t->mm->mmap_sem); 815 816 pagefault_out_of_memory(); 817 } 818 819 static void 820 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 821 unsigned int fault) 822 { 823 struct task_struct *tsk = current; 824 struct mm_struct *mm = tsk->mm; 825 int code = BUS_ADRERR; 826 827 up_read(&mm->mmap_sem); 828 829 /* Kernel mode? Handle exceptions or die: */ 830 if (!(error_code & PF_USER)) { 831 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 832 return; 833 } 834 835 /* User-space => ok to do another page fault: */ 836 if (is_prefetch(regs, error_code, address)) 837 return; 838 839 tsk->thread.cr2 = address; 840 tsk->thread.error_code = error_code; 841 tsk->thread.trap_nr = X86_TRAP_PF; 842 843 #ifdef CONFIG_MEMORY_FAILURE 844 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 845 printk(KERN_ERR 846 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 847 tsk->comm, tsk->pid, address); 848 code = BUS_MCEERR_AR; 849 } 850 #endif 851 force_sig_info_fault(SIGBUS, code, address, tsk, fault); 852 } 853 854 static noinline int 855 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 856 unsigned long address, unsigned int fault) 857 { 858 /* 859 * Pagefault was interrupted by SIGKILL. We have no reason to 860 * continue pagefault. 861 */ 862 if (fatal_signal_pending(current)) { 863 if (!(fault & VM_FAULT_RETRY)) 864 up_read(¤t->mm->mmap_sem); 865 if (!(error_code & PF_USER)) 866 no_context(regs, error_code, address, 0, 0); 867 return 1; 868 } 869 if (!(fault & VM_FAULT_ERROR)) 870 return 0; 871 872 if (fault & VM_FAULT_OOM) { 873 /* Kernel mode? Handle exceptions or die: */ 874 if (!(error_code & PF_USER)) { 875 up_read(¤t->mm->mmap_sem); 876 no_context(regs, error_code, address, 877 SIGSEGV, SEGV_MAPERR); 878 return 1; 879 } 880 881 out_of_memory(regs, error_code, address); 882 } else { 883 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 884 VM_FAULT_HWPOISON_LARGE)) 885 do_sigbus(regs, error_code, address, fault); 886 else 887 BUG(); 888 } 889 return 1; 890 } 891 892 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 893 { 894 if ((error_code & PF_WRITE) && !pte_write(*pte)) 895 return 0; 896 897 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 898 return 0; 899 900 return 1; 901 } 902 903 /* 904 * Handle a spurious fault caused by a stale TLB entry. 905 * 906 * This allows us to lazily refresh the TLB when increasing the 907 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 908 * eagerly is very expensive since that implies doing a full 909 * cross-processor TLB flush, even if no stale TLB entries exist 910 * on other processors. 911 * 912 * There are no security implications to leaving a stale TLB when 913 * increasing the permissions on a page. 914 */ 915 static noinline __kprobes int 916 spurious_fault(unsigned long error_code, unsigned long address) 917 { 918 pgd_t *pgd; 919 pud_t *pud; 920 pmd_t *pmd; 921 pte_t *pte; 922 int ret; 923 924 /* Reserved-bit violation or user access to kernel space? */ 925 if (error_code & (PF_USER | PF_RSVD)) 926 return 0; 927 928 pgd = init_mm.pgd + pgd_index(address); 929 if (!pgd_present(*pgd)) 930 return 0; 931 932 pud = pud_offset(pgd, address); 933 if (!pud_present(*pud)) 934 return 0; 935 936 if (pud_large(*pud)) 937 return spurious_fault_check(error_code, (pte_t *) pud); 938 939 pmd = pmd_offset(pud, address); 940 if (!pmd_present(*pmd)) 941 return 0; 942 943 if (pmd_large(*pmd)) 944 return spurious_fault_check(error_code, (pte_t *) pmd); 945 946 /* 947 * Note: don't use pte_present() here, since it returns true 948 * if the _PAGE_PROTNONE bit is set. However, this aliases the 949 * _PAGE_GLOBAL bit, which for kernel pages give false positives 950 * when CONFIG_DEBUG_PAGEALLOC is used. 951 */ 952 pte = pte_offset_kernel(pmd, address); 953 if (!(pte_flags(*pte) & _PAGE_PRESENT)) 954 return 0; 955 956 ret = spurious_fault_check(error_code, pte); 957 if (!ret) 958 return 0; 959 960 /* 961 * Make sure we have permissions in PMD. 962 * If not, then there's a bug in the page tables: 963 */ 964 ret = spurious_fault_check(error_code, (pte_t *) pmd); 965 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 966 967 return ret; 968 } 969 970 int show_unhandled_signals = 1; 971 972 static inline int 973 access_error(unsigned long error_code, struct vm_area_struct *vma) 974 { 975 if (error_code & PF_WRITE) { 976 /* write, present and write, not present: */ 977 if (unlikely(!(vma->vm_flags & VM_WRITE))) 978 return 1; 979 return 0; 980 } 981 982 /* read, present: */ 983 if (unlikely(error_code & PF_PROT)) 984 return 1; 985 986 /* read, not present: */ 987 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 988 return 1; 989 990 return 0; 991 } 992 993 static int fault_in_kernel_space(unsigned long address) 994 { 995 return address >= TASK_SIZE_MAX; 996 } 997 998 /* 999 * This routine handles page faults. It determines the address, 1000 * and the problem, and then passes it off to one of the appropriate 1001 * routines. 1002 */ 1003 dotraplinkage void __kprobes 1004 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1005 { 1006 struct vm_area_struct *vma; 1007 struct task_struct *tsk; 1008 unsigned long address; 1009 struct mm_struct *mm; 1010 int fault; 1011 int write = error_code & PF_WRITE; 1012 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE | 1013 (write ? FAULT_FLAG_WRITE : 0); 1014 1015 tsk = current; 1016 mm = tsk->mm; 1017 1018 /* Get the faulting address: */ 1019 address = read_cr2(); 1020 1021 /* 1022 * Detect and handle instructions that would cause a page fault for 1023 * both a tracked kernel page and a userspace page. 1024 */ 1025 if (kmemcheck_active(regs)) 1026 kmemcheck_hide(regs); 1027 prefetchw(&mm->mmap_sem); 1028 1029 if (unlikely(kmmio_fault(regs, address))) 1030 return; 1031 1032 /* 1033 * We fault-in kernel-space virtual memory on-demand. The 1034 * 'reference' page table is init_mm.pgd. 1035 * 1036 * NOTE! We MUST NOT take any locks for this case. We may 1037 * be in an interrupt or a critical region, and should 1038 * only copy the information from the master page table, 1039 * nothing more. 1040 * 1041 * This verifies that the fault happens in kernel space 1042 * (error_code & 4) == 0, and that the fault was not a 1043 * protection error (error_code & 9) == 0. 1044 */ 1045 if (unlikely(fault_in_kernel_space(address))) { 1046 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 1047 if (vmalloc_fault(address) >= 0) 1048 return; 1049 1050 if (kmemcheck_fault(regs, address, error_code)) 1051 return; 1052 } 1053 1054 /* Can handle a stale RO->RW TLB: */ 1055 if (spurious_fault(error_code, address)) 1056 return; 1057 1058 /* kprobes don't want to hook the spurious faults: */ 1059 if (notify_page_fault(regs)) 1060 return; 1061 /* 1062 * Don't take the mm semaphore here. If we fixup a prefetch 1063 * fault we could otherwise deadlock: 1064 */ 1065 bad_area_nosemaphore(regs, error_code, address); 1066 1067 return; 1068 } 1069 1070 /* kprobes don't want to hook the spurious faults: */ 1071 if (unlikely(notify_page_fault(regs))) 1072 return; 1073 /* 1074 * It's safe to allow irq's after cr2 has been saved and the 1075 * vmalloc fault has been handled. 1076 * 1077 * User-mode registers count as a user access even for any 1078 * potential system fault or CPU buglet: 1079 */ 1080 if (user_mode_vm(regs)) { 1081 local_irq_enable(); 1082 error_code |= PF_USER; 1083 } else { 1084 if (regs->flags & X86_EFLAGS_IF) 1085 local_irq_enable(); 1086 } 1087 1088 if (unlikely(error_code & PF_RSVD)) 1089 pgtable_bad(regs, error_code, address); 1090 1091 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1092 1093 /* 1094 * If we're in an interrupt, have no user context or are running 1095 * in an atomic region then we must not take the fault: 1096 */ 1097 if (unlikely(in_atomic() || !mm)) { 1098 bad_area_nosemaphore(regs, error_code, address); 1099 return; 1100 } 1101 1102 /* 1103 * When running in the kernel we expect faults to occur only to 1104 * addresses in user space. All other faults represent errors in 1105 * the kernel and should generate an OOPS. Unfortunately, in the 1106 * case of an erroneous fault occurring in a code path which already 1107 * holds mmap_sem we will deadlock attempting to validate the fault 1108 * against the address space. Luckily the kernel only validly 1109 * references user space from well defined areas of code, which are 1110 * listed in the exceptions table. 1111 * 1112 * As the vast majority of faults will be valid we will only perform 1113 * the source reference check when there is a possibility of a 1114 * deadlock. Attempt to lock the address space, if we cannot we then 1115 * validate the source. If this is invalid we can skip the address 1116 * space check, thus avoiding the deadlock: 1117 */ 1118 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1119 if ((error_code & PF_USER) == 0 && 1120 !search_exception_tables(regs->ip)) { 1121 bad_area_nosemaphore(regs, error_code, address); 1122 return; 1123 } 1124 retry: 1125 down_read(&mm->mmap_sem); 1126 } else { 1127 /* 1128 * The above down_read_trylock() might have succeeded in 1129 * which case we'll have missed the might_sleep() from 1130 * down_read(): 1131 */ 1132 might_sleep(); 1133 } 1134 1135 vma = find_vma(mm, address); 1136 if (unlikely(!vma)) { 1137 bad_area(regs, error_code, address); 1138 return; 1139 } 1140 if (likely(vma->vm_start <= address)) 1141 goto good_area; 1142 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1143 bad_area(regs, error_code, address); 1144 return; 1145 } 1146 if (error_code & PF_USER) { 1147 /* 1148 * Accessing the stack below %sp is always a bug. 1149 * The large cushion allows instructions like enter 1150 * and pusha to work. ("enter $65535, $31" pushes 1151 * 32 pointers and then decrements %sp by 65535.) 1152 */ 1153 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1154 bad_area(regs, error_code, address); 1155 return; 1156 } 1157 } 1158 if (unlikely(expand_stack(vma, address))) { 1159 bad_area(regs, error_code, address); 1160 return; 1161 } 1162 1163 /* 1164 * Ok, we have a good vm_area for this memory access, so 1165 * we can handle it.. 1166 */ 1167 good_area: 1168 if (unlikely(access_error(error_code, vma))) { 1169 bad_area_access_error(regs, error_code, address); 1170 return; 1171 } 1172 1173 /* 1174 * If for any reason at all we couldn't handle the fault, 1175 * make sure we exit gracefully rather than endlessly redo 1176 * the fault: 1177 */ 1178 fault = handle_mm_fault(mm, vma, address, flags); 1179 1180 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { 1181 if (mm_fault_error(regs, error_code, address, fault)) 1182 return; 1183 } 1184 1185 /* 1186 * Major/minor page fault accounting is only done on the 1187 * initial attempt. If we go through a retry, it is extremely 1188 * likely that the page will be found in page cache at that point. 1189 */ 1190 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1191 if (fault & VM_FAULT_MAJOR) { 1192 tsk->maj_flt++; 1193 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 1194 regs, address); 1195 } else { 1196 tsk->min_flt++; 1197 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 1198 regs, address); 1199 } 1200 if (fault & VM_FAULT_RETRY) { 1201 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 1202 * of starvation. */ 1203 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1204 goto retry; 1205 } 1206 } 1207 1208 check_v8086_mode(regs, address, tsk); 1209 1210 up_read(&mm->mmap_sem); 1211 } 1212