xref: /openbmc/linux/arch/x86/mm/fault.c (revision 63dc02bd)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 #include <linux/prefetch.h>		/* prefetchw			*/
16 
17 #include <asm/traps.h>			/* dotraplinkage, ...		*/
18 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
19 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
20 #include <asm/fixmap.h>			/* VSYSCALL_START		*/
21 
22 /*
23  * Page fault error code bits:
24  *
25  *   bit 0 ==	 0: no page found	1: protection fault
26  *   bit 1 ==	 0: read access		1: write access
27  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
28  *   bit 3 ==				1: use of reserved bit detected
29  *   bit 4 ==				1: fault was an instruction fetch
30  */
31 enum x86_pf_error_code {
32 
33 	PF_PROT		=		1 << 0,
34 	PF_WRITE	=		1 << 1,
35 	PF_USER		=		1 << 2,
36 	PF_RSVD		=		1 << 3,
37 	PF_INSTR	=		1 << 4,
38 };
39 
40 /*
41  * Returns 0 if mmiotrace is disabled, or if the fault is not
42  * handled by mmiotrace:
43  */
44 static inline int __kprobes
45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
46 {
47 	if (unlikely(is_kmmio_active()))
48 		if (kmmio_handler(regs, addr) == 1)
49 			return -1;
50 	return 0;
51 }
52 
53 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
54 {
55 	int ret = 0;
56 
57 	/* kprobe_running() needs smp_processor_id() */
58 	if (kprobes_built_in() && !user_mode_vm(regs)) {
59 		preempt_disable();
60 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
61 			ret = 1;
62 		preempt_enable();
63 	}
64 
65 	return ret;
66 }
67 
68 /*
69  * Prefetch quirks:
70  *
71  * 32-bit mode:
72  *
73  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
74  *   Check that here and ignore it.
75  *
76  * 64-bit mode:
77  *
78  *   Sometimes the CPU reports invalid exceptions on prefetch.
79  *   Check that here and ignore it.
80  *
81  * Opcode checker based on code by Richard Brunner.
82  */
83 static inline int
84 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
85 		      unsigned char opcode, int *prefetch)
86 {
87 	unsigned char instr_hi = opcode & 0xf0;
88 	unsigned char instr_lo = opcode & 0x0f;
89 
90 	switch (instr_hi) {
91 	case 0x20:
92 	case 0x30:
93 		/*
94 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
95 		 * In X86_64 long mode, the CPU will signal invalid
96 		 * opcode if some of these prefixes are present so
97 		 * X86_64 will never get here anyway
98 		 */
99 		return ((instr_lo & 7) == 0x6);
100 #ifdef CONFIG_X86_64
101 	case 0x40:
102 		/*
103 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
104 		 * Need to figure out under what instruction mode the
105 		 * instruction was issued. Could check the LDT for lm,
106 		 * but for now it's good enough to assume that long
107 		 * mode only uses well known segments or kernel.
108 		 */
109 		return (!user_mode(regs) || user_64bit_mode(regs));
110 #endif
111 	case 0x60:
112 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
113 		return (instr_lo & 0xC) == 0x4;
114 	case 0xF0:
115 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
116 		return !instr_lo || (instr_lo>>1) == 1;
117 	case 0x00:
118 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
119 		if (probe_kernel_address(instr, opcode))
120 			return 0;
121 
122 		*prefetch = (instr_lo == 0xF) &&
123 			(opcode == 0x0D || opcode == 0x18);
124 		return 0;
125 	default:
126 		return 0;
127 	}
128 }
129 
130 static int
131 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
132 {
133 	unsigned char *max_instr;
134 	unsigned char *instr;
135 	int prefetch = 0;
136 
137 	/*
138 	 * If it was a exec (instruction fetch) fault on NX page, then
139 	 * do not ignore the fault:
140 	 */
141 	if (error_code & PF_INSTR)
142 		return 0;
143 
144 	instr = (void *)convert_ip_to_linear(current, regs);
145 	max_instr = instr + 15;
146 
147 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
148 		return 0;
149 
150 	while (instr < max_instr) {
151 		unsigned char opcode;
152 
153 		if (probe_kernel_address(instr, opcode))
154 			break;
155 
156 		instr++;
157 
158 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
159 			break;
160 	}
161 	return prefetch;
162 }
163 
164 static void
165 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
166 		     struct task_struct *tsk, int fault)
167 {
168 	unsigned lsb = 0;
169 	siginfo_t info;
170 
171 	info.si_signo	= si_signo;
172 	info.si_errno	= 0;
173 	info.si_code	= si_code;
174 	info.si_addr	= (void __user *)address;
175 	if (fault & VM_FAULT_HWPOISON_LARGE)
176 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
177 	if (fault & VM_FAULT_HWPOISON)
178 		lsb = PAGE_SHIFT;
179 	info.si_addr_lsb = lsb;
180 
181 	force_sig_info(si_signo, &info, tsk);
182 }
183 
184 DEFINE_SPINLOCK(pgd_lock);
185 LIST_HEAD(pgd_list);
186 
187 #ifdef CONFIG_X86_32
188 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
189 {
190 	unsigned index = pgd_index(address);
191 	pgd_t *pgd_k;
192 	pud_t *pud, *pud_k;
193 	pmd_t *pmd, *pmd_k;
194 
195 	pgd += index;
196 	pgd_k = init_mm.pgd + index;
197 
198 	if (!pgd_present(*pgd_k))
199 		return NULL;
200 
201 	/*
202 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
203 	 * and redundant with the set_pmd() on non-PAE. As would
204 	 * set_pud.
205 	 */
206 	pud = pud_offset(pgd, address);
207 	pud_k = pud_offset(pgd_k, address);
208 	if (!pud_present(*pud_k))
209 		return NULL;
210 
211 	pmd = pmd_offset(pud, address);
212 	pmd_k = pmd_offset(pud_k, address);
213 	if (!pmd_present(*pmd_k))
214 		return NULL;
215 
216 	if (!pmd_present(*pmd))
217 		set_pmd(pmd, *pmd_k);
218 	else
219 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
220 
221 	return pmd_k;
222 }
223 
224 void vmalloc_sync_all(void)
225 {
226 	unsigned long address;
227 
228 	if (SHARED_KERNEL_PMD)
229 		return;
230 
231 	for (address = VMALLOC_START & PMD_MASK;
232 	     address >= TASK_SIZE && address < FIXADDR_TOP;
233 	     address += PMD_SIZE) {
234 		struct page *page;
235 
236 		spin_lock(&pgd_lock);
237 		list_for_each_entry(page, &pgd_list, lru) {
238 			spinlock_t *pgt_lock;
239 			pmd_t *ret;
240 
241 			/* the pgt_lock only for Xen */
242 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
243 
244 			spin_lock(pgt_lock);
245 			ret = vmalloc_sync_one(page_address(page), address);
246 			spin_unlock(pgt_lock);
247 
248 			if (!ret)
249 				break;
250 		}
251 		spin_unlock(&pgd_lock);
252 	}
253 }
254 
255 /*
256  * 32-bit:
257  *
258  *   Handle a fault on the vmalloc or module mapping area
259  */
260 static noinline __kprobes int vmalloc_fault(unsigned long address)
261 {
262 	unsigned long pgd_paddr;
263 	pmd_t *pmd_k;
264 	pte_t *pte_k;
265 
266 	/* Make sure we are in vmalloc area: */
267 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
268 		return -1;
269 
270 	WARN_ON_ONCE(in_nmi());
271 
272 	/*
273 	 * Synchronize this task's top level page-table
274 	 * with the 'reference' page table.
275 	 *
276 	 * Do _not_ use "current" here. We might be inside
277 	 * an interrupt in the middle of a task switch..
278 	 */
279 	pgd_paddr = read_cr3();
280 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
281 	if (!pmd_k)
282 		return -1;
283 
284 	pte_k = pte_offset_kernel(pmd_k, address);
285 	if (!pte_present(*pte_k))
286 		return -1;
287 
288 	return 0;
289 }
290 
291 /*
292  * Did it hit the DOS screen memory VA from vm86 mode?
293  */
294 static inline void
295 check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 		 struct task_struct *tsk)
297 {
298 	unsigned long bit;
299 
300 	if (!v8086_mode(regs))
301 		return;
302 
303 	bit = (address - 0xA0000) >> PAGE_SHIFT;
304 	if (bit < 32)
305 		tsk->thread.screen_bitmap |= 1 << bit;
306 }
307 
308 static bool low_pfn(unsigned long pfn)
309 {
310 	return pfn < max_low_pfn;
311 }
312 
313 static void dump_pagetable(unsigned long address)
314 {
315 	pgd_t *base = __va(read_cr3());
316 	pgd_t *pgd = &base[pgd_index(address)];
317 	pmd_t *pmd;
318 	pte_t *pte;
319 
320 #ifdef CONFIG_X86_PAE
321 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
322 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
323 		goto out;
324 #endif
325 	pmd = pmd_offset(pud_offset(pgd, address), address);
326 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
327 
328 	/*
329 	 * We must not directly access the pte in the highpte
330 	 * case if the page table is located in highmem.
331 	 * And let's rather not kmap-atomic the pte, just in case
332 	 * it's allocated already:
333 	 */
334 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
335 		goto out;
336 
337 	pte = pte_offset_kernel(pmd, address);
338 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
339 out:
340 	printk("\n");
341 }
342 
343 #else /* CONFIG_X86_64: */
344 
345 void vmalloc_sync_all(void)
346 {
347 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
348 }
349 
350 /*
351  * 64-bit:
352  *
353  *   Handle a fault on the vmalloc area
354  *
355  * This assumes no large pages in there.
356  */
357 static noinline __kprobes int vmalloc_fault(unsigned long address)
358 {
359 	pgd_t *pgd, *pgd_ref;
360 	pud_t *pud, *pud_ref;
361 	pmd_t *pmd, *pmd_ref;
362 	pte_t *pte, *pte_ref;
363 
364 	/* Make sure we are in vmalloc area: */
365 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
366 		return -1;
367 
368 	WARN_ON_ONCE(in_nmi());
369 
370 	/*
371 	 * Copy kernel mappings over when needed. This can also
372 	 * happen within a race in page table update. In the later
373 	 * case just flush:
374 	 */
375 	pgd = pgd_offset(current->active_mm, address);
376 	pgd_ref = pgd_offset_k(address);
377 	if (pgd_none(*pgd_ref))
378 		return -1;
379 
380 	if (pgd_none(*pgd))
381 		set_pgd(pgd, *pgd_ref);
382 	else
383 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384 
385 	/*
386 	 * Below here mismatches are bugs because these lower tables
387 	 * are shared:
388 	 */
389 
390 	pud = pud_offset(pgd, address);
391 	pud_ref = pud_offset(pgd_ref, address);
392 	if (pud_none(*pud_ref))
393 		return -1;
394 
395 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 		BUG();
397 
398 	pmd = pmd_offset(pud, address);
399 	pmd_ref = pmd_offset(pud_ref, address);
400 	if (pmd_none(*pmd_ref))
401 		return -1;
402 
403 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 		BUG();
405 
406 	pte_ref = pte_offset_kernel(pmd_ref, address);
407 	if (!pte_present(*pte_ref))
408 		return -1;
409 
410 	pte = pte_offset_kernel(pmd, address);
411 
412 	/*
413 	 * Don't use pte_page here, because the mappings can point
414 	 * outside mem_map, and the NUMA hash lookup cannot handle
415 	 * that:
416 	 */
417 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 		BUG();
419 
420 	return 0;
421 }
422 
423 #ifdef CONFIG_CPU_SUP_AMD
424 static const char errata93_warning[] =
425 KERN_ERR
426 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
427 "******* Working around it, but it may cause SEGVs or burn power.\n"
428 "******* Please consider a BIOS update.\n"
429 "******* Disabling USB legacy in the BIOS may also help.\n";
430 #endif
431 
432 /*
433  * No vm86 mode in 64-bit mode:
434  */
435 static inline void
436 check_v8086_mode(struct pt_regs *regs, unsigned long address,
437 		 struct task_struct *tsk)
438 {
439 }
440 
441 static int bad_address(void *p)
442 {
443 	unsigned long dummy;
444 
445 	return probe_kernel_address((unsigned long *)p, dummy);
446 }
447 
448 static void dump_pagetable(unsigned long address)
449 {
450 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
451 	pgd_t *pgd = base + pgd_index(address);
452 	pud_t *pud;
453 	pmd_t *pmd;
454 	pte_t *pte;
455 
456 	if (bad_address(pgd))
457 		goto bad;
458 
459 	printk("PGD %lx ", pgd_val(*pgd));
460 
461 	if (!pgd_present(*pgd))
462 		goto out;
463 
464 	pud = pud_offset(pgd, address);
465 	if (bad_address(pud))
466 		goto bad;
467 
468 	printk("PUD %lx ", pud_val(*pud));
469 	if (!pud_present(*pud) || pud_large(*pud))
470 		goto out;
471 
472 	pmd = pmd_offset(pud, address);
473 	if (bad_address(pmd))
474 		goto bad;
475 
476 	printk("PMD %lx ", pmd_val(*pmd));
477 	if (!pmd_present(*pmd) || pmd_large(*pmd))
478 		goto out;
479 
480 	pte = pte_offset_kernel(pmd, address);
481 	if (bad_address(pte))
482 		goto bad;
483 
484 	printk("PTE %lx", pte_val(*pte));
485 out:
486 	printk("\n");
487 	return;
488 bad:
489 	printk("BAD\n");
490 }
491 
492 #endif /* CONFIG_X86_64 */
493 
494 /*
495  * Workaround for K8 erratum #93 & buggy BIOS.
496  *
497  * BIOS SMM functions are required to use a specific workaround
498  * to avoid corruption of the 64bit RIP register on C stepping K8.
499  *
500  * A lot of BIOS that didn't get tested properly miss this.
501  *
502  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
503  * Try to work around it here.
504  *
505  * Note we only handle faults in kernel here.
506  * Does nothing on 32-bit.
507  */
508 static int is_errata93(struct pt_regs *regs, unsigned long address)
509 {
510 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
511 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
512 	    || boot_cpu_data.x86 != 0xf)
513 		return 0;
514 
515 	if (address != regs->ip)
516 		return 0;
517 
518 	if ((address >> 32) != 0)
519 		return 0;
520 
521 	address |= 0xffffffffUL << 32;
522 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
523 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
524 		printk_once(errata93_warning);
525 		regs->ip = address;
526 		return 1;
527 	}
528 #endif
529 	return 0;
530 }
531 
532 /*
533  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
534  * to illegal addresses >4GB.
535  *
536  * We catch this in the page fault handler because these addresses
537  * are not reachable. Just detect this case and return.  Any code
538  * segment in LDT is compatibility mode.
539  */
540 static int is_errata100(struct pt_regs *regs, unsigned long address)
541 {
542 #ifdef CONFIG_X86_64
543 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
544 		return 1;
545 #endif
546 	return 0;
547 }
548 
549 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
550 {
551 #ifdef CONFIG_X86_F00F_BUG
552 	unsigned long nr;
553 
554 	/*
555 	 * Pentium F0 0F C7 C8 bug workaround:
556 	 */
557 	if (boot_cpu_data.f00f_bug) {
558 		nr = (address - idt_descr.address) >> 3;
559 
560 		if (nr == 6) {
561 			do_invalid_op(regs, 0);
562 			return 1;
563 		}
564 	}
565 #endif
566 	return 0;
567 }
568 
569 static const char nx_warning[] = KERN_CRIT
570 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
571 
572 static void
573 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
574 		unsigned long address)
575 {
576 	if (!oops_may_print())
577 		return;
578 
579 	if (error_code & PF_INSTR) {
580 		unsigned int level;
581 
582 		pte_t *pte = lookup_address(address, &level);
583 
584 		if (pte && pte_present(*pte) && !pte_exec(*pte))
585 			printk(nx_warning, current_uid());
586 	}
587 
588 	printk(KERN_ALERT "BUG: unable to handle kernel ");
589 	if (address < PAGE_SIZE)
590 		printk(KERN_CONT "NULL pointer dereference");
591 	else
592 		printk(KERN_CONT "paging request");
593 
594 	printk(KERN_CONT " at %p\n", (void *) address);
595 	printk(KERN_ALERT "IP:");
596 	printk_address(regs->ip, 1);
597 
598 	dump_pagetable(address);
599 }
600 
601 static noinline void
602 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
603 	    unsigned long address)
604 {
605 	struct task_struct *tsk;
606 	unsigned long flags;
607 	int sig;
608 
609 	flags = oops_begin();
610 	tsk = current;
611 	sig = SIGKILL;
612 
613 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
614 	       tsk->comm, address);
615 	dump_pagetable(address);
616 
617 	tsk->thread.cr2		= address;
618 	tsk->thread.trap_nr	= X86_TRAP_PF;
619 	tsk->thread.error_code	= error_code;
620 
621 	if (__die("Bad pagetable", regs, error_code))
622 		sig = 0;
623 
624 	oops_end(flags, regs, sig);
625 }
626 
627 static noinline void
628 no_context(struct pt_regs *regs, unsigned long error_code,
629 	   unsigned long address, int signal, int si_code)
630 {
631 	struct task_struct *tsk = current;
632 	unsigned long *stackend;
633 	unsigned long flags;
634 	int sig;
635 
636 	/* Are we prepared to handle this kernel fault? */
637 	if (fixup_exception(regs)) {
638 		if (current_thread_info()->sig_on_uaccess_error && signal) {
639 			tsk->thread.trap_nr = X86_TRAP_PF;
640 			tsk->thread.error_code = error_code | PF_USER;
641 			tsk->thread.cr2 = address;
642 
643 			/* XXX: hwpoison faults will set the wrong code. */
644 			force_sig_info_fault(signal, si_code, address, tsk, 0);
645 		}
646 		return;
647 	}
648 
649 	/*
650 	 * 32-bit:
651 	 *
652 	 *   Valid to do another page fault here, because if this fault
653 	 *   had been triggered by is_prefetch fixup_exception would have
654 	 *   handled it.
655 	 *
656 	 * 64-bit:
657 	 *
658 	 *   Hall of shame of CPU/BIOS bugs.
659 	 */
660 	if (is_prefetch(regs, error_code, address))
661 		return;
662 
663 	if (is_errata93(regs, address))
664 		return;
665 
666 	/*
667 	 * Oops. The kernel tried to access some bad page. We'll have to
668 	 * terminate things with extreme prejudice:
669 	 */
670 	flags = oops_begin();
671 
672 	show_fault_oops(regs, error_code, address);
673 
674 	stackend = end_of_stack(tsk);
675 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
676 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
677 
678 	tsk->thread.cr2		= address;
679 	tsk->thread.trap_nr	= X86_TRAP_PF;
680 	tsk->thread.error_code	= error_code;
681 
682 	sig = SIGKILL;
683 	if (__die("Oops", regs, error_code))
684 		sig = 0;
685 
686 	/* Executive summary in case the body of the oops scrolled away */
687 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
688 
689 	oops_end(flags, regs, sig);
690 }
691 
692 /*
693  * Print out info about fatal segfaults, if the show_unhandled_signals
694  * sysctl is set:
695  */
696 static inline void
697 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
698 		unsigned long address, struct task_struct *tsk)
699 {
700 	if (!unhandled_signal(tsk, SIGSEGV))
701 		return;
702 
703 	if (!printk_ratelimit())
704 		return;
705 
706 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
707 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
708 		tsk->comm, task_pid_nr(tsk), address,
709 		(void *)regs->ip, (void *)regs->sp, error_code);
710 
711 	print_vma_addr(KERN_CONT " in ", regs->ip);
712 
713 	printk(KERN_CONT "\n");
714 }
715 
716 static void
717 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
718 		       unsigned long address, int si_code)
719 {
720 	struct task_struct *tsk = current;
721 
722 	/* User mode accesses just cause a SIGSEGV */
723 	if (error_code & PF_USER) {
724 		/*
725 		 * It's possible to have interrupts off here:
726 		 */
727 		local_irq_enable();
728 
729 		/*
730 		 * Valid to do another page fault here because this one came
731 		 * from user space:
732 		 */
733 		if (is_prefetch(regs, error_code, address))
734 			return;
735 
736 		if (is_errata100(regs, address))
737 			return;
738 
739 #ifdef CONFIG_X86_64
740 		/*
741 		 * Instruction fetch faults in the vsyscall page might need
742 		 * emulation.
743 		 */
744 		if (unlikely((error_code & PF_INSTR) &&
745 			     ((address & ~0xfff) == VSYSCALL_START))) {
746 			if (emulate_vsyscall(regs, address))
747 				return;
748 		}
749 #endif
750 
751 		if (unlikely(show_unhandled_signals))
752 			show_signal_msg(regs, error_code, address, tsk);
753 
754 		/* Kernel addresses are always protection faults: */
755 		tsk->thread.cr2		= address;
756 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
757 		tsk->thread.trap_nr	= X86_TRAP_PF;
758 
759 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
760 
761 		return;
762 	}
763 
764 	if (is_f00f_bug(regs, address))
765 		return;
766 
767 	no_context(regs, error_code, address, SIGSEGV, si_code);
768 }
769 
770 static noinline void
771 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
772 		     unsigned long address)
773 {
774 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
775 }
776 
777 static void
778 __bad_area(struct pt_regs *regs, unsigned long error_code,
779 	   unsigned long address, int si_code)
780 {
781 	struct mm_struct *mm = current->mm;
782 
783 	/*
784 	 * Something tried to access memory that isn't in our memory map..
785 	 * Fix it, but check if it's kernel or user first..
786 	 */
787 	up_read(&mm->mmap_sem);
788 
789 	__bad_area_nosemaphore(regs, error_code, address, si_code);
790 }
791 
792 static noinline void
793 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
794 {
795 	__bad_area(regs, error_code, address, SEGV_MAPERR);
796 }
797 
798 static noinline void
799 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
800 		      unsigned long address)
801 {
802 	__bad_area(regs, error_code, address, SEGV_ACCERR);
803 }
804 
805 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
806 static void
807 out_of_memory(struct pt_regs *regs, unsigned long error_code,
808 	      unsigned long address)
809 {
810 	/*
811 	 * We ran out of memory, call the OOM killer, and return the userspace
812 	 * (which will retry the fault, or kill us if we got oom-killed):
813 	 */
814 	up_read(&current->mm->mmap_sem);
815 
816 	pagefault_out_of_memory();
817 }
818 
819 static void
820 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
821 	  unsigned int fault)
822 {
823 	struct task_struct *tsk = current;
824 	struct mm_struct *mm = tsk->mm;
825 	int code = BUS_ADRERR;
826 
827 	up_read(&mm->mmap_sem);
828 
829 	/* Kernel mode? Handle exceptions or die: */
830 	if (!(error_code & PF_USER)) {
831 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
832 		return;
833 	}
834 
835 	/* User-space => ok to do another page fault: */
836 	if (is_prefetch(regs, error_code, address))
837 		return;
838 
839 	tsk->thread.cr2		= address;
840 	tsk->thread.error_code	= error_code;
841 	tsk->thread.trap_nr	= X86_TRAP_PF;
842 
843 #ifdef CONFIG_MEMORY_FAILURE
844 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
845 		printk(KERN_ERR
846 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
847 			tsk->comm, tsk->pid, address);
848 		code = BUS_MCEERR_AR;
849 	}
850 #endif
851 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
852 }
853 
854 static noinline int
855 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
856 	       unsigned long address, unsigned int fault)
857 {
858 	/*
859 	 * Pagefault was interrupted by SIGKILL. We have no reason to
860 	 * continue pagefault.
861 	 */
862 	if (fatal_signal_pending(current)) {
863 		if (!(fault & VM_FAULT_RETRY))
864 			up_read(&current->mm->mmap_sem);
865 		if (!(error_code & PF_USER))
866 			no_context(regs, error_code, address, 0, 0);
867 		return 1;
868 	}
869 	if (!(fault & VM_FAULT_ERROR))
870 		return 0;
871 
872 	if (fault & VM_FAULT_OOM) {
873 		/* Kernel mode? Handle exceptions or die: */
874 		if (!(error_code & PF_USER)) {
875 			up_read(&current->mm->mmap_sem);
876 			no_context(regs, error_code, address,
877 				   SIGSEGV, SEGV_MAPERR);
878 			return 1;
879 		}
880 
881 		out_of_memory(regs, error_code, address);
882 	} else {
883 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
884 			     VM_FAULT_HWPOISON_LARGE))
885 			do_sigbus(regs, error_code, address, fault);
886 		else
887 			BUG();
888 	}
889 	return 1;
890 }
891 
892 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
893 {
894 	if ((error_code & PF_WRITE) && !pte_write(*pte))
895 		return 0;
896 
897 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
898 		return 0;
899 
900 	return 1;
901 }
902 
903 /*
904  * Handle a spurious fault caused by a stale TLB entry.
905  *
906  * This allows us to lazily refresh the TLB when increasing the
907  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
908  * eagerly is very expensive since that implies doing a full
909  * cross-processor TLB flush, even if no stale TLB entries exist
910  * on other processors.
911  *
912  * There are no security implications to leaving a stale TLB when
913  * increasing the permissions on a page.
914  */
915 static noinline __kprobes int
916 spurious_fault(unsigned long error_code, unsigned long address)
917 {
918 	pgd_t *pgd;
919 	pud_t *pud;
920 	pmd_t *pmd;
921 	pte_t *pte;
922 	int ret;
923 
924 	/* Reserved-bit violation or user access to kernel space? */
925 	if (error_code & (PF_USER | PF_RSVD))
926 		return 0;
927 
928 	pgd = init_mm.pgd + pgd_index(address);
929 	if (!pgd_present(*pgd))
930 		return 0;
931 
932 	pud = pud_offset(pgd, address);
933 	if (!pud_present(*pud))
934 		return 0;
935 
936 	if (pud_large(*pud))
937 		return spurious_fault_check(error_code, (pte_t *) pud);
938 
939 	pmd = pmd_offset(pud, address);
940 	if (!pmd_present(*pmd))
941 		return 0;
942 
943 	if (pmd_large(*pmd))
944 		return spurious_fault_check(error_code, (pte_t *) pmd);
945 
946 	/*
947 	 * Note: don't use pte_present() here, since it returns true
948 	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
949 	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
950 	 * when CONFIG_DEBUG_PAGEALLOC is used.
951 	 */
952 	pte = pte_offset_kernel(pmd, address);
953 	if (!(pte_flags(*pte) & _PAGE_PRESENT))
954 		return 0;
955 
956 	ret = spurious_fault_check(error_code, pte);
957 	if (!ret)
958 		return 0;
959 
960 	/*
961 	 * Make sure we have permissions in PMD.
962 	 * If not, then there's a bug in the page tables:
963 	 */
964 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
965 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
966 
967 	return ret;
968 }
969 
970 int show_unhandled_signals = 1;
971 
972 static inline int
973 access_error(unsigned long error_code, struct vm_area_struct *vma)
974 {
975 	if (error_code & PF_WRITE) {
976 		/* write, present and write, not present: */
977 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
978 			return 1;
979 		return 0;
980 	}
981 
982 	/* read, present: */
983 	if (unlikely(error_code & PF_PROT))
984 		return 1;
985 
986 	/* read, not present: */
987 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
988 		return 1;
989 
990 	return 0;
991 }
992 
993 static int fault_in_kernel_space(unsigned long address)
994 {
995 	return address >= TASK_SIZE_MAX;
996 }
997 
998 /*
999  * This routine handles page faults.  It determines the address,
1000  * and the problem, and then passes it off to one of the appropriate
1001  * routines.
1002  */
1003 dotraplinkage void __kprobes
1004 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1005 {
1006 	struct vm_area_struct *vma;
1007 	struct task_struct *tsk;
1008 	unsigned long address;
1009 	struct mm_struct *mm;
1010 	int fault;
1011 	int write = error_code & PF_WRITE;
1012 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
1013 					(write ? FAULT_FLAG_WRITE : 0);
1014 
1015 	tsk = current;
1016 	mm = tsk->mm;
1017 
1018 	/* Get the faulting address: */
1019 	address = read_cr2();
1020 
1021 	/*
1022 	 * Detect and handle instructions that would cause a page fault for
1023 	 * both a tracked kernel page and a userspace page.
1024 	 */
1025 	if (kmemcheck_active(regs))
1026 		kmemcheck_hide(regs);
1027 	prefetchw(&mm->mmap_sem);
1028 
1029 	if (unlikely(kmmio_fault(regs, address)))
1030 		return;
1031 
1032 	/*
1033 	 * We fault-in kernel-space virtual memory on-demand. The
1034 	 * 'reference' page table is init_mm.pgd.
1035 	 *
1036 	 * NOTE! We MUST NOT take any locks for this case. We may
1037 	 * be in an interrupt or a critical region, and should
1038 	 * only copy the information from the master page table,
1039 	 * nothing more.
1040 	 *
1041 	 * This verifies that the fault happens in kernel space
1042 	 * (error_code & 4) == 0, and that the fault was not a
1043 	 * protection error (error_code & 9) == 0.
1044 	 */
1045 	if (unlikely(fault_in_kernel_space(address))) {
1046 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1047 			if (vmalloc_fault(address) >= 0)
1048 				return;
1049 
1050 			if (kmemcheck_fault(regs, address, error_code))
1051 				return;
1052 		}
1053 
1054 		/* Can handle a stale RO->RW TLB: */
1055 		if (spurious_fault(error_code, address))
1056 			return;
1057 
1058 		/* kprobes don't want to hook the spurious faults: */
1059 		if (notify_page_fault(regs))
1060 			return;
1061 		/*
1062 		 * Don't take the mm semaphore here. If we fixup a prefetch
1063 		 * fault we could otherwise deadlock:
1064 		 */
1065 		bad_area_nosemaphore(regs, error_code, address);
1066 
1067 		return;
1068 	}
1069 
1070 	/* kprobes don't want to hook the spurious faults: */
1071 	if (unlikely(notify_page_fault(regs)))
1072 		return;
1073 	/*
1074 	 * It's safe to allow irq's after cr2 has been saved and the
1075 	 * vmalloc fault has been handled.
1076 	 *
1077 	 * User-mode registers count as a user access even for any
1078 	 * potential system fault or CPU buglet:
1079 	 */
1080 	if (user_mode_vm(regs)) {
1081 		local_irq_enable();
1082 		error_code |= PF_USER;
1083 	} else {
1084 		if (regs->flags & X86_EFLAGS_IF)
1085 			local_irq_enable();
1086 	}
1087 
1088 	if (unlikely(error_code & PF_RSVD))
1089 		pgtable_bad(regs, error_code, address);
1090 
1091 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1092 
1093 	/*
1094 	 * If we're in an interrupt, have no user context or are running
1095 	 * in an atomic region then we must not take the fault:
1096 	 */
1097 	if (unlikely(in_atomic() || !mm)) {
1098 		bad_area_nosemaphore(regs, error_code, address);
1099 		return;
1100 	}
1101 
1102 	/*
1103 	 * When running in the kernel we expect faults to occur only to
1104 	 * addresses in user space.  All other faults represent errors in
1105 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1106 	 * case of an erroneous fault occurring in a code path which already
1107 	 * holds mmap_sem we will deadlock attempting to validate the fault
1108 	 * against the address space.  Luckily the kernel only validly
1109 	 * references user space from well defined areas of code, which are
1110 	 * listed in the exceptions table.
1111 	 *
1112 	 * As the vast majority of faults will be valid we will only perform
1113 	 * the source reference check when there is a possibility of a
1114 	 * deadlock. Attempt to lock the address space, if we cannot we then
1115 	 * validate the source. If this is invalid we can skip the address
1116 	 * space check, thus avoiding the deadlock:
1117 	 */
1118 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1119 		if ((error_code & PF_USER) == 0 &&
1120 		    !search_exception_tables(regs->ip)) {
1121 			bad_area_nosemaphore(regs, error_code, address);
1122 			return;
1123 		}
1124 retry:
1125 		down_read(&mm->mmap_sem);
1126 	} else {
1127 		/*
1128 		 * The above down_read_trylock() might have succeeded in
1129 		 * which case we'll have missed the might_sleep() from
1130 		 * down_read():
1131 		 */
1132 		might_sleep();
1133 	}
1134 
1135 	vma = find_vma(mm, address);
1136 	if (unlikely(!vma)) {
1137 		bad_area(regs, error_code, address);
1138 		return;
1139 	}
1140 	if (likely(vma->vm_start <= address))
1141 		goto good_area;
1142 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1143 		bad_area(regs, error_code, address);
1144 		return;
1145 	}
1146 	if (error_code & PF_USER) {
1147 		/*
1148 		 * Accessing the stack below %sp is always a bug.
1149 		 * The large cushion allows instructions like enter
1150 		 * and pusha to work. ("enter $65535, $31" pushes
1151 		 * 32 pointers and then decrements %sp by 65535.)
1152 		 */
1153 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1154 			bad_area(regs, error_code, address);
1155 			return;
1156 		}
1157 	}
1158 	if (unlikely(expand_stack(vma, address))) {
1159 		bad_area(regs, error_code, address);
1160 		return;
1161 	}
1162 
1163 	/*
1164 	 * Ok, we have a good vm_area for this memory access, so
1165 	 * we can handle it..
1166 	 */
1167 good_area:
1168 	if (unlikely(access_error(error_code, vma))) {
1169 		bad_area_access_error(regs, error_code, address);
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * If for any reason at all we couldn't handle the fault,
1175 	 * make sure we exit gracefully rather than endlessly redo
1176 	 * the fault:
1177 	 */
1178 	fault = handle_mm_fault(mm, vma, address, flags);
1179 
1180 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1181 		if (mm_fault_error(regs, error_code, address, fault))
1182 			return;
1183 	}
1184 
1185 	/*
1186 	 * Major/minor page fault accounting is only done on the
1187 	 * initial attempt. If we go through a retry, it is extremely
1188 	 * likely that the page will be found in page cache at that point.
1189 	 */
1190 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1191 		if (fault & VM_FAULT_MAJOR) {
1192 			tsk->maj_flt++;
1193 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1194 				      regs, address);
1195 		} else {
1196 			tsk->min_flt++;
1197 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1198 				      regs, address);
1199 		}
1200 		if (fault & VM_FAULT_RETRY) {
1201 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1202 			 * of starvation. */
1203 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1204 			goto retry;
1205 		}
1206 	}
1207 
1208 	check_v8086_mode(regs, address, tsk);
1209 
1210 	up_read(&mm->mmap_sem);
1211 }
1212