xref: /openbmc/linux/arch/x86/mm/fault.c (revision 50fc8d92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
29 #include <asm/desc.h>			/* store_idt(), ...		*/
30 #include <asm/cpu_entry_area.h>		/* exception stack		*/
31 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
32 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
33 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
34 
35 #define CREATE_TRACE_POINTS
36 #include <asm/trace/exceptions.h>
37 
38 /*
39  * Returns 0 if mmiotrace is disabled, or if the fault is not
40  * handled by mmiotrace:
41  */
42 static nokprobe_inline int
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 {
45 	if (unlikely(is_kmmio_active()))
46 		if (kmmio_handler(regs, addr) == 1)
47 			return -1;
48 	return 0;
49 }
50 
51 /*
52  * Prefetch quirks:
53  *
54  * 32-bit mode:
55  *
56  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
57  *   Check that here and ignore it.
58  *
59  * 64-bit mode:
60  *
61  *   Sometimes the CPU reports invalid exceptions on prefetch.
62  *   Check that here and ignore it.
63  *
64  * Opcode checker based on code by Richard Brunner.
65  */
66 static inline int
67 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
68 		      unsigned char opcode, int *prefetch)
69 {
70 	unsigned char instr_hi = opcode & 0xf0;
71 	unsigned char instr_lo = opcode & 0x0f;
72 
73 	switch (instr_hi) {
74 	case 0x20:
75 	case 0x30:
76 		/*
77 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
78 		 * In X86_64 long mode, the CPU will signal invalid
79 		 * opcode if some of these prefixes are present so
80 		 * X86_64 will never get here anyway
81 		 */
82 		return ((instr_lo & 7) == 0x6);
83 #ifdef CONFIG_X86_64
84 	case 0x40:
85 		/*
86 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
87 		 * Need to figure out under what instruction mode the
88 		 * instruction was issued. Could check the LDT for lm,
89 		 * but for now it's good enough to assume that long
90 		 * mode only uses well known segments or kernel.
91 		 */
92 		return (!user_mode(regs) || user_64bit_mode(regs));
93 #endif
94 	case 0x60:
95 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
96 		return (instr_lo & 0xC) == 0x4;
97 	case 0xF0:
98 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
99 		return !instr_lo || (instr_lo>>1) == 1;
100 	case 0x00:
101 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
102 		if (get_kernel_nofault(opcode, instr))
103 			return 0;
104 
105 		*prefetch = (instr_lo == 0xF) &&
106 			(opcode == 0x0D || opcode == 0x18);
107 		return 0;
108 	default:
109 		return 0;
110 	}
111 }
112 
113 static int
114 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
115 {
116 	unsigned char *max_instr;
117 	unsigned char *instr;
118 	int prefetch = 0;
119 
120 	/*
121 	 * If it was a exec (instruction fetch) fault on NX page, then
122 	 * do not ignore the fault:
123 	 */
124 	if (error_code & X86_PF_INSTR)
125 		return 0;
126 
127 	instr = (void *)convert_ip_to_linear(current, regs);
128 	max_instr = instr + 15;
129 
130 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
131 		return 0;
132 
133 	while (instr < max_instr) {
134 		unsigned char opcode;
135 
136 		if (get_kernel_nofault(opcode, instr))
137 			break;
138 
139 		instr++;
140 
141 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
142 			break;
143 	}
144 	return prefetch;
145 }
146 
147 DEFINE_SPINLOCK(pgd_lock);
148 LIST_HEAD(pgd_list);
149 
150 #ifdef CONFIG_X86_32
151 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
152 {
153 	unsigned index = pgd_index(address);
154 	pgd_t *pgd_k;
155 	p4d_t *p4d, *p4d_k;
156 	pud_t *pud, *pud_k;
157 	pmd_t *pmd, *pmd_k;
158 
159 	pgd += index;
160 	pgd_k = init_mm.pgd + index;
161 
162 	if (!pgd_present(*pgd_k))
163 		return NULL;
164 
165 	/*
166 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
167 	 * and redundant with the set_pmd() on non-PAE. As would
168 	 * set_p4d/set_pud.
169 	 */
170 	p4d = p4d_offset(pgd, address);
171 	p4d_k = p4d_offset(pgd_k, address);
172 	if (!p4d_present(*p4d_k))
173 		return NULL;
174 
175 	pud = pud_offset(p4d, address);
176 	pud_k = pud_offset(p4d_k, address);
177 	if (!pud_present(*pud_k))
178 		return NULL;
179 
180 	pmd = pmd_offset(pud, address);
181 	pmd_k = pmd_offset(pud_k, address);
182 
183 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
184 		set_pmd(pmd, *pmd_k);
185 
186 	if (!pmd_present(*pmd_k))
187 		return NULL;
188 	else
189 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
190 
191 	return pmd_k;
192 }
193 
194 /*
195  *   Handle a fault on the vmalloc or module mapping area
196  *
197  *   This is needed because there is a race condition between the time
198  *   when the vmalloc mapping code updates the PMD to the point in time
199  *   where it synchronizes this update with the other page-tables in the
200  *   system.
201  *
202  *   In this race window another thread/CPU can map an area on the same
203  *   PMD, finds it already present and does not synchronize it with the
204  *   rest of the system yet. As a result v[mz]alloc might return areas
205  *   which are not mapped in every page-table in the system, causing an
206  *   unhandled page-fault when they are accessed.
207  */
208 static noinline int vmalloc_fault(unsigned long address)
209 {
210 	unsigned long pgd_paddr;
211 	pmd_t *pmd_k;
212 	pte_t *pte_k;
213 
214 	/* Make sure we are in vmalloc area: */
215 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
216 		return -1;
217 
218 	/*
219 	 * Synchronize this task's top level page-table
220 	 * with the 'reference' page table.
221 	 *
222 	 * Do _not_ use "current" here. We might be inside
223 	 * an interrupt in the middle of a task switch..
224 	 */
225 	pgd_paddr = read_cr3_pa();
226 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
227 	if (!pmd_k)
228 		return -1;
229 
230 	if (pmd_large(*pmd_k))
231 		return 0;
232 
233 	pte_k = pte_offset_kernel(pmd_k, address);
234 	if (!pte_present(*pte_k))
235 		return -1;
236 
237 	return 0;
238 }
239 NOKPROBE_SYMBOL(vmalloc_fault);
240 
241 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
242 {
243 	unsigned long addr;
244 
245 	for (addr = start & PMD_MASK;
246 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
247 	     addr += PMD_SIZE) {
248 		struct page *page;
249 
250 		spin_lock(&pgd_lock);
251 		list_for_each_entry(page, &pgd_list, lru) {
252 			spinlock_t *pgt_lock;
253 
254 			/* the pgt_lock only for Xen */
255 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
256 
257 			spin_lock(pgt_lock);
258 			vmalloc_sync_one(page_address(page), addr);
259 			spin_unlock(pgt_lock);
260 		}
261 		spin_unlock(&pgd_lock);
262 	}
263 }
264 
265 /*
266  * Did it hit the DOS screen memory VA from vm86 mode?
267  */
268 static inline void
269 check_v8086_mode(struct pt_regs *regs, unsigned long address,
270 		 struct task_struct *tsk)
271 {
272 #ifdef CONFIG_VM86
273 	unsigned long bit;
274 
275 	if (!v8086_mode(regs) || !tsk->thread.vm86)
276 		return;
277 
278 	bit = (address - 0xA0000) >> PAGE_SHIFT;
279 	if (bit < 32)
280 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
281 #endif
282 }
283 
284 static bool low_pfn(unsigned long pfn)
285 {
286 	return pfn < max_low_pfn;
287 }
288 
289 static void dump_pagetable(unsigned long address)
290 {
291 	pgd_t *base = __va(read_cr3_pa());
292 	pgd_t *pgd = &base[pgd_index(address)];
293 	p4d_t *p4d;
294 	pud_t *pud;
295 	pmd_t *pmd;
296 	pte_t *pte;
297 
298 #ifdef CONFIG_X86_PAE
299 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
300 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
301 		goto out;
302 #define pr_pde pr_cont
303 #else
304 #define pr_pde pr_info
305 #endif
306 	p4d = p4d_offset(pgd, address);
307 	pud = pud_offset(p4d, address);
308 	pmd = pmd_offset(pud, address);
309 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
310 #undef pr_pde
311 
312 	/*
313 	 * We must not directly access the pte in the highpte
314 	 * case if the page table is located in highmem.
315 	 * And let's rather not kmap-atomic the pte, just in case
316 	 * it's allocated already:
317 	 */
318 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
319 		goto out;
320 
321 	pte = pte_offset_kernel(pmd, address);
322 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
323 out:
324 	pr_cont("\n");
325 }
326 
327 #else /* CONFIG_X86_64: */
328 
329 #ifdef CONFIG_CPU_SUP_AMD
330 static const char errata93_warning[] =
331 KERN_ERR
332 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
333 "******* Working around it, but it may cause SEGVs or burn power.\n"
334 "******* Please consider a BIOS update.\n"
335 "******* Disabling USB legacy in the BIOS may also help.\n";
336 #endif
337 
338 /*
339  * No vm86 mode in 64-bit mode:
340  */
341 static inline void
342 check_v8086_mode(struct pt_regs *regs, unsigned long address,
343 		 struct task_struct *tsk)
344 {
345 }
346 
347 static int bad_address(void *p)
348 {
349 	unsigned long dummy;
350 
351 	return get_kernel_nofault(dummy, (unsigned long *)p);
352 }
353 
354 static void dump_pagetable(unsigned long address)
355 {
356 	pgd_t *base = __va(read_cr3_pa());
357 	pgd_t *pgd = base + pgd_index(address);
358 	p4d_t *p4d;
359 	pud_t *pud;
360 	pmd_t *pmd;
361 	pte_t *pte;
362 
363 	if (bad_address(pgd))
364 		goto bad;
365 
366 	pr_info("PGD %lx ", pgd_val(*pgd));
367 
368 	if (!pgd_present(*pgd))
369 		goto out;
370 
371 	p4d = p4d_offset(pgd, address);
372 	if (bad_address(p4d))
373 		goto bad;
374 
375 	pr_cont("P4D %lx ", p4d_val(*p4d));
376 	if (!p4d_present(*p4d) || p4d_large(*p4d))
377 		goto out;
378 
379 	pud = pud_offset(p4d, address);
380 	if (bad_address(pud))
381 		goto bad;
382 
383 	pr_cont("PUD %lx ", pud_val(*pud));
384 	if (!pud_present(*pud) || pud_large(*pud))
385 		goto out;
386 
387 	pmd = pmd_offset(pud, address);
388 	if (bad_address(pmd))
389 		goto bad;
390 
391 	pr_cont("PMD %lx ", pmd_val(*pmd));
392 	if (!pmd_present(*pmd) || pmd_large(*pmd))
393 		goto out;
394 
395 	pte = pte_offset_kernel(pmd, address);
396 	if (bad_address(pte))
397 		goto bad;
398 
399 	pr_cont("PTE %lx", pte_val(*pte));
400 out:
401 	pr_cont("\n");
402 	return;
403 bad:
404 	pr_info("BAD\n");
405 }
406 
407 #endif /* CONFIG_X86_64 */
408 
409 /*
410  * Workaround for K8 erratum #93 & buggy BIOS.
411  *
412  * BIOS SMM functions are required to use a specific workaround
413  * to avoid corruption of the 64bit RIP register on C stepping K8.
414  *
415  * A lot of BIOS that didn't get tested properly miss this.
416  *
417  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
418  * Try to work around it here.
419  *
420  * Note we only handle faults in kernel here.
421  * Does nothing on 32-bit.
422  */
423 static int is_errata93(struct pt_regs *regs, unsigned long address)
424 {
425 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
426 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
427 	    || boot_cpu_data.x86 != 0xf)
428 		return 0;
429 
430 	if (address != regs->ip)
431 		return 0;
432 
433 	if ((address >> 32) != 0)
434 		return 0;
435 
436 	address |= 0xffffffffUL << 32;
437 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
438 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
439 		printk_once(errata93_warning);
440 		regs->ip = address;
441 		return 1;
442 	}
443 #endif
444 	return 0;
445 }
446 
447 /*
448  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
449  * to illegal addresses >4GB.
450  *
451  * We catch this in the page fault handler because these addresses
452  * are not reachable. Just detect this case and return.  Any code
453  * segment in LDT is compatibility mode.
454  */
455 static int is_errata100(struct pt_regs *regs, unsigned long address)
456 {
457 #ifdef CONFIG_X86_64
458 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
459 		return 1;
460 #endif
461 	return 0;
462 }
463 
464 /* Pentium F0 0F C7 C8 bug workaround: */
465 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
466 {
467 #ifdef CONFIG_X86_F00F_BUG
468 	if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
469 		handle_invalid_op(regs);
470 		return 1;
471 	}
472 #endif
473 	return 0;
474 }
475 
476 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
477 {
478 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
479 	unsigned long addr;
480 	struct ldttss_desc desc;
481 
482 	if (index == 0) {
483 		pr_alert("%s: NULL\n", name);
484 		return;
485 	}
486 
487 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
488 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
489 		return;
490 	}
491 
492 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
493 			      sizeof(struct ldttss_desc))) {
494 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
495 			 name, index);
496 		return;
497 	}
498 
499 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
500 #ifdef CONFIG_X86_64
501 	addr |= ((u64)desc.base3 << 32);
502 #endif
503 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
504 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
505 }
506 
507 static void
508 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
509 {
510 	if (!oops_may_print())
511 		return;
512 
513 	if (error_code & X86_PF_INSTR) {
514 		unsigned int level;
515 		pgd_t *pgd;
516 		pte_t *pte;
517 
518 		pgd = __va(read_cr3_pa());
519 		pgd += pgd_index(address);
520 
521 		pte = lookup_address_in_pgd(pgd, address, &level);
522 
523 		if (pte && pte_present(*pte) && !pte_exec(*pte))
524 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
525 				from_kuid(&init_user_ns, current_uid()));
526 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
527 				(pgd_flags(*pgd) & _PAGE_USER) &&
528 				(__read_cr4() & X86_CR4_SMEP))
529 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
530 				from_kuid(&init_user_ns, current_uid()));
531 	}
532 
533 	if (address < PAGE_SIZE && !user_mode(regs))
534 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
535 			(void *)address);
536 	else
537 		pr_alert("BUG: unable to handle page fault for address: %px\n",
538 			(void *)address);
539 
540 	pr_alert("#PF: %s %s in %s mode\n",
541 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
542 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
543 		 (error_code & X86_PF_WRITE) ? "write access" :
544 					       "read access",
545 			     user_mode(regs) ? "user" : "kernel");
546 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
547 		 !(error_code & X86_PF_PROT) ? "not-present page" :
548 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
549 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
550 					       "permissions violation");
551 
552 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
553 		struct desc_ptr idt, gdt;
554 		u16 ldtr, tr;
555 
556 		/*
557 		 * This can happen for quite a few reasons.  The more obvious
558 		 * ones are faults accessing the GDT, or LDT.  Perhaps
559 		 * surprisingly, if the CPU tries to deliver a benign or
560 		 * contributory exception from user code and gets a page fault
561 		 * during delivery, the page fault can be delivered as though
562 		 * it originated directly from user code.  This could happen
563 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
564 		 * kernel or IST stack.
565 		 */
566 		store_idt(&idt);
567 
568 		/* Usable even on Xen PV -- it's just slow. */
569 		native_store_gdt(&gdt);
570 
571 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
572 			 idt.address, idt.size, gdt.address, gdt.size);
573 
574 		store_ldt(ldtr);
575 		show_ldttss(&gdt, "LDTR", ldtr);
576 
577 		store_tr(tr);
578 		show_ldttss(&gdt, "TR", tr);
579 	}
580 
581 	dump_pagetable(address);
582 }
583 
584 static noinline void
585 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
586 	    unsigned long address)
587 {
588 	struct task_struct *tsk;
589 	unsigned long flags;
590 	int sig;
591 
592 	flags = oops_begin();
593 	tsk = current;
594 	sig = SIGKILL;
595 
596 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
597 	       tsk->comm, address);
598 	dump_pagetable(address);
599 
600 	if (__die("Bad pagetable", regs, error_code))
601 		sig = 0;
602 
603 	oops_end(flags, regs, sig);
604 }
605 
606 static void sanitize_error_code(unsigned long address,
607 				unsigned long *error_code)
608 {
609 	/*
610 	 * To avoid leaking information about the kernel page
611 	 * table layout, pretend that user-mode accesses to
612 	 * kernel addresses are always protection faults.
613 	 *
614 	 * NB: This means that failed vsyscalls with vsyscall=none
615 	 * will have the PROT bit.  This doesn't leak any
616 	 * information and does not appear to cause any problems.
617 	 */
618 	if (address >= TASK_SIZE_MAX)
619 		*error_code |= X86_PF_PROT;
620 }
621 
622 static void set_signal_archinfo(unsigned long address,
623 				unsigned long error_code)
624 {
625 	struct task_struct *tsk = current;
626 
627 	tsk->thread.trap_nr = X86_TRAP_PF;
628 	tsk->thread.error_code = error_code | X86_PF_USER;
629 	tsk->thread.cr2 = address;
630 }
631 
632 static noinline void
633 no_context(struct pt_regs *regs, unsigned long error_code,
634 	   unsigned long address, int signal, int si_code)
635 {
636 	struct task_struct *tsk = current;
637 	unsigned long flags;
638 	int sig;
639 
640 	if (user_mode(regs)) {
641 		/*
642 		 * This is an implicit supervisor-mode access from user
643 		 * mode.  Bypass all the kernel-mode recovery code and just
644 		 * OOPS.
645 		 */
646 		goto oops;
647 	}
648 
649 	/* Are we prepared to handle this kernel fault? */
650 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
651 		/*
652 		 * Any interrupt that takes a fault gets the fixup. This makes
653 		 * the below recursive fault logic only apply to a faults from
654 		 * task context.
655 		 */
656 		if (in_interrupt())
657 			return;
658 
659 		/*
660 		 * Per the above we're !in_interrupt(), aka. task context.
661 		 *
662 		 * In this case we need to make sure we're not recursively
663 		 * faulting through the emulate_vsyscall() logic.
664 		 */
665 		if (current->thread.sig_on_uaccess_err && signal) {
666 			sanitize_error_code(address, &error_code);
667 
668 			set_signal_archinfo(address, error_code);
669 
670 			/* XXX: hwpoison faults will set the wrong code. */
671 			force_sig_fault(signal, si_code, (void __user *)address);
672 		}
673 
674 		/*
675 		 * Barring that, we can do the fixup and be happy.
676 		 */
677 		return;
678 	}
679 
680 #ifdef CONFIG_VMAP_STACK
681 	/*
682 	 * Stack overflow?  During boot, we can fault near the initial
683 	 * stack in the direct map, but that's not an overflow -- check
684 	 * that we're in vmalloc space to avoid this.
685 	 */
686 	if (is_vmalloc_addr((void *)address) &&
687 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
688 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
689 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
690 		/*
691 		 * We're likely to be running with very little stack space
692 		 * left.  It's plausible that we'd hit this condition but
693 		 * double-fault even before we get this far, in which case
694 		 * we're fine: the double-fault handler will deal with it.
695 		 *
696 		 * We don't want to make it all the way into the oops code
697 		 * and then double-fault, though, because we're likely to
698 		 * break the console driver and lose most of the stack dump.
699 		 */
700 		asm volatile ("movq %[stack], %%rsp\n\t"
701 			      "call handle_stack_overflow\n\t"
702 			      "1: jmp 1b"
703 			      : ASM_CALL_CONSTRAINT
704 			      : "D" ("kernel stack overflow (page fault)"),
705 				"S" (regs), "d" (address),
706 				[stack] "rm" (stack));
707 		unreachable();
708 	}
709 #endif
710 
711 	/*
712 	 * 32-bit:
713 	 *
714 	 *   Valid to do another page fault here, because if this fault
715 	 *   had been triggered by is_prefetch fixup_exception would have
716 	 *   handled it.
717 	 *
718 	 * 64-bit:
719 	 *
720 	 *   Hall of shame of CPU/BIOS bugs.
721 	 */
722 	if (is_prefetch(regs, error_code, address))
723 		return;
724 
725 	if (is_errata93(regs, address))
726 		return;
727 
728 	/*
729 	 * Buggy firmware could access regions which might page fault, try to
730 	 * recover from such faults.
731 	 */
732 	if (IS_ENABLED(CONFIG_EFI))
733 		efi_recover_from_page_fault(address);
734 
735 oops:
736 	/*
737 	 * Oops. The kernel tried to access some bad page. We'll have to
738 	 * terminate things with extreme prejudice:
739 	 */
740 	flags = oops_begin();
741 
742 	show_fault_oops(regs, error_code, address);
743 
744 	if (task_stack_end_corrupted(tsk))
745 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
746 
747 	sig = SIGKILL;
748 	if (__die("Oops", regs, error_code))
749 		sig = 0;
750 
751 	/* Executive summary in case the body of the oops scrolled away */
752 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
753 
754 	oops_end(flags, regs, sig);
755 }
756 
757 /*
758  * Print out info about fatal segfaults, if the show_unhandled_signals
759  * sysctl is set:
760  */
761 static inline void
762 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
763 		unsigned long address, struct task_struct *tsk)
764 {
765 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
766 
767 	if (!unhandled_signal(tsk, SIGSEGV))
768 		return;
769 
770 	if (!printk_ratelimit())
771 		return;
772 
773 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
774 		loglvl, tsk->comm, task_pid_nr(tsk), address,
775 		(void *)regs->ip, (void *)regs->sp, error_code);
776 
777 	print_vma_addr(KERN_CONT " in ", regs->ip);
778 
779 	printk(KERN_CONT "\n");
780 
781 	show_opcodes(regs, loglvl);
782 }
783 
784 /*
785  * The (legacy) vsyscall page is the long page in the kernel portion
786  * of the address space that has user-accessible permissions.
787  */
788 static bool is_vsyscall_vaddr(unsigned long vaddr)
789 {
790 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
791 }
792 
793 static void
794 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
795 		       unsigned long address, u32 pkey, int si_code)
796 {
797 	struct task_struct *tsk = current;
798 
799 	/* User mode accesses just cause a SIGSEGV */
800 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
801 		/*
802 		 * It's possible to have interrupts off here:
803 		 */
804 		local_irq_enable();
805 
806 		/*
807 		 * Valid to do another page fault here because this one came
808 		 * from user space:
809 		 */
810 		if (is_prefetch(regs, error_code, address))
811 			return;
812 
813 		if (is_errata100(regs, address))
814 			return;
815 
816 		sanitize_error_code(address, &error_code);
817 
818 		if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
819 			return;
820 
821 		if (likely(show_unhandled_signals))
822 			show_signal_msg(regs, error_code, address, tsk);
823 
824 		set_signal_archinfo(address, error_code);
825 
826 		if (si_code == SEGV_PKUERR)
827 			force_sig_pkuerr((void __user *)address, pkey);
828 
829 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
830 
831 		local_irq_disable();
832 
833 		return;
834 	}
835 
836 	if (is_f00f_bug(regs, address))
837 		return;
838 
839 	no_context(regs, error_code, address, SIGSEGV, si_code);
840 }
841 
842 static noinline void
843 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
844 		     unsigned long address)
845 {
846 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
847 }
848 
849 static void
850 __bad_area(struct pt_regs *regs, unsigned long error_code,
851 	   unsigned long address, u32 pkey, int si_code)
852 {
853 	struct mm_struct *mm = current->mm;
854 	/*
855 	 * Something tried to access memory that isn't in our memory map..
856 	 * Fix it, but check if it's kernel or user first..
857 	 */
858 	mmap_read_unlock(mm);
859 
860 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
861 }
862 
863 static noinline void
864 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
865 {
866 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
867 }
868 
869 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
870 		struct vm_area_struct *vma)
871 {
872 	/* This code is always called on the current mm */
873 	bool foreign = false;
874 
875 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
876 		return false;
877 	if (error_code & X86_PF_PK)
878 		return true;
879 	/* this checks permission keys on the VMA: */
880 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
881 				       (error_code & X86_PF_INSTR), foreign))
882 		return true;
883 	return false;
884 }
885 
886 static noinline void
887 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
888 		      unsigned long address, struct vm_area_struct *vma)
889 {
890 	/*
891 	 * This OSPKE check is not strictly necessary at runtime.
892 	 * But, doing it this way allows compiler optimizations
893 	 * if pkeys are compiled out.
894 	 */
895 	if (bad_area_access_from_pkeys(error_code, vma)) {
896 		/*
897 		 * A protection key fault means that the PKRU value did not allow
898 		 * access to some PTE.  Userspace can figure out what PKRU was
899 		 * from the XSAVE state.  This function captures the pkey from
900 		 * the vma and passes it to userspace so userspace can discover
901 		 * which protection key was set on the PTE.
902 		 *
903 		 * If we get here, we know that the hardware signaled a X86_PF_PK
904 		 * fault and that there was a VMA once we got in the fault
905 		 * handler.  It does *not* guarantee that the VMA we find here
906 		 * was the one that we faulted on.
907 		 *
908 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
909 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
910 		 * 3. T1   : faults...
911 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
912 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
913 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
914 		 *	     faulted on a pte with its pkey=4.
915 		 */
916 		u32 pkey = vma_pkey(vma);
917 
918 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
919 	} else {
920 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
921 	}
922 }
923 
924 static void
925 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
926 	  vm_fault_t fault)
927 {
928 	/* Kernel mode? Handle exceptions or die: */
929 	if (!(error_code & X86_PF_USER)) {
930 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
931 		return;
932 	}
933 
934 	/* User-space => ok to do another page fault: */
935 	if (is_prefetch(regs, error_code, address))
936 		return;
937 
938 	sanitize_error_code(address, &error_code);
939 
940 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
941 		return;
942 
943 	set_signal_archinfo(address, error_code);
944 
945 #ifdef CONFIG_MEMORY_FAILURE
946 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
947 		struct task_struct *tsk = current;
948 		unsigned lsb = 0;
949 
950 		pr_err(
951 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
952 			tsk->comm, tsk->pid, address);
953 		if (fault & VM_FAULT_HWPOISON_LARGE)
954 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
955 		if (fault & VM_FAULT_HWPOISON)
956 			lsb = PAGE_SHIFT;
957 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
958 		return;
959 	}
960 #endif
961 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
962 }
963 
964 static noinline void
965 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
966 	       unsigned long address, vm_fault_t fault)
967 {
968 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
969 		no_context(regs, error_code, address, 0, 0);
970 		return;
971 	}
972 
973 	if (fault & VM_FAULT_OOM) {
974 		/* Kernel mode? Handle exceptions or die: */
975 		if (!(error_code & X86_PF_USER)) {
976 			no_context(regs, error_code, address,
977 				   SIGSEGV, SEGV_MAPERR);
978 			return;
979 		}
980 
981 		/*
982 		 * We ran out of memory, call the OOM killer, and return the
983 		 * userspace (which will retry the fault, or kill us if we got
984 		 * oom-killed):
985 		 */
986 		pagefault_out_of_memory();
987 	} else {
988 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
989 			     VM_FAULT_HWPOISON_LARGE))
990 			do_sigbus(regs, error_code, address, fault);
991 		else if (fault & VM_FAULT_SIGSEGV)
992 			bad_area_nosemaphore(regs, error_code, address);
993 		else
994 			BUG();
995 	}
996 }
997 
998 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
999 {
1000 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1001 		return 0;
1002 
1003 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1004 		return 0;
1005 
1006 	return 1;
1007 }
1008 
1009 /*
1010  * Handle a spurious fault caused by a stale TLB entry.
1011  *
1012  * This allows us to lazily refresh the TLB when increasing the
1013  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1014  * eagerly is very expensive since that implies doing a full
1015  * cross-processor TLB flush, even if no stale TLB entries exist
1016  * on other processors.
1017  *
1018  * Spurious faults may only occur if the TLB contains an entry with
1019  * fewer permission than the page table entry.  Non-present (P = 0)
1020  * and reserved bit (R = 1) faults are never spurious.
1021  *
1022  * There are no security implications to leaving a stale TLB when
1023  * increasing the permissions on a page.
1024  *
1025  * Returns non-zero if a spurious fault was handled, zero otherwise.
1026  *
1027  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1028  * (Optional Invalidation).
1029  */
1030 static noinline int
1031 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1032 {
1033 	pgd_t *pgd;
1034 	p4d_t *p4d;
1035 	pud_t *pud;
1036 	pmd_t *pmd;
1037 	pte_t *pte;
1038 	int ret;
1039 
1040 	/*
1041 	 * Only writes to RO or instruction fetches from NX may cause
1042 	 * spurious faults.
1043 	 *
1044 	 * These could be from user or supervisor accesses but the TLB
1045 	 * is only lazily flushed after a kernel mapping protection
1046 	 * change, so user accesses are not expected to cause spurious
1047 	 * faults.
1048 	 */
1049 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1050 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1051 		return 0;
1052 
1053 	pgd = init_mm.pgd + pgd_index(address);
1054 	if (!pgd_present(*pgd))
1055 		return 0;
1056 
1057 	p4d = p4d_offset(pgd, address);
1058 	if (!p4d_present(*p4d))
1059 		return 0;
1060 
1061 	if (p4d_large(*p4d))
1062 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1063 
1064 	pud = pud_offset(p4d, address);
1065 	if (!pud_present(*pud))
1066 		return 0;
1067 
1068 	if (pud_large(*pud))
1069 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1070 
1071 	pmd = pmd_offset(pud, address);
1072 	if (!pmd_present(*pmd))
1073 		return 0;
1074 
1075 	if (pmd_large(*pmd))
1076 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1077 
1078 	pte = pte_offset_kernel(pmd, address);
1079 	if (!pte_present(*pte))
1080 		return 0;
1081 
1082 	ret = spurious_kernel_fault_check(error_code, pte);
1083 	if (!ret)
1084 		return 0;
1085 
1086 	/*
1087 	 * Make sure we have permissions in PMD.
1088 	 * If not, then there's a bug in the page tables:
1089 	 */
1090 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1091 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1092 
1093 	return ret;
1094 }
1095 NOKPROBE_SYMBOL(spurious_kernel_fault);
1096 
1097 int show_unhandled_signals = 1;
1098 
1099 static inline int
1100 access_error(unsigned long error_code, struct vm_area_struct *vma)
1101 {
1102 	/* This is only called for the current mm, so: */
1103 	bool foreign = false;
1104 
1105 	/*
1106 	 * Read or write was blocked by protection keys.  This is
1107 	 * always an unconditional error and can never result in
1108 	 * a follow-up action to resolve the fault, like a COW.
1109 	 */
1110 	if (error_code & X86_PF_PK)
1111 		return 1;
1112 
1113 	/*
1114 	 * SGX hardware blocked the access.  This usually happens
1115 	 * when the enclave memory contents have been destroyed, like
1116 	 * after a suspend/resume cycle. In any case, the kernel can't
1117 	 * fix the cause of the fault.  Handle the fault as an access
1118 	 * error even in cases where no actual access violation
1119 	 * occurred.  This allows userspace to rebuild the enclave in
1120 	 * response to the signal.
1121 	 */
1122 	if (unlikely(error_code & X86_PF_SGX))
1123 		return 1;
1124 
1125 	/*
1126 	 * Make sure to check the VMA so that we do not perform
1127 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1128 	 * page.
1129 	 */
1130 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1131 				       (error_code & X86_PF_INSTR), foreign))
1132 		return 1;
1133 
1134 	if (error_code & X86_PF_WRITE) {
1135 		/* write, present and write, not present: */
1136 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1137 			return 1;
1138 		return 0;
1139 	}
1140 
1141 	/* read, present: */
1142 	if (unlikely(error_code & X86_PF_PROT))
1143 		return 1;
1144 
1145 	/* read, not present: */
1146 	if (unlikely(!vma_is_accessible(vma)))
1147 		return 1;
1148 
1149 	return 0;
1150 }
1151 
1152 bool fault_in_kernel_space(unsigned long address)
1153 {
1154 	/*
1155 	 * On 64-bit systems, the vsyscall page is at an address above
1156 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1157 	 * address space.
1158 	 */
1159 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1160 		return false;
1161 
1162 	return address >= TASK_SIZE_MAX;
1163 }
1164 
1165 /*
1166  * Called for all faults where 'address' is part of the kernel address
1167  * space.  Might get called for faults that originate from *code* that
1168  * ran in userspace or the kernel.
1169  */
1170 static void
1171 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1172 		   unsigned long address)
1173 {
1174 	/*
1175 	 * Protection keys exceptions only happen on user pages.  We
1176 	 * have no user pages in the kernel portion of the address
1177 	 * space, so do not expect them here.
1178 	 */
1179 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1180 
1181 #ifdef CONFIG_X86_32
1182 	/*
1183 	 * We can fault-in kernel-space virtual memory on-demand. The
1184 	 * 'reference' page table is init_mm.pgd.
1185 	 *
1186 	 * NOTE! We MUST NOT take any locks for this case. We may
1187 	 * be in an interrupt or a critical region, and should
1188 	 * only copy the information from the master page table,
1189 	 * nothing more.
1190 	 *
1191 	 * Before doing this on-demand faulting, ensure that the
1192 	 * fault is not any of the following:
1193 	 * 1. A fault on a PTE with a reserved bit set.
1194 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1195 	 *    fault kernel memory due to user-mode accesses).
1196 	 * 3. A fault caused by a page-level protection violation.
1197 	 *    (A demand fault would be on a non-present page which
1198 	 *     would have X86_PF_PROT==0).
1199 	 *
1200 	 * This is only needed to close a race condition on x86-32 in
1201 	 * the vmalloc mapping/unmapping code. See the comment above
1202 	 * vmalloc_fault() for details. On x86-64 the race does not
1203 	 * exist as the vmalloc mappings don't need to be synchronized
1204 	 * there.
1205 	 */
1206 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1207 		if (vmalloc_fault(address) >= 0)
1208 			return;
1209 	}
1210 #endif
1211 
1212 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1213 	if (spurious_kernel_fault(hw_error_code, address))
1214 		return;
1215 
1216 	/* kprobes don't want to hook the spurious faults: */
1217 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1218 		return;
1219 
1220 	/*
1221 	 * Note, despite being a "bad area", there are quite a few
1222 	 * acceptable reasons to get here, such as erratum fixups
1223 	 * and handling kernel code that can fault, like get_user().
1224 	 *
1225 	 * Don't take the mm semaphore here. If we fixup a prefetch
1226 	 * fault we could otherwise deadlock:
1227 	 */
1228 	bad_area_nosemaphore(regs, hw_error_code, address);
1229 }
1230 NOKPROBE_SYMBOL(do_kern_addr_fault);
1231 
1232 /* Handle faults in the user portion of the address space */
1233 static inline
1234 void do_user_addr_fault(struct pt_regs *regs,
1235 			unsigned long hw_error_code,
1236 			unsigned long address)
1237 {
1238 	struct vm_area_struct *vma;
1239 	struct task_struct *tsk;
1240 	struct mm_struct *mm;
1241 	vm_fault_t fault;
1242 	unsigned int flags = FAULT_FLAG_DEFAULT;
1243 
1244 	tsk = current;
1245 	mm = tsk->mm;
1246 
1247 	/* kprobes don't want to hook the spurious faults: */
1248 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1249 		return;
1250 
1251 	/*
1252 	 * Reserved bits are never expected to be set on
1253 	 * entries in the user portion of the page tables.
1254 	 */
1255 	if (unlikely(hw_error_code & X86_PF_RSVD))
1256 		pgtable_bad(regs, hw_error_code, address);
1257 
1258 	/*
1259 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1260 	 * pages in the user address space.  The odd case here is WRUSS,
1261 	 * which, according to the preliminary documentation, does not respect
1262 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1263 	 * enforcement appears to be consistent with the USER bit.
1264 	 */
1265 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1266 		     !(hw_error_code & X86_PF_USER) &&
1267 		     !(regs->flags & X86_EFLAGS_AC)))
1268 	{
1269 		bad_area_nosemaphore(regs, hw_error_code, address);
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * If we're in an interrupt, have no user context or are running
1275 	 * in a region with pagefaults disabled then we must not take the fault
1276 	 */
1277 	if (unlikely(faulthandler_disabled() || !mm)) {
1278 		bad_area_nosemaphore(regs, hw_error_code, address);
1279 		return;
1280 	}
1281 
1282 	/*
1283 	 * It's safe to allow irq's after cr2 has been saved and the
1284 	 * vmalloc fault has been handled.
1285 	 *
1286 	 * User-mode registers count as a user access even for any
1287 	 * potential system fault or CPU buglet:
1288 	 */
1289 	if (user_mode(regs)) {
1290 		local_irq_enable();
1291 		flags |= FAULT_FLAG_USER;
1292 	} else {
1293 		if (regs->flags & X86_EFLAGS_IF)
1294 			local_irq_enable();
1295 	}
1296 
1297 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1298 
1299 	if (hw_error_code & X86_PF_WRITE)
1300 		flags |= FAULT_FLAG_WRITE;
1301 	if (hw_error_code & X86_PF_INSTR)
1302 		flags |= FAULT_FLAG_INSTRUCTION;
1303 
1304 #ifdef CONFIG_X86_64
1305 	/*
1306 	 * Faults in the vsyscall page might need emulation.  The
1307 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1308 	 * considered to be part of the user address space.
1309 	 *
1310 	 * The vsyscall page does not have a "real" VMA, so do this
1311 	 * emulation before we go searching for VMAs.
1312 	 *
1313 	 * PKRU never rejects instruction fetches, so we don't need
1314 	 * to consider the PF_PK bit.
1315 	 */
1316 	if (is_vsyscall_vaddr(address)) {
1317 		if (emulate_vsyscall(hw_error_code, regs, address))
1318 			return;
1319 	}
1320 #endif
1321 
1322 	/*
1323 	 * Kernel-mode access to the user address space should only occur
1324 	 * on well-defined single instructions listed in the exception
1325 	 * tables.  But, an erroneous kernel fault occurring outside one of
1326 	 * those areas which also holds mmap_lock might deadlock attempting
1327 	 * to validate the fault against the address space.
1328 	 *
1329 	 * Only do the expensive exception table search when we might be at
1330 	 * risk of a deadlock.  This happens if we
1331 	 * 1. Failed to acquire mmap_lock, and
1332 	 * 2. The access did not originate in userspace.
1333 	 */
1334 	if (unlikely(!mmap_read_trylock(mm))) {
1335 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1336 			/*
1337 			 * Fault from code in kernel from
1338 			 * which we do not expect faults.
1339 			 */
1340 			bad_area_nosemaphore(regs, hw_error_code, address);
1341 			return;
1342 		}
1343 retry:
1344 		mmap_read_lock(mm);
1345 	} else {
1346 		/*
1347 		 * The above down_read_trylock() might have succeeded in
1348 		 * which case we'll have missed the might_sleep() from
1349 		 * down_read():
1350 		 */
1351 		might_sleep();
1352 	}
1353 
1354 	vma = find_vma(mm, address);
1355 	if (unlikely(!vma)) {
1356 		bad_area(regs, hw_error_code, address);
1357 		return;
1358 	}
1359 	if (likely(vma->vm_start <= address))
1360 		goto good_area;
1361 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1362 		bad_area(regs, hw_error_code, address);
1363 		return;
1364 	}
1365 	if (unlikely(expand_stack(vma, address))) {
1366 		bad_area(regs, hw_error_code, address);
1367 		return;
1368 	}
1369 
1370 	/*
1371 	 * Ok, we have a good vm_area for this memory access, so
1372 	 * we can handle it..
1373 	 */
1374 good_area:
1375 	if (unlikely(access_error(hw_error_code, vma))) {
1376 		bad_area_access_error(regs, hw_error_code, address, vma);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * If for any reason at all we couldn't handle the fault,
1382 	 * make sure we exit gracefully rather than endlessly redo
1383 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1384 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1385 	 *
1386 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1387 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1388 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1389 	 * (potentially after handling any pending signal during the return to
1390 	 * userland). The return to userland is identified whenever
1391 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1392 	 */
1393 	fault = handle_mm_fault(vma, address, flags, regs);
1394 
1395 	/* Quick path to respond to signals */
1396 	if (fault_signal_pending(fault, regs)) {
1397 		if (!user_mode(regs))
1398 			no_context(regs, hw_error_code, address, SIGBUS,
1399 				   BUS_ADRERR);
1400 		return;
1401 	}
1402 
1403 	/*
1404 	 * If we need to retry the mmap_lock has already been released,
1405 	 * and if there is a fatal signal pending there is no guarantee
1406 	 * that we made any progress. Handle this case first.
1407 	 */
1408 	if (unlikely((fault & VM_FAULT_RETRY) &&
1409 		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1410 		flags |= FAULT_FLAG_TRIED;
1411 		goto retry;
1412 	}
1413 
1414 	mmap_read_unlock(mm);
1415 	if (unlikely(fault & VM_FAULT_ERROR)) {
1416 		mm_fault_error(regs, hw_error_code, address, fault);
1417 		return;
1418 	}
1419 
1420 	check_v8086_mode(regs, address, tsk);
1421 }
1422 NOKPROBE_SYMBOL(do_user_addr_fault);
1423 
1424 static __always_inline void
1425 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1426 			 unsigned long address)
1427 {
1428 	if (!trace_pagefault_enabled())
1429 		return;
1430 
1431 	if (user_mode(regs))
1432 		trace_page_fault_user(address, regs, error_code);
1433 	else
1434 		trace_page_fault_kernel(address, regs, error_code);
1435 }
1436 
1437 static __always_inline void
1438 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1439 			      unsigned long address)
1440 {
1441 	trace_page_fault_entries(regs, error_code, address);
1442 
1443 	if (unlikely(kmmio_fault(regs, address)))
1444 		return;
1445 
1446 	/* Was the fault on kernel-controlled part of the address space? */
1447 	if (unlikely(fault_in_kernel_space(address))) {
1448 		do_kern_addr_fault(regs, error_code, address);
1449 	} else {
1450 		do_user_addr_fault(regs, error_code, address);
1451 		/*
1452 		 * User address page fault handling might have reenabled
1453 		 * interrupts. Fixing up all potential exit points of
1454 		 * do_user_addr_fault() and its leaf functions is just not
1455 		 * doable w/o creating an unholy mess or turning the code
1456 		 * upside down.
1457 		 */
1458 		local_irq_disable();
1459 	}
1460 }
1461 
1462 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1463 {
1464 	unsigned long address = read_cr2();
1465 	irqentry_state_t state;
1466 
1467 	prefetchw(&current->mm->mmap_lock);
1468 
1469 	/*
1470 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1471 	 * (asynchronous page fault mechanism). The event happens when a
1472 	 * userspace task is trying to access some valid (from guest's point of
1473 	 * view) memory which is not currently mapped by the host (e.g. the
1474 	 * memory is swapped out). Note, the corresponding "page ready" event
1475 	 * which is injected when the memory becomes available, is delived via
1476 	 * an interrupt mechanism and not a #PF exception
1477 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1478 	 *
1479 	 * We are relying on the interrupted context being sane (valid RSP,
1480 	 * relevant locks not held, etc.), which is fine as long as the
1481 	 * interrupted context had IF=1.  We are also relying on the KVM
1482 	 * async pf type field and CR2 being read consistently instead of
1483 	 * getting values from real and async page faults mixed up.
1484 	 *
1485 	 * Fingers crossed.
1486 	 *
1487 	 * The async #PF handling code takes care of idtentry handling
1488 	 * itself.
1489 	 */
1490 	if (kvm_handle_async_pf(regs, (u32)address))
1491 		return;
1492 
1493 	/*
1494 	 * Entry handling for valid #PF from kernel mode is slightly
1495 	 * different: RCU is already watching and rcu_irq_enter() must not
1496 	 * be invoked because a kernel fault on a user space address might
1497 	 * sleep.
1498 	 *
1499 	 * In case the fault hit a RCU idle region the conditional entry
1500 	 * code reenabled RCU to avoid subsequent wreckage which helps
1501 	 * debugability.
1502 	 */
1503 	state = irqentry_enter(regs);
1504 
1505 	instrumentation_begin();
1506 	handle_page_fault(regs, error_code, address);
1507 	instrumentation_end();
1508 
1509 	irqentry_exit(regs, state);
1510 }
1511