1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/magic.h> /* STACK_END_MAGIC */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/kdebug.h> /* oops_begin/end, ... */ 9 #include <linux/module.h> /* search_exception_table */ 10 #include <linux/bootmem.h> /* max_low_pfn */ 11 #include <linux/kprobes.h> /* __kprobes, ... */ 12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 13 #include <linux/perf_event.h> /* perf_sw_event */ 14 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 15 16 #include <asm/traps.h> /* dotraplinkage, ... */ 17 #include <asm/pgalloc.h> /* pgd_*(), ... */ 18 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 19 20 /* 21 * Page fault error code bits: 22 * 23 * bit 0 == 0: no page found 1: protection fault 24 * bit 1 == 0: read access 1: write access 25 * bit 2 == 0: kernel-mode access 1: user-mode access 26 * bit 3 == 1: use of reserved bit detected 27 * bit 4 == 1: fault was an instruction fetch 28 */ 29 enum x86_pf_error_code { 30 31 PF_PROT = 1 << 0, 32 PF_WRITE = 1 << 1, 33 PF_USER = 1 << 2, 34 PF_RSVD = 1 << 3, 35 PF_INSTR = 1 << 4, 36 }; 37 38 /* 39 * Returns 0 if mmiotrace is disabled, or if the fault is not 40 * handled by mmiotrace: 41 */ 42 static inline int __kprobes 43 kmmio_fault(struct pt_regs *regs, unsigned long addr) 44 { 45 if (unlikely(is_kmmio_active())) 46 if (kmmio_handler(regs, addr) == 1) 47 return -1; 48 return 0; 49 } 50 51 static inline int __kprobes notify_page_fault(struct pt_regs *regs) 52 { 53 int ret = 0; 54 55 /* kprobe_running() needs smp_processor_id() */ 56 if (kprobes_built_in() && !user_mode_vm(regs)) { 57 preempt_disable(); 58 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 59 ret = 1; 60 preempt_enable(); 61 } 62 63 return ret; 64 } 65 66 /* 67 * Prefetch quirks: 68 * 69 * 32-bit mode: 70 * 71 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 72 * Check that here and ignore it. 73 * 74 * 64-bit mode: 75 * 76 * Sometimes the CPU reports invalid exceptions on prefetch. 77 * Check that here and ignore it. 78 * 79 * Opcode checker based on code by Richard Brunner. 80 */ 81 static inline int 82 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 83 unsigned char opcode, int *prefetch) 84 { 85 unsigned char instr_hi = opcode & 0xf0; 86 unsigned char instr_lo = opcode & 0x0f; 87 88 switch (instr_hi) { 89 case 0x20: 90 case 0x30: 91 /* 92 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 93 * In X86_64 long mode, the CPU will signal invalid 94 * opcode if some of these prefixes are present so 95 * X86_64 will never get here anyway 96 */ 97 return ((instr_lo & 7) == 0x6); 98 #ifdef CONFIG_X86_64 99 case 0x40: 100 /* 101 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 102 * Need to figure out under what instruction mode the 103 * instruction was issued. Could check the LDT for lm, 104 * but for now it's good enough to assume that long 105 * mode only uses well known segments or kernel. 106 */ 107 return (!user_mode(regs)) || (regs->cs == __USER_CS); 108 #endif 109 case 0x60: 110 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 111 return (instr_lo & 0xC) == 0x4; 112 case 0xF0: 113 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 114 return !instr_lo || (instr_lo>>1) == 1; 115 case 0x00: 116 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 117 if (probe_kernel_address(instr, opcode)) 118 return 0; 119 120 *prefetch = (instr_lo == 0xF) && 121 (opcode == 0x0D || opcode == 0x18); 122 return 0; 123 default: 124 return 0; 125 } 126 } 127 128 static int 129 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 130 { 131 unsigned char *max_instr; 132 unsigned char *instr; 133 int prefetch = 0; 134 135 /* 136 * If it was a exec (instruction fetch) fault on NX page, then 137 * do not ignore the fault: 138 */ 139 if (error_code & PF_INSTR) 140 return 0; 141 142 instr = (void *)convert_ip_to_linear(current, regs); 143 max_instr = instr + 15; 144 145 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 146 return 0; 147 148 while (instr < max_instr) { 149 unsigned char opcode; 150 151 if (probe_kernel_address(instr, opcode)) 152 break; 153 154 instr++; 155 156 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 157 break; 158 } 159 return prefetch; 160 } 161 162 static void 163 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 164 struct task_struct *tsk, int fault) 165 { 166 unsigned lsb = 0; 167 siginfo_t info; 168 169 info.si_signo = si_signo; 170 info.si_errno = 0; 171 info.si_code = si_code; 172 info.si_addr = (void __user *)address; 173 if (fault & VM_FAULT_HWPOISON_LARGE) 174 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 175 if (fault & VM_FAULT_HWPOISON) 176 lsb = PAGE_SHIFT; 177 info.si_addr_lsb = lsb; 178 179 force_sig_info(si_signo, &info, tsk); 180 } 181 182 DEFINE_SPINLOCK(pgd_lock); 183 LIST_HEAD(pgd_list); 184 185 #ifdef CONFIG_X86_32 186 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 187 { 188 unsigned index = pgd_index(address); 189 pgd_t *pgd_k; 190 pud_t *pud, *pud_k; 191 pmd_t *pmd, *pmd_k; 192 193 pgd += index; 194 pgd_k = init_mm.pgd + index; 195 196 if (!pgd_present(*pgd_k)) 197 return NULL; 198 199 /* 200 * set_pgd(pgd, *pgd_k); here would be useless on PAE 201 * and redundant with the set_pmd() on non-PAE. As would 202 * set_pud. 203 */ 204 pud = pud_offset(pgd, address); 205 pud_k = pud_offset(pgd_k, address); 206 if (!pud_present(*pud_k)) 207 return NULL; 208 209 pmd = pmd_offset(pud, address); 210 pmd_k = pmd_offset(pud_k, address); 211 if (!pmd_present(*pmd_k)) 212 return NULL; 213 214 if (!pmd_present(*pmd)) 215 set_pmd(pmd, *pmd_k); 216 else 217 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 218 219 return pmd_k; 220 } 221 222 void vmalloc_sync_all(void) 223 { 224 unsigned long address; 225 226 if (SHARED_KERNEL_PMD) 227 return; 228 229 for (address = VMALLOC_START & PMD_MASK; 230 address >= TASK_SIZE && address < FIXADDR_TOP; 231 address += PMD_SIZE) { 232 struct page *page; 233 234 spin_lock(&pgd_lock); 235 list_for_each_entry(page, &pgd_list, lru) { 236 spinlock_t *pgt_lock; 237 pmd_t *ret; 238 239 /* the pgt_lock only for Xen */ 240 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 241 242 spin_lock(pgt_lock); 243 ret = vmalloc_sync_one(page_address(page), address); 244 spin_unlock(pgt_lock); 245 246 if (!ret) 247 break; 248 } 249 spin_unlock(&pgd_lock); 250 } 251 } 252 253 /* 254 * 32-bit: 255 * 256 * Handle a fault on the vmalloc or module mapping area 257 */ 258 static noinline __kprobes int vmalloc_fault(unsigned long address) 259 { 260 unsigned long pgd_paddr; 261 pmd_t *pmd_k; 262 pte_t *pte_k; 263 264 /* Make sure we are in vmalloc area: */ 265 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 266 return -1; 267 268 WARN_ON_ONCE(in_nmi()); 269 270 /* 271 * Synchronize this task's top level page-table 272 * with the 'reference' page table. 273 * 274 * Do _not_ use "current" here. We might be inside 275 * an interrupt in the middle of a task switch.. 276 */ 277 pgd_paddr = read_cr3(); 278 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 279 if (!pmd_k) 280 return -1; 281 282 pte_k = pte_offset_kernel(pmd_k, address); 283 if (!pte_present(*pte_k)) 284 return -1; 285 286 return 0; 287 } 288 289 /* 290 * Did it hit the DOS screen memory VA from vm86 mode? 291 */ 292 static inline void 293 check_v8086_mode(struct pt_regs *regs, unsigned long address, 294 struct task_struct *tsk) 295 { 296 unsigned long bit; 297 298 if (!v8086_mode(regs)) 299 return; 300 301 bit = (address - 0xA0000) >> PAGE_SHIFT; 302 if (bit < 32) 303 tsk->thread.screen_bitmap |= 1 << bit; 304 } 305 306 static bool low_pfn(unsigned long pfn) 307 { 308 return pfn < max_low_pfn; 309 } 310 311 static void dump_pagetable(unsigned long address) 312 { 313 pgd_t *base = __va(read_cr3()); 314 pgd_t *pgd = &base[pgd_index(address)]; 315 pmd_t *pmd; 316 pte_t *pte; 317 318 #ifdef CONFIG_X86_PAE 319 printk("*pdpt = %016Lx ", pgd_val(*pgd)); 320 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 321 goto out; 322 #endif 323 pmd = pmd_offset(pud_offset(pgd, address), address); 324 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 325 326 /* 327 * We must not directly access the pte in the highpte 328 * case if the page table is located in highmem. 329 * And let's rather not kmap-atomic the pte, just in case 330 * it's allocated already: 331 */ 332 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 333 goto out; 334 335 pte = pte_offset_kernel(pmd, address); 336 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 337 out: 338 printk("\n"); 339 } 340 341 #else /* CONFIG_X86_64: */ 342 343 void vmalloc_sync_all(void) 344 { 345 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 346 } 347 348 /* 349 * 64-bit: 350 * 351 * Handle a fault on the vmalloc area 352 * 353 * This assumes no large pages in there. 354 */ 355 static noinline __kprobes int vmalloc_fault(unsigned long address) 356 { 357 pgd_t *pgd, *pgd_ref; 358 pud_t *pud, *pud_ref; 359 pmd_t *pmd, *pmd_ref; 360 pte_t *pte, *pte_ref; 361 362 /* Make sure we are in vmalloc area: */ 363 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 364 return -1; 365 366 WARN_ON_ONCE(in_nmi()); 367 368 /* 369 * Copy kernel mappings over when needed. This can also 370 * happen within a race in page table update. In the later 371 * case just flush: 372 */ 373 pgd = pgd_offset(current->active_mm, address); 374 pgd_ref = pgd_offset_k(address); 375 if (pgd_none(*pgd_ref)) 376 return -1; 377 378 if (pgd_none(*pgd)) 379 set_pgd(pgd, *pgd_ref); 380 else 381 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 382 383 /* 384 * Below here mismatches are bugs because these lower tables 385 * are shared: 386 */ 387 388 pud = pud_offset(pgd, address); 389 pud_ref = pud_offset(pgd_ref, address); 390 if (pud_none(*pud_ref)) 391 return -1; 392 393 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 394 BUG(); 395 396 pmd = pmd_offset(pud, address); 397 pmd_ref = pmd_offset(pud_ref, address); 398 if (pmd_none(*pmd_ref)) 399 return -1; 400 401 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 402 BUG(); 403 404 pte_ref = pte_offset_kernel(pmd_ref, address); 405 if (!pte_present(*pte_ref)) 406 return -1; 407 408 pte = pte_offset_kernel(pmd, address); 409 410 /* 411 * Don't use pte_page here, because the mappings can point 412 * outside mem_map, and the NUMA hash lookup cannot handle 413 * that: 414 */ 415 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 416 BUG(); 417 418 return 0; 419 } 420 421 static const char errata93_warning[] = 422 KERN_ERR 423 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 424 "******* Working around it, but it may cause SEGVs or burn power.\n" 425 "******* Please consider a BIOS update.\n" 426 "******* Disabling USB legacy in the BIOS may also help.\n"; 427 428 /* 429 * No vm86 mode in 64-bit mode: 430 */ 431 static inline void 432 check_v8086_mode(struct pt_regs *regs, unsigned long address, 433 struct task_struct *tsk) 434 { 435 } 436 437 static int bad_address(void *p) 438 { 439 unsigned long dummy; 440 441 return probe_kernel_address((unsigned long *)p, dummy); 442 } 443 444 static void dump_pagetable(unsigned long address) 445 { 446 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK); 447 pgd_t *pgd = base + pgd_index(address); 448 pud_t *pud; 449 pmd_t *pmd; 450 pte_t *pte; 451 452 if (bad_address(pgd)) 453 goto bad; 454 455 printk("PGD %lx ", pgd_val(*pgd)); 456 457 if (!pgd_present(*pgd)) 458 goto out; 459 460 pud = pud_offset(pgd, address); 461 if (bad_address(pud)) 462 goto bad; 463 464 printk("PUD %lx ", pud_val(*pud)); 465 if (!pud_present(*pud) || pud_large(*pud)) 466 goto out; 467 468 pmd = pmd_offset(pud, address); 469 if (bad_address(pmd)) 470 goto bad; 471 472 printk("PMD %lx ", pmd_val(*pmd)); 473 if (!pmd_present(*pmd) || pmd_large(*pmd)) 474 goto out; 475 476 pte = pte_offset_kernel(pmd, address); 477 if (bad_address(pte)) 478 goto bad; 479 480 printk("PTE %lx", pte_val(*pte)); 481 out: 482 printk("\n"); 483 return; 484 bad: 485 printk("BAD\n"); 486 } 487 488 #endif /* CONFIG_X86_64 */ 489 490 /* 491 * Workaround for K8 erratum #93 & buggy BIOS. 492 * 493 * BIOS SMM functions are required to use a specific workaround 494 * to avoid corruption of the 64bit RIP register on C stepping K8. 495 * 496 * A lot of BIOS that didn't get tested properly miss this. 497 * 498 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 499 * Try to work around it here. 500 * 501 * Note we only handle faults in kernel here. 502 * Does nothing on 32-bit. 503 */ 504 static int is_errata93(struct pt_regs *regs, unsigned long address) 505 { 506 #ifdef CONFIG_X86_64 507 if (address != regs->ip) 508 return 0; 509 510 if ((address >> 32) != 0) 511 return 0; 512 513 address |= 0xffffffffUL << 32; 514 if ((address >= (u64)_stext && address <= (u64)_etext) || 515 (address >= MODULES_VADDR && address <= MODULES_END)) { 516 printk_once(errata93_warning); 517 regs->ip = address; 518 return 1; 519 } 520 #endif 521 return 0; 522 } 523 524 /* 525 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 526 * to illegal addresses >4GB. 527 * 528 * We catch this in the page fault handler because these addresses 529 * are not reachable. Just detect this case and return. Any code 530 * segment in LDT is compatibility mode. 531 */ 532 static int is_errata100(struct pt_regs *regs, unsigned long address) 533 { 534 #ifdef CONFIG_X86_64 535 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 536 return 1; 537 #endif 538 return 0; 539 } 540 541 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 542 { 543 #ifdef CONFIG_X86_F00F_BUG 544 unsigned long nr; 545 546 /* 547 * Pentium F0 0F C7 C8 bug workaround: 548 */ 549 if (boot_cpu_data.f00f_bug) { 550 nr = (address - idt_descr.address) >> 3; 551 552 if (nr == 6) { 553 do_invalid_op(regs, 0); 554 return 1; 555 } 556 } 557 #endif 558 return 0; 559 } 560 561 static const char nx_warning[] = KERN_CRIT 562 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 563 564 static void 565 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 566 unsigned long address) 567 { 568 if (!oops_may_print()) 569 return; 570 571 if (error_code & PF_INSTR) { 572 unsigned int level; 573 574 pte_t *pte = lookup_address(address, &level); 575 576 if (pte && pte_present(*pte) && !pte_exec(*pte)) 577 printk(nx_warning, current_uid()); 578 } 579 580 printk(KERN_ALERT "BUG: unable to handle kernel "); 581 if (address < PAGE_SIZE) 582 printk(KERN_CONT "NULL pointer dereference"); 583 else 584 printk(KERN_CONT "paging request"); 585 586 printk(KERN_CONT " at %p\n", (void *) address); 587 printk(KERN_ALERT "IP:"); 588 printk_address(regs->ip, 1); 589 590 dump_pagetable(address); 591 } 592 593 static noinline void 594 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 595 unsigned long address) 596 { 597 struct task_struct *tsk; 598 unsigned long flags; 599 int sig; 600 601 flags = oops_begin(); 602 tsk = current; 603 sig = SIGKILL; 604 605 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 606 tsk->comm, address); 607 dump_pagetable(address); 608 609 tsk->thread.cr2 = address; 610 tsk->thread.trap_no = 14; 611 tsk->thread.error_code = error_code; 612 613 if (__die("Bad pagetable", regs, error_code)) 614 sig = 0; 615 616 oops_end(flags, regs, sig); 617 } 618 619 static noinline void 620 no_context(struct pt_regs *regs, unsigned long error_code, 621 unsigned long address) 622 { 623 struct task_struct *tsk = current; 624 unsigned long *stackend; 625 unsigned long flags; 626 int sig; 627 628 /* Are we prepared to handle this kernel fault? */ 629 if (fixup_exception(regs)) 630 return; 631 632 /* 633 * 32-bit: 634 * 635 * Valid to do another page fault here, because if this fault 636 * had been triggered by is_prefetch fixup_exception would have 637 * handled it. 638 * 639 * 64-bit: 640 * 641 * Hall of shame of CPU/BIOS bugs. 642 */ 643 if (is_prefetch(regs, error_code, address)) 644 return; 645 646 if (is_errata93(regs, address)) 647 return; 648 649 /* 650 * Oops. The kernel tried to access some bad page. We'll have to 651 * terminate things with extreme prejudice: 652 */ 653 flags = oops_begin(); 654 655 show_fault_oops(regs, error_code, address); 656 657 stackend = end_of_stack(tsk); 658 if (tsk != &init_task && *stackend != STACK_END_MAGIC) 659 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 660 661 tsk->thread.cr2 = address; 662 tsk->thread.trap_no = 14; 663 tsk->thread.error_code = error_code; 664 665 sig = SIGKILL; 666 if (__die("Oops", regs, error_code)) 667 sig = 0; 668 669 /* Executive summary in case the body of the oops scrolled away */ 670 printk(KERN_EMERG "CR2: %016lx\n", address); 671 672 oops_end(flags, regs, sig); 673 } 674 675 /* 676 * Print out info about fatal segfaults, if the show_unhandled_signals 677 * sysctl is set: 678 */ 679 static inline void 680 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 681 unsigned long address, struct task_struct *tsk) 682 { 683 if (!unhandled_signal(tsk, SIGSEGV)) 684 return; 685 686 if (!printk_ratelimit()) 687 return; 688 689 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 690 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 691 tsk->comm, task_pid_nr(tsk), address, 692 (void *)regs->ip, (void *)regs->sp, error_code); 693 694 print_vma_addr(KERN_CONT " in ", regs->ip); 695 696 printk(KERN_CONT "\n"); 697 } 698 699 static void 700 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 701 unsigned long address, int si_code) 702 { 703 struct task_struct *tsk = current; 704 705 /* User mode accesses just cause a SIGSEGV */ 706 if (error_code & PF_USER) { 707 /* 708 * It's possible to have interrupts off here: 709 */ 710 local_irq_enable(); 711 712 /* 713 * Valid to do another page fault here because this one came 714 * from user space: 715 */ 716 if (is_prefetch(regs, error_code, address)) 717 return; 718 719 if (is_errata100(regs, address)) 720 return; 721 722 if (unlikely(show_unhandled_signals)) 723 show_signal_msg(regs, error_code, address, tsk); 724 725 /* Kernel addresses are always protection faults: */ 726 tsk->thread.cr2 = address; 727 tsk->thread.error_code = error_code | (address >= TASK_SIZE); 728 tsk->thread.trap_no = 14; 729 730 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0); 731 732 return; 733 } 734 735 if (is_f00f_bug(regs, address)) 736 return; 737 738 no_context(regs, error_code, address); 739 } 740 741 static noinline void 742 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 743 unsigned long address) 744 { 745 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 746 } 747 748 static void 749 __bad_area(struct pt_regs *regs, unsigned long error_code, 750 unsigned long address, int si_code) 751 { 752 struct mm_struct *mm = current->mm; 753 754 /* 755 * Something tried to access memory that isn't in our memory map.. 756 * Fix it, but check if it's kernel or user first.. 757 */ 758 up_read(&mm->mmap_sem); 759 760 __bad_area_nosemaphore(regs, error_code, address, si_code); 761 } 762 763 static noinline void 764 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 765 { 766 __bad_area(regs, error_code, address, SEGV_MAPERR); 767 } 768 769 static noinline void 770 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 771 unsigned long address) 772 { 773 __bad_area(regs, error_code, address, SEGV_ACCERR); 774 } 775 776 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 777 static void 778 out_of_memory(struct pt_regs *regs, unsigned long error_code, 779 unsigned long address) 780 { 781 /* 782 * We ran out of memory, call the OOM killer, and return the userspace 783 * (which will retry the fault, or kill us if we got oom-killed): 784 */ 785 up_read(¤t->mm->mmap_sem); 786 787 pagefault_out_of_memory(); 788 } 789 790 static void 791 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 792 unsigned int fault) 793 { 794 struct task_struct *tsk = current; 795 struct mm_struct *mm = tsk->mm; 796 int code = BUS_ADRERR; 797 798 up_read(&mm->mmap_sem); 799 800 /* Kernel mode? Handle exceptions or die: */ 801 if (!(error_code & PF_USER)) { 802 no_context(regs, error_code, address); 803 return; 804 } 805 806 /* User-space => ok to do another page fault: */ 807 if (is_prefetch(regs, error_code, address)) 808 return; 809 810 tsk->thread.cr2 = address; 811 tsk->thread.error_code = error_code; 812 tsk->thread.trap_no = 14; 813 814 #ifdef CONFIG_MEMORY_FAILURE 815 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 816 printk(KERN_ERR 817 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 818 tsk->comm, tsk->pid, address); 819 code = BUS_MCEERR_AR; 820 } 821 #endif 822 force_sig_info_fault(SIGBUS, code, address, tsk, fault); 823 } 824 825 static noinline void 826 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 827 unsigned long address, unsigned int fault) 828 { 829 if (fault & VM_FAULT_OOM) { 830 /* Kernel mode? Handle exceptions or die: */ 831 if (!(error_code & PF_USER)) { 832 up_read(¤t->mm->mmap_sem); 833 no_context(regs, error_code, address); 834 return; 835 } 836 837 out_of_memory(regs, error_code, address); 838 } else { 839 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 840 VM_FAULT_HWPOISON_LARGE)) 841 do_sigbus(regs, error_code, address, fault); 842 else 843 BUG(); 844 } 845 } 846 847 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 848 { 849 if ((error_code & PF_WRITE) && !pte_write(*pte)) 850 return 0; 851 852 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 853 return 0; 854 855 return 1; 856 } 857 858 /* 859 * Handle a spurious fault caused by a stale TLB entry. 860 * 861 * This allows us to lazily refresh the TLB when increasing the 862 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 863 * eagerly is very expensive since that implies doing a full 864 * cross-processor TLB flush, even if no stale TLB entries exist 865 * on other processors. 866 * 867 * There are no security implications to leaving a stale TLB when 868 * increasing the permissions on a page. 869 */ 870 static noinline __kprobes int 871 spurious_fault(unsigned long error_code, unsigned long address) 872 { 873 pgd_t *pgd; 874 pud_t *pud; 875 pmd_t *pmd; 876 pte_t *pte; 877 int ret; 878 879 /* Reserved-bit violation or user access to kernel space? */ 880 if (error_code & (PF_USER | PF_RSVD)) 881 return 0; 882 883 pgd = init_mm.pgd + pgd_index(address); 884 if (!pgd_present(*pgd)) 885 return 0; 886 887 pud = pud_offset(pgd, address); 888 if (!pud_present(*pud)) 889 return 0; 890 891 if (pud_large(*pud)) 892 return spurious_fault_check(error_code, (pte_t *) pud); 893 894 pmd = pmd_offset(pud, address); 895 if (!pmd_present(*pmd)) 896 return 0; 897 898 if (pmd_large(*pmd)) 899 return spurious_fault_check(error_code, (pte_t *) pmd); 900 901 /* 902 * Note: don't use pte_present() here, since it returns true 903 * if the _PAGE_PROTNONE bit is set. However, this aliases the 904 * _PAGE_GLOBAL bit, which for kernel pages give false positives 905 * when CONFIG_DEBUG_PAGEALLOC is used. 906 */ 907 pte = pte_offset_kernel(pmd, address); 908 if (!(pte_flags(*pte) & _PAGE_PRESENT)) 909 return 0; 910 911 ret = spurious_fault_check(error_code, pte); 912 if (!ret) 913 return 0; 914 915 /* 916 * Make sure we have permissions in PMD. 917 * If not, then there's a bug in the page tables: 918 */ 919 ret = spurious_fault_check(error_code, (pte_t *) pmd); 920 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 921 922 return ret; 923 } 924 925 int show_unhandled_signals = 1; 926 927 static inline int 928 access_error(unsigned long error_code, struct vm_area_struct *vma) 929 { 930 if (error_code & PF_WRITE) { 931 /* write, present and write, not present: */ 932 if (unlikely(!(vma->vm_flags & VM_WRITE))) 933 return 1; 934 return 0; 935 } 936 937 /* read, present: */ 938 if (unlikely(error_code & PF_PROT)) 939 return 1; 940 941 /* read, not present: */ 942 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 943 return 1; 944 945 return 0; 946 } 947 948 static int fault_in_kernel_space(unsigned long address) 949 { 950 return address >= TASK_SIZE_MAX; 951 } 952 953 /* 954 * This routine handles page faults. It determines the address, 955 * and the problem, and then passes it off to one of the appropriate 956 * routines. 957 */ 958 dotraplinkage void __kprobes 959 do_page_fault(struct pt_regs *regs, unsigned long error_code) 960 { 961 struct vm_area_struct *vma; 962 struct task_struct *tsk; 963 unsigned long address; 964 struct mm_struct *mm; 965 int fault; 966 int write = error_code & PF_WRITE; 967 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | 968 (write ? FAULT_FLAG_WRITE : 0); 969 970 tsk = current; 971 mm = tsk->mm; 972 973 /* Get the faulting address: */ 974 address = read_cr2(); 975 976 /* 977 * Detect and handle instructions that would cause a page fault for 978 * both a tracked kernel page and a userspace page. 979 */ 980 if (kmemcheck_active(regs)) 981 kmemcheck_hide(regs); 982 prefetchw(&mm->mmap_sem); 983 984 if (unlikely(kmmio_fault(regs, address))) 985 return; 986 987 /* 988 * We fault-in kernel-space virtual memory on-demand. The 989 * 'reference' page table is init_mm.pgd. 990 * 991 * NOTE! We MUST NOT take any locks for this case. We may 992 * be in an interrupt or a critical region, and should 993 * only copy the information from the master page table, 994 * nothing more. 995 * 996 * This verifies that the fault happens in kernel space 997 * (error_code & 4) == 0, and that the fault was not a 998 * protection error (error_code & 9) == 0. 999 */ 1000 if (unlikely(fault_in_kernel_space(address))) { 1001 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 1002 if (vmalloc_fault(address) >= 0) 1003 return; 1004 1005 if (kmemcheck_fault(regs, address, error_code)) 1006 return; 1007 } 1008 1009 /* Can handle a stale RO->RW TLB: */ 1010 if (spurious_fault(error_code, address)) 1011 return; 1012 1013 /* kprobes don't want to hook the spurious faults: */ 1014 if (notify_page_fault(regs)) 1015 return; 1016 /* 1017 * Don't take the mm semaphore here. If we fixup a prefetch 1018 * fault we could otherwise deadlock: 1019 */ 1020 bad_area_nosemaphore(regs, error_code, address); 1021 1022 return; 1023 } 1024 1025 /* kprobes don't want to hook the spurious faults: */ 1026 if (unlikely(notify_page_fault(regs))) 1027 return; 1028 /* 1029 * It's safe to allow irq's after cr2 has been saved and the 1030 * vmalloc fault has been handled. 1031 * 1032 * User-mode registers count as a user access even for any 1033 * potential system fault or CPU buglet: 1034 */ 1035 if (user_mode_vm(regs)) { 1036 local_irq_enable(); 1037 error_code |= PF_USER; 1038 } else { 1039 if (regs->flags & X86_EFLAGS_IF) 1040 local_irq_enable(); 1041 } 1042 1043 if (unlikely(error_code & PF_RSVD)) 1044 pgtable_bad(regs, error_code, address); 1045 1046 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); 1047 1048 /* 1049 * If we're in an interrupt, have no user context or are running 1050 * in an atomic region then we must not take the fault: 1051 */ 1052 if (unlikely(in_atomic() || !mm)) { 1053 bad_area_nosemaphore(regs, error_code, address); 1054 return; 1055 } 1056 1057 /* 1058 * When running in the kernel we expect faults to occur only to 1059 * addresses in user space. All other faults represent errors in 1060 * the kernel and should generate an OOPS. Unfortunately, in the 1061 * case of an erroneous fault occurring in a code path which already 1062 * holds mmap_sem we will deadlock attempting to validate the fault 1063 * against the address space. Luckily the kernel only validly 1064 * references user space from well defined areas of code, which are 1065 * listed in the exceptions table. 1066 * 1067 * As the vast majority of faults will be valid we will only perform 1068 * the source reference check when there is a possibility of a 1069 * deadlock. Attempt to lock the address space, if we cannot we then 1070 * validate the source. If this is invalid we can skip the address 1071 * space check, thus avoiding the deadlock: 1072 */ 1073 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1074 if ((error_code & PF_USER) == 0 && 1075 !search_exception_tables(regs->ip)) { 1076 bad_area_nosemaphore(regs, error_code, address); 1077 return; 1078 } 1079 retry: 1080 down_read(&mm->mmap_sem); 1081 } else { 1082 /* 1083 * The above down_read_trylock() might have succeeded in 1084 * which case we'll have missed the might_sleep() from 1085 * down_read(): 1086 */ 1087 might_sleep(); 1088 } 1089 1090 vma = find_vma(mm, address); 1091 if (unlikely(!vma)) { 1092 bad_area(regs, error_code, address); 1093 return; 1094 } 1095 if (likely(vma->vm_start <= address)) 1096 goto good_area; 1097 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1098 bad_area(regs, error_code, address); 1099 return; 1100 } 1101 if (error_code & PF_USER) { 1102 /* 1103 * Accessing the stack below %sp is always a bug. 1104 * The large cushion allows instructions like enter 1105 * and pusha to work. ("enter $65535, $31" pushes 1106 * 32 pointers and then decrements %sp by 65535.) 1107 */ 1108 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1109 bad_area(regs, error_code, address); 1110 return; 1111 } 1112 } 1113 if (unlikely(expand_stack(vma, address))) { 1114 bad_area(regs, error_code, address); 1115 return; 1116 } 1117 1118 /* 1119 * Ok, we have a good vm_area for this memory access, so 1120 * we can handle it.. 1121 */ 1122 good_area: 1123 if (unlikely(access_error(error_code, vma))) { 1124 bad_area_access_error(regs, error_code, address); 1125 return; 1126 } 1127 1128 /* 1129 * If for any reason at all we couldn't handle the fault, 1130 * make sure we exit gracefully rather than endlessly redo 1131 * the fault: 1132 */ 1133 fault = handle_mm_fault(mm, vma, address, flags); 1134 1135 if (unlikely(fault & VM_FAULT_ERROR)) { 1136 mm_fault_error(regs, error_code, address, fault); 1137 return; 1138 } 1139 1140 /* 1141 * Major/minor page fault accounting is only done on the 1142 * initial attempt. If we go through a retry, it is extremely 1143 * likely that the page will be found in page cache at that point. 1144 */ 1145 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1146 if (fault & VM_FAULT_MAJOR) { 1147 tsk->maj_flt++; 1148 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, 1149 regs, address); 1150 } else { 1151 tsk->min_flt++; 1152 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, 1153 regs, address); 1154 } 1155 if (fault & VM_FAULT_RETRY) { 1156 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 1157 * of starvation. */ 1158 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1159 goto retry; 1160 } 1161 } 1162 1163 check_v8086_mode(regs, address, tsk); 1164 1165 up_read(&mm->mmap_sem); 1166 } 1167