xref: /openbmc/linux/arch/x86/mm/fault.c (revision 44ecda71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15 #include <linux/perf_event.h>		/* perf_sw_event		*/
16 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17 #include <linux/prefetch.h>		/* prefetchw			*/
18 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 
23 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
24 #include <asm/traps.h>			/* dotraplinkage, ...		*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
34 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
35 #include <asm/irq_stack.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <asm/trace/exceptions.h>
39 
40 /*
41  * Returns 0 if mmiotrace is disabled, or if the fault is not
42  * handled by mmiotrace:
43  */
44 static nokprobe_inline int
45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
46 {
47 	if (unlikely(is_kmmio_active()))
48 		if (kmmio_handler(regs, addr) == 1)
49 			return -1;
50 	return 0;
51 }
52 
53 /*
54  * Prefetch quirks:
55  *
56  * 32-bit mode:
57  *
58  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
59  *   Check that here and ignore it.  This is AMD erratum #91.
60  *
61  * 64-bit mode:
62  *
63  *   Sometimes the CPU reports invalid exceptions on prefetch.
64  *   Check that here and ignore it.
65  *
66  * Opcode checker based on code by Richard Brunner.
67  */
68 static inline int
69 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
70 		      unsigned char opcode, int *prefetch)
71 {
72 	unsigned char instr_hi = opcode & 0xf0;
73 	unsigned char instr_lo = opcode & 0x0f;
74 
75 	switch (instr_hi) {
76 	case 0x20:
77 	case 0x30:
78 		/*
79 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
80 		 * In X86_64 long mode, the CPU will signal invalid
81 		 * opcode if some of these prefixes are present so
82 		 * X86_64 will never get here anyway
83 		 */
84 		return ((instr_lo & 7) == 0x6);
85 #ifdef CONFIG_X86_64
86 	case 0x40:
87 		/*
88 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
89 		 */
90 		return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 	case 0x60:
93 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
94 		return (instr_lo & 0xC) == 0x4;
95 	case 0xF0:
96 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 		return !instr_lo || (instr_lo>>1) == 1;
98 	case 0x00:
99 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
100 		if (get_kernel_nofault(opcode, instr))
101 			return 0;
102 
103 		*prefetch = (instr_lo == 0xF) &&
104 			(opcode == 0x0D || opcode == 0x18);
105 		return 0;
106 	default:
107 		return 0;
108 	}
109 }
110 
111 static bool is_amd_k8_pre_npt(void)
112 {
113 	struct cpuinfo_x86 *c = &boot_cpu_data;
114 
115 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
116 			c->x86_vendor == X86_VENDOR_AMD &&
117 			c->x86 == 0xf && c->x86_model < 0x40);
118 }
119 
120 static int
121 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
122 {
123 	unsigned char *max_instr;
124 	unsigned char *instr;
125 	int prefetch = 0;
126 
127 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
128 	if (!is_amd_k8_pre_npt())
129 		return 0;
130 
131 	/*
132 	 * If it was a exec (instruction fetch) fault on NX page, then
133 	 * do not ignore the fault:
134 	 */
135 	if (error_code & X86_PF_INSTR)
136 		return 0;
137 
138 	instr = (void *)convert_ip_to_linear(current, regs);
139 	max_instr = instr + 15;
140 
141 	/*
142 	 * This code has historically always bailed out if IP points to a
143 	 * not-present page (e.g. due to a race).  No one has ever
144 	 * complained about this.
145 	 */
146 	pagefault_disable();
147 
148 	while (instr < max_instr) {
149 		unsigned char opcode;
150 
151 		if (user_mode(regs)) {
152 			if (get_user(opcode, (unsigned char __user *) instr))
153 				break;
154 		} else {
155 			if (get_kernel_nofault(opcode, instr))
156 				break;
157 		}
158 
159 		instr++;
160 
161 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
162 			break;
163 	}
164 
165 	pagefault_enable();
166 	return prefetch;
167 }
168 
169 DEFINE_SPINLOCK(pgd_lock);
170 LIST_HEAD(pgd_list);
171 
172 #ifdef CONFIG_X86_32
173 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
174 {
175 	unsigned index = pgd_index(address);
176 	pgd_t *pgd_k;
177 	p4d_t *p4d, *p4d_k;
178 	pud_t *pud, *pud_k;
179 	pmd_t *pmd, *pmd_k;
180 
181 	pgd += index;
182 	pgd_k = init_mm.pgd + index;
183 
184 	if (!pgd_present(*pgd_k))
185 		return NULL;
186 
187 	/*
188 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
189 	 * and redundant with the set_pmd() on non-PAE. As would
190 	 * set_p4d/set_pud.
191 	 */
192 	p4d = p4d_offset(pgd, address);
193 	p4d_k = p4d_offset(pgd_k, address);
194 	if (!p4d_present(*p4d_k))
195 		return NULL;
196 
197 	pud = pud_offset(p4d, address);
198 	pud_k = pud_offset(p4d_k, address);
199 	if (!pud_present(*pud_k))
200 		return NULL;
201 
202 	pmd = pmd_offset(pud, address);
203 	pmd_k = pmd_offset(pud_k, address);
204 
205 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
206 		set_pmd(pmd, *pmd_k);
207 
208 	if (!pmd_present(*pmd_k))
209 		return NULL;
210 	else
211 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
212 
213 	return pmd_k;
214 }
215 
216 /*
217  *   Handle a fault on the vmalloc or module mapping area
218  *
219  *   This is needed because there is a race condition between the time
220  *   when the vmalloc mapping code updates the PMD to the point in time
221  *   where it synchronizes this update with the other page-tables in the
222  *   system.
223  *
224  *   In this race window another thread/CPU can map an area on the same
225  *   PMD, finds it already present and does not synchronize it with the
226  *   rest of the system yet. As a result v[mz]alloc might return areas
227  *   which are not mapped in every page-table in the system, causing an
228  *   unhandled page-fault when they are accessed.
229  */
230 static noinline int vmalloc_fault(unsigned long address)
231 {
232 	unsigned long pgd_paddr;
233 	pmd_t *pmd_k;
234 	pte_t *pte_k;
235 
236 	/* Make sure we are in vmalloc area: */
237 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
238 		return -1;
239 
240 	/*
241 	 * Synchronize this task's top level page-table
242 	 * with the 'reference' page table.
243 	 *
244 	 * Do _not_ use "current" here. We might be inside
245 	 * an interrupt in the middle of a task switch..
246 	 */
247 	pgd_paddr = read_cr3_pa();
248 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
249 	if (!pmd_k)
250 		return -1;
251 
252 	if (pmd_large(*pmd_k))
253 		return 0;
254 
255 	pte_k = pte_offset_kernel(pmd_k, address);
256 	if (!pte_present(*pte_k))
257 		return -1;
258 
259 	return 0;
260 }
261 NOKPROBE_SYMBOL(vmalloc_fault);
262 
263 static void __arch_sync_kernel_mappings(unsigned long start, unsigned long end)
264 {
265 	unsigned long addr;
266 
267 	for (addr = start & PMD_MASK;
268 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
269 	     addr += PMD_SIZE) {
270 		struct page *page;
271 
272 		spin_lock(&pgd_lock);
273 		list_for_each_entry(page, &pgd_list, lru) {
274 			spinlock_t *pgt_lock;
275 
276 			/* the pgt_lock only for Xen */
277 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
278 
279 			spin_lock(pgt_lock);
280 			vmalloc_sync_one(page_address(page), addr);
281 			spin_unlock(pgt_lock);
282 		}
283 		spin_unlock(&pgd_lock);
284 	}
285 }
286 
287 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
288 {
289 	__arch_sync_kernel_mappings(start, end);
290 #ifdef CONFIG_KMSAN
291 	/*
292 	 * KMSAN maintains two additional metadata page mappings for the
293 	 * [VMALLOC_START, VMALLOC_END) range. These mappings start at
294 	 * KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START and
295 	 * have to be synced together with the vmalloc memory mapping.
296 	 */
297 	if (start >= VMALLOC_START && end < VMALLOC_END) {
298 		__arch_sync_kernel_mappings(
299 			start - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START,
300 			end - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START);
301 		__arch_sync_kernel_mappings(
302 			start - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START,
303 			end - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START);
304 	}
305 #endif
306 }
307 
308 static bool low_pfn(unsigned long pfn)
309 {
310 	return pfn < max_low_pfn;
311 }
312 
313 static void dump_pagetable(unsigned long address)
314 {
315 	pgd_t *base = __va(read_cr3_pa());
316 	pgd_t *pgd = &base[pgd_index(address)];
317 	p4d_t *p4d;
318 	pud_t *pud;
319 	pmd_t *pmd;
320 	pte_t *pte;
321 
322 #ifdef CONFIG_X86_PAE
323 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
324 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
325 		goto out;
326 #define pr_pde pr_cont
327 #else
328 #define pr_pde pr_info
329 #endif
330 	p4d = p4d_offset(pgd, address);
331 	pud = pud_offset(p4d, address);
332 	pmd = pmd_offset(pud, address);
333 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
334 #undef pr_pde
335 
336 	/*
337 	 * We must not directly access the pte in the highpte
338 	 * case if the page table is located in highmem.
339 	 * And let's rather not kmap-atomic the pte, just in case
340 	 * it's allocated already:
341 	 */
342 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
343 		goto out;
344 
345 	pte = pte_offset_kernel(pmd, address);
346 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
347 out:
348 	pr_cont("\n");
349 }
350 
351 #else /* CONFIG_X86_64: */
352 
353 #ifdef CONFIG_CPU_SUP_AMD
354 static const char errata93_warning[] =
355 KERN_ERR
356 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
357 "******* Working around it, but it may cause SEGVs or burn power.\n"
358 "******* Please consider a BIOS update.\n"
359 "******* Disabling USB legacy in the BIOS may also help.\n";
360 #endif
361 
362 static int bad_address(void *p)
363 {
364 	unsigned long dummy;
365 
366 	return get_kernel_nofault(dummy, (unsigned long *)p);
367 }
368 
369 static void dump_pagetable(unsigned long address)
370 {
371 	pgd_t *base = __va(read_cr3_pa());
372 	pgd_t *pgd = base + pgd_index(address);
373 	p4d_t *p4d;
374 	pud_t *pud;
375 	pmd_t *pmd;
376 	pte_t *pte;
377 
378 	if (bad_address(pgd))
379 		goto bad;
380 
381 	pr_info("PGD %lx ", pgd_val(*pgd));
382 
383 	if (!pgd_present(*pgd))
384 		goto out;
385 
386 	p4d = p4d_offset(pgd, address);
387 	if (bad_address(p4d))
388 		goto bad;
389 
390 	pr_cont("P4D %lx ", p4d_val(*p4d));
391 	if (!p4d_present(*p4d) || p4d_large(*p4d))
392 		goto out;
393 
394 	pud = pud_offset(p4d, address);
395 	if (bad_address(pud))
396 		goto bad;
397 
398 	pr_cont("PUD %lx ", pud_val(*pud));
399 	if (!pud_present(*pud) || pud_large(*pud))
400 		goto out;
401 
402 	pmd = pmd_offset(pud, address);
403 	if (bad_address(pmd))
404 		goto bad;
405 
406 	pr_cont("PMD %lx ", pmd_val(*pmd));
407 	if (!pmd_present(*pmd) || pmd_large(*pmd))
408 		goto out;
409 
410 	pte = pte_offset_kernel(pmd, address);
411 	if (bad_address(pte))
412 		goto bad;
413 
414 	pr_cont("PTE %lx", pte_val(*pte));
415 out:
416 	pr_cont("\n");
417 	return;
418 bad:
419 	pr_info("BAD\n");
420 }
421 
422 #endif /* CONFIG_X86_64 */
423 
424 /*
425  * Workaround for K8 erratum #93 & buggy BIOS.
426  *
427  * BIOS SMM functions are required to use a specific workaround
428  * to avoid corruption of the 64bit RIP register on C stepping K8.
429  *
430  * A lot of BIOS that didn't get tested properly miss this.
431  *
432  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
433  * Try to work around it here.
434  *
435  * Note we only handle faults in kernel here.
436  * Does nothing on 32-bit.
437  */
438 static int is_errata93(struct pt_regs *regs, unsigned long address)
439 {
440 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
441 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
442 	    || boot_cpu_data.x86 != 0xf)
443 		return 0;
444 
445 	if (user_mode(regs))
446 		return 0;
447 
448 	if (address != regs->ip)
449 		return 0;
450 
451 	if ((address >> 32) != 0)
452 		return 0;
453 
454 	address |= 0xffffffffUL << 32;
455 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
456 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
457 		printk_once(errata93_warning);
458 		regs->ip = address;
459 		return 1;
460 	}
461 #endif
462 	return 0;
463 }
464 
465 /*
466  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
467  * to illegal addresses >4GB.
468  *
469  * We catch this in the page fault handler because these addresses
470  * are not reachable. Just detect this case and return.  Any code
471  * segment in LDT is compatibility mode.
472  */
473 static int is_errata100(struct pt_regs *regs, unsigned long address)
474 {
475 #ifdef CONFIG_X86_64
476 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
477 		return 1;
478 #endif
479 	return 0;
480 }
481 
482 /* Pentium F0 0F C7 C8 bug workaround: */
483 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
484 		       unsigned long address)
485 {
486 #ifdef CONFIG_X86_F00F_BUG
487 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
488 	    idt_is_f00f_address(address)) {
489 		handle_invalid_op(regs);
490 		return 1;
491 	}
492 #endif
493 	return 0;
494 }
495 
496 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
497 {
498 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
499 	unsigned long addr;
500 	struct ldttss_desc desc;
501 
502 	if (index == 0) {
503 		pr_alert("%s: NULL\n", name);
504 		return;
505 	}
506 
507 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
508 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
509 		return;
510 	}
511 
512 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
513 			      sizeof(struct ldttss_desc))) {
514 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
515 			 name, index);
516 		return;
517 	}
518 
519 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
520 #ifdef CONFIG_X86_64
521 	addr |= ((u64)desc.base3 << 32);
522 #endif
523 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
524 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
525 }
526 
527 static void
528 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
529 {
530 	if (!oops_may_print())
531 		return;
532 
533 	if (error_code & X86_PF_INSTR) {
534 		unsigned int level;
535 		pgd_t *pgd;
536 		pte_t *pte;
537 
538 		pgd = __va(read_cr3_pa());
539 		pgd += pgd_index(address);
540 
541 		pte = lookup_address_in_pgd(pgd, address, &level);
542 
543 		if (pte && pte_present(*pte) && !pte_exec(*pte))
544 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
545 				from_kuid(&init_user_ns, current_uid()));
546 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
547 				(pgd_flags(*pgd) & _PAGE_USER) &&
548 				(__read_cr4() & X86_CR4_SMEP))
549 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
550 				from_kuid(&init_user_ns, current_uid()));
551 	}
552 
553 	if (address < PAGE_SIZE && !user_mode(regs))
554 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
555 			(void *)address);
556 	else
557 		pr_alert("BUG: unable to handle page fault for address: %px\n",
558 			(void *)address);
559 
560 	pr_alert("#PF: %s %s in %s mode\n",
561 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
562 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
563 		 (error_code & X86_PF_WRITE) ? "write access" :
564 					       "read access",
565 			     user_mode(regs) ? "user" : "kernel");
566 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
567 		 !(error_code & X86_PF_PROT) ? "not-present page" :
568 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
569 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
570 					       "permissions violation");
571 
572 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
573 		struct desc_ptr idt, gdt;
574 		u16 ldtr, tr;
575 
576 		/*
577 		 * This can happen for quite a few reasons.  The more obvious
578 		 * ones are faults accessing the GDT, or LDT.  Perhaps
579 		 * surprisingly, if the CPU tries to deliver a benign or
580 		 * contributory exception from user code and gets a page fault
581 		 * during delivery, the page fault can be delivered as though
582 		 * it originated directly from user code.  This could happen
583 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
584 		 * kernel or IST stack.
585 		 */
586 		store_idt(&idt);
587 
588 		/* Usable even on Xen PV -- it's just slow. */
589 		native_store_gdt(&gdt);
590 
591 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
592 			 idt.address, idt.size, gdt.address, gdt.size);
593 
594 		store_ldt(ldtr);
595 		show_ldttss(&gdt, "LDTR", ldtr);
596 
597 		store_tr(tr);
598 		show_ldttss(&gdt, "TR", tr);
599 	}
600 
601 	dump_pagetable(address);
602 }
603 
604 static noinline void
605 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
606 	    unsigned long address)
607 {
608 	struct task_struct *tsk;
609 	unsigned long flags;
610 	int sig;
611 
612 	flags = oops_begin();
613 	tsk = current;
614 	sig = SIGKILL;
615 
616 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 	       tsk->comm, address);
618 	dump_pagetable(address);
619 
620 	if (__die("Bad pagetable", regs, error_code))
621 		sig = 0;
622 
623 	oops_end(flags, regs, sig);
624 }
625 
626 static void sanitize_error_code(unsigned long address,
627 				unsigned long *error_code)
628 {
629 	/*
630 	 * To avoid leaking information about the kernel page
631 	 * table layout, pretend that user-mode accesses to
632 	 * kernel addresses are always protection faults.
633 	 *
634 	 * NB: This means that failed vsyscalls with vsyscall=none
635 	 * will have the PROT bit.  This doesn't leak any
636 	 * information and does not appear to cause any problems.
637 	 */
638 	if (address >= TASK_SIZE_MAX)
639 		*error_code |= X86_PF_PROT;
640 }
641 
642 static void set_signal_archinfo(unsigned long address,
643 				unsigned long error_code)
644 {
645 	struct task_struct *tsk = current;
646 
647 	tsk->thread.trap_nr = X86_TRAP_PF;
648 	tsk->thread.error_code = error_code | X86_PF_USER;
649 	tsk->thread.cr2 = address;
650 }
651 
652 static noinline void
653 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
654 		unsigned long address)
655 {
656 #ifdef CONFIG_VMAP_STACK
657 	struct stack_info info;
658 #endif
659 	unsigned long flags;
660 	int sig;
661 
662 	if (user_mode(regs)) {
663 		/*
664 		 * Implicit kernel access from user mode?  Skip the stack
665 		 * overflow and EFI special cases.
666 		 */
667 		goto oops;
668 	}
669 
670 #ifdef CONFIG_VMAP_STACK
671 	/*
672 	 * Stack overflow?  During boot, we can fault near the initial
673 	 * stack in the direct map, but that's not an overflow -- check
674 	 * that we're in vmalloc space to avoid this.
675 	 */
676 	if (is_vmalloc_addr((void *)address) &&
677 	    get_stack_guard_info((void *)address, &info)) {
678 		/*
679 		 * We're likely to be running with very little stack space
680 		 * left.  It's plausible that we'd hit this condition but
681 		 * double-fault even before we get this far, in which case
682 		 * we're fine: the double-fault handler will deal with it.
683 		 *
684 		 * We don't want to make it all the way into the oops code
685 		 * and then double-fault, though, because we're likely to
686 		 * break the console driver and lose most of the stack dump.
687 		 */
688 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
689 			      handle_stack_overflow,
690 			      ASM_CALL_ARG3,
691 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
692 
693 		unreachable();
694 	}
695 #endif
696 
697 	/*
698 	 * Buggy firmware could access regions which might page fault.  If
699 	 * this happens, EFI has a special OOPS path that will try to
700 	 * avoid hanging the system.
701 	 */
702 	if (IS_ENABLED(CONFIG_EFI))
703 		efi_crash_gracefully_on_page_fault(address);
704 
705 	/* Only not-present faults should be handled by KFENCE. */
706 	if (!(error_code & X86_PF_PROT) &&
707 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
708 		return;
709 
710 oops:
711 	/*
712 	 * Oops. The kernel tried to access some bad page. We'll have to
713 	 * terminate things with extreme prejudice:
714 	 */
715 	flags = oops_begin();
716 
717 	show_fault_oops(regs, error_code, address);
718 
719 	if (task_stack_end_corrupted(current))
720 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
721 
722 	sig = SIGKILL;
723 	if (__die("Oops", regs, error_code))
724 		sig = 0;
725 
726 	/* Executive summary in case the body of the oops scrolled away */
727 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
728 
729 	oops_end(flags, regs, sig);
730 }
731 
732 static noinline void
733 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
734 			 unsigned long address, int signal, int si_code,
735 			 u32 pkey)
736 {
737 	WARN_ON_ONCE(user_mode(regs));
738 
739 	/* Are we prepared to handle this kernel fault? */
740 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
741 		/*
742 		 * Any interrupt that takes a fault gets the fixup. This makes
743 		 * the below recursive fault logic only apply to a faults from
744 		 * task context.
745 		 */
746 		if (in_interrupt())
747 			return;
748 
749 		/*
750 		 * Per the above we're !in_interrupt(), aka. task context.
751 		 *
752 		 * In this case we need to make sure we're not recursively
753 		 * faulting through the emulate_vsyscall() logic.
754 		 */
755 		if (current->thread.sig_on_uaccess_err && signal) {
756 			sanitize_error_code(address, &error_code);
757 
758 			set_signal_archinfo(address, error_code);
759 
760 			if (si_code == SEGV_PKUERR) {
761 				force_sig_pkuerr((void __user *)address, pkey);
762 			} else {
763 				/* XXX: hwpoison faults will set the wrong code. */
764 				force_sig_fault(signal, si_code, (void __user *)address);
765 			}
766 		}
767 
768 		/*
769 		 * Barring that, we can do the fixup and be happy.
770 		 */
771 		return;
772 	}
773 
774 	/*
775 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
776 	 * instruction.
777 	 */
778 	if (is_prefetch(regs, error_code, address))
779 		return;
780 
781 	page_fault_oops(regs, error_code, address);
782 }
783 
784 /*
785  * Print out info about fatal segfaults, if the show_unhandled_signals
786  * sysctl is set:
787  */
788 static inline void
789 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
790 		unsigned long address, struct task_struct *tsk)
791 {
792 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
793 	/* This is a racy snapshot, but it's better than nothing. */
794 	int cpu = raw_smp_processor_id();
795 
796 	if (!unhandled_signal(tsk, SIGSEGV))
797 		return;
798 
799 	if (!printk_ratelimit())
800 		return;
801 
802 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
803 		loglvl, tsk->comm, task_pid_nr(tsk), address,
804 		(void *)regs->ip, (void *)regs->sp, error_code);
805 
806 	print_vma_addr(KERN_CONT " in ", regs->ip);
807 
808 	/*
809 	 * Dump the likely CPU where the fatal segfault happened.
810 	 * This can help identify faulty hardware.
811 	 */
812 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
813 	       topology_core_id(cpu), topology_physical_package_id(cpu));
814 
815 
816 	printk(KERN_CONT "\n");
817 
818 	show_opcodes(regs, loglvl);
819 }
820 
821 /*
822  * The (legacy) vsyscall page is the long page in the kernel portion
823  * of the address space that has user-accessible permissions.
824  */
825 static bool is_vsyscall_vaddr(unsigned long vaddr)
826 {
827 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
828 }
829 
830 static void
831 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
832 		       unsigned long address, u32 pkey, int si_code)
833 {
834 	struct task_struct *tsk = current;
835 
836 	if (!user_mode(regs)) {
837 		kernelmode_fixup_or_oops(regs, error_code, address,
838 					 SIGSEGV, si_code, pkey);
839 		return;
840 	}
841 
842 	if (!(error_code & X86_PF_USER)) {
843 		/* Implicit user access to kernel memory -- just oops */
844 		page_fault_oops(regs, error_code, address);
845 		return;
846 	}
847 
848 	/*
849 	 * User mode accesses just cause a SIGSEGV.
850 	 * It's possible to have interrupts off here:
851 	 */
852 	local_irq_enable();
853 
854 	/*
855 	 * Valid to do another page fault here because this one came
856 	 * from user space:
857 	 */
858 	if (is_prefetch(regs, error_code, address))
859 		return;
860 
861 	if (is_errata100(regs, address))
862 		return;
863 
864 	sanitize_error_code(address, &error_code);
865 
866 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
867 		return;
868 
869 	if (likely(show_unhandled_signals))
870 		show_signal_msg(regs, error_code, address, tsk);
871 
872 	set_signal_archinfo(address, error_code);
873 
874 	if (si_code == SEGV_PKUERR)
875 		force_sig_pkuerr((void __user *)address, pkey);
876 	else
877 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
878 
879 	local_irq_disable();
880 }
881 
882 static noinline void
883 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
884 		     unsigned long address)
885 {
886 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
887 }
888 
889 static void
890 __bad_area(struct pt_regs *regs, unsigned long error_code,
891 	   unsigned long address, u32 pkey, int si_code)
892 {
893 	struct mm_struct *mm = current->mm;
894 	/*
895 	 * Something tried to access memory that isn't in our memory map..
896 	 * Fix it, but check if it's kernel or user first..
897 	 */
898 	mmap_read_unlock(mm);
899 
900 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
901 }
902 
903 static noinline void
904 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
905 {
906 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
907 }
908 
909 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
910 		struct vm_area_struct *vma)
911 {
912 	/* This code is always called on the current mm */
913 	bool foreign = false;
914 
915 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
916 		return false;
917 	if (error_code & X86_PF_PK)
918 		return true;
919 	/* this checks permission keys on the VMA: */
920 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
921 				       (error_code & X86_PF_INSTR), foreign))
922 		return true;
923 	return false;
924 }
925 
926 static noinline void
927 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
928 		      unsigned long address, struct vm_area_struct *vma)
929 {
930 	/*
931 	 * This OSPKE check is not strictly necessary at runtime.
932 	 * But, doing it this way allows compiler optimizations
933 	 * if pkeys are compiled out.
934 	 */
935 	if (bad_area_access_from_pkeys(error_code, vma)) {
936 		/*
937 		 * A protection key fault means that the PKRU value did not allow
938 		 * access to some PTE.  Userspace can figure out what PKRU was
939 		 * from the XSAVE state.  This function captures the pkey from
940 		 * the vma and passes it to userspace so userspace can discover
941 		 * which protection key was set on the PTE.
942 		 *
943 		 * If we get here, we know that the hardware signaled a X86_PF_PK
944 		 * fault and that there was a VMA once we got in the fault
945 		 * handler.  It does *not* guarantee that the VMA we find here
946 		 * was the one that we faulted on.
947 		 *
948 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
949 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
950 		 * 3. T1   : faults...
951 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
952 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
953 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
954 		 *	     faulted on a pte with its pkey=4.
955 		 */
956 		u32 pkey = vma_pkey(vma);
957 
958 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
959 	} else {
960 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
961 	}
962 }
963 
964 static void
965 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
966 	  vm_fault_t fault)
967 {
968 	/* Kernel mode? Handle exceptions or die: */
969 	if (!user_mode(regs)) {
970 		kernelmode_fixup_or_oops(regs, error_code, address,
971 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
972 		return;
973 	}
974 
975 	/* User-space => ok to do another page fault: */
976 	if (is_prefetch(regs, error_code, address))
977 		return;
978 
979 	sanitize_error_code(address, &error_code);
980 
981 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
982 		return;
983 
984 	set_signal_archinfo(address, error_code);
985 
986 #ifdef CONFIG_MEMORY_FAILURE
987 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
988 		struct task_struct *tsk = current;
989 		unsigned lsb = 0;
990 
991 		pr_err(
992 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
993 			tsk->comm, tsk->pid, address);
994 		if (fault & VM_FAULT_HWPOISON_LARGE)
995 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
996 		if (fault & VM_FAULT_HWPOISON)
997 			lsb = PAGE_SHIFT;
998 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
999 		return;
1000 	}
1001 #endif
1002 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1003 }
1004 
1005 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1006 {
1007 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1008 		return 0;
1009 
1010 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1011 		return 0;
1012 
1013 	return 1;
1014 }
1015 
1016 /*
1017  * Handle a spurious fault caused by a stale TLB entry.
1018  *
1019  * This allows us to lazily refresh the TLB when increasing the
1020  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1021  * eagerly is very expensive since that implies doing a full
1022  * cross-processor TLB flush, even if no stale TLB entries exist
1023  * on other processors.
1024  *
1025  * Spurious faults may only occur if the TLB contains an entry with
1026  * fewer permission than the page table entry.  Non-present (P = 0)
1027  * and reserved bit (R = 1) faults are never spurious.
1028  *
1029  * There are no security implications to leaving a stale TLB when
1030  * increasing the permissions on a page.
1031  *
1032  * Returns non-zero if a spurious fault was handled, zero otherwise.
1033  *
1034  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1035  * (Optional Invalidation).
1036  */
1037 static noinline int
1038 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1039 {
1040 	pgd_t *pgd;
1041 	p4d_t *p4d;
1042 	pud_t *pud;
1043 	pmd_t *pmd;
1044 	pte_t *pte;
1045 	int ret;
1046 
1047 	/*
1048 	 * Only writes to RO or instruction fetches from NX may cause
1049 	 * spurious faults.
1050 	 *
1051 	 * These could be from user or supervisor accesses but the TLB
1052 	 * is only lazily flushed after a kernel mapping protection
1053 	 * change, so user accesses are not expected to cause spurious
1054 	 * faults.
1055 	 */
1056 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1057 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1058 		return 0;
1059 
1060 	pgd = init_mm.pgd + pgd_index(address);
1061 	if (!pgd_present(*pgd))
1062 		return 0;
1063 
1064 	p4d = p4d_offset(pgd, address);
1065 	if (!p4d_present(*p4d))
1066 		return 0;
1067 
1068 	if (p4d_large(*p4d))
1069 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1070 
1071 	pud = pud_offset(p4d, address);
1072 	if (!pud_present(*pud))
1073 		return 0;
1074 
1075 	if (pud_large(*pud))
1076 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1077 
1078 	pmd = pmd_offset(pud, address);
1079 	if (!pmd_present(*pmd))
1080 		return 0;
1081 
1082 	if (pmd_large(*pmd))
1083 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1084 
1085 	pte = pte_offset_kernel(pmd, address);
1086 	if (!pte_present(*pte))
1087 		return 0;
1088 
1089 	ret = spurious_kernel_fault_check(error_code, pte);
1090 	if (!ret)
1091 		return 0;
1092 
1093 	/*
1094 	 * Make sure we have permissions in PMD.
1095 	 * If not, then there's a bug in the page tables:
1096 	 */
1097 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1098 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1099 
1100 	return ret;
1101 }
1102 NOKPROBE_SYMBOL(spurious_kernel_fault);
1103 
1104 int show_unhandled_signals = 1;
1105 
1106 static inline int
1107 access_error(unsigned long error_code, struct vm_area_struct *vma)
1108 {
1109 	/* This is only called for the current mm, so: */
1110 	bool foreign = false;
1111 
1112 	/*
1113 	 * Read or write was blocked by protection keys.  This is
1114 	 * always an unconditional error and can never result in
1115 	 * a follow-up action to resolve the fault, like a COW.
1116 	 */
1117 	if (error_code & X86_PF_PK)
1118 		return 1;
1119 
1120 	/*
1121 	 * SGX hardware blocked the access.  This usually happens
1122 	 * when the enclave memory contents have been destroyed, like
1123 	 * after a suspend/resume cycle. In any case, the kernel can't
1124 	 * fix the cause of the fault.  Handle the fault as an access
1125 	 * error even in cases where no actual access violation
1126 	 * occurred.  This allows userspace to rebuild the enclave in
1127 	 * response to the signal.
1128 	 */
1129 	if (unlikely(error_code & X86_PF_SGX))
1130 		return 1;
1131 
1132 	/*
1133 	 * Make sure to check the VMA so that we do not perform
1134 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1135 	 * page.
1136 	 */
1137 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1138 				       (error_code & X86_PF_INSTR), foreign))
1139 		return 1;
1140 
1141 	if (error_code & X86_PF_WRITE) {
1142 		/* write, present and write, not present: */
1143 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1144 			return 1;
1145 		return 0;
1146 	}
1147 
1148 	/* read, present: */
1149 	if (unlikely(error_code & X86_PF_PROT))
1150 		return 1;
1151 
1152 	/* read, not present: */
1153 	if (unlikely(!vma_is_accessible(vma)))
1154 		return 1;
1155 
1156 	return 0;
1157 }
1158 
1159 bool fault_in_kernel_space(unsigned long address)
1160 {
1161 	/*
1162 	 * On 64-bit systems, the vsyscall page is at an address above
1163 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1164 	 * address space.
1165 	 */
1166 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1167 		return false;
1168 
1169 	return address >= TASK_SIZE_MAX;
1170 }
1171 
1172 /*
1173  * Called for all faults where 'address' is part of the kernel address
1174  * space.  Might get called for faults that originate from *code* that
1175  * ran in userspace or the kernel.
1176  */
1177 static void
1178 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1179 		   unsigned long address)
1180 {
1181 	/*
1182 	 * Protection keys exceptions only happen on user pages.  We
1183 	 * have no user pages in the kernel portion of the address
1184 	 * space, so do not expect them here.
1185 	 */
1186 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1187 
1188 #ifdef CONFIG_X86_32
1189 	/*
1190 	 * We can fault-in kernel-space virtual memory on-demand. The
1191 	 * 'reference' page table is init_mm.pgd.
1192 	 *
1193 	 * NOTE! We MUST NOT take any locks for this case. We may
1194 	 * be in an interrupt or a critical region, and should
1195 	 * only copy the information from the master page table,
1196 	 * nothing more.
1197 	 *
1198 	 * Before doing this on-demand faulting, ensure that the
1199 	 * fault is not any of the following:
1200 	 * 1. A fault on a PTE with a reserved bit set.
1201 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1202 	 *    fault kernel memory due to user-mode accesses).
1203 	 * 3. A fault caused by a page-level protection violation.
1204 	 *    (A demand fault would be on a non-present page which
1205 	 *     would have X86_PF_PROT==0).
1206 	 *
1207 	 * This is only needed to close a race condition on x86-32 in
1208 	 * the vmalloc mapping/unmapping code. See the comment above
1209 	 * vmalloc_fault() for details. On x86-64 the race does not
1210 	 * exist as the vmalloc mappings don't need to be synchronized
1211 	 * there.
1212 	 */
1213 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1214 		if (vmalloc_fault(address) >= 0)
1215 			return;
1216 	}
1217 #endif
1218 
1219 	if (is_f00f_bug(regs, hw_error_code, address))
1220 		return;
1221 
1222 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1223 	if (spurious_kernel_fault(hw_error_code, address))
1224 		return;
1225 
1226 	/* kprobes don't want to hook the spurious faults: */
1227 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1228 		return;
1229 
1230 	/*
1231 	 * Note, despite being a "bad area", there are quite a few
1232 	 * acceptable reasons to get here, such as erratum fixups
1233 	 * and handling kernel code that can fault, like get_user().
1234 	 *
1235 	 * Don't take the mm semaphore here. If we fixup a prefetch
1236 	 * fault we could otherwise deadlock:
1237 	 */
1238 	bad_area_nosemaphore(regs, hw_error_code, address);
1239 }
1240 NOKPROBE_SYMBOL(do_kern_addr_fault);
1241 
1242 /*
1243  * Handle faults in the user portion of the address space.  Nothing in here
1244  * should check X86_PF_USER without a specific justification: for almost
1245  * all purposes, we should treat a normal kernel access to user memory
1246  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1247  * The one exception is AC flag handling, which is, per the x86
1248  * architecture, special for WRUSS.
1249  */
1250 static inline
1251 void do_user_addr_fault(struct pt_regs *regs,
1252 			unsigned long error_code,
1253 			unsigned long address)
1254 {
1255 	struct vm_area_struct *vma;
1256 	struct task_struct *tsk;
1257 	struct mm_struct *mm;
1258 	vm_fault_t fault;
1259 	unsigned int flags = FAULT_FLAG_DEFAULT;
1260 
1261 	tsk = current;
1262 	mm = tsk->mm;
1263 
1264 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1265 		/*
1266 		 * Whoops, this is kernel mode code trying to execute from
1267 		 * user memory.  Unless this is AMD erratum #93, which
1268 		 * corrupts RIP such that it looks like a user address,
1269 		 * this is unrecoverable.  Don't even try to look up the
1270 		 * VMA or look for extable entries.
1271 		 */
1272 		if (is_errata93(regs, address))
1273 			return;
1274 
1275 		page_fault_oops(regs, error_code, address);
1276 		return;
1277 	}
1278 
1279 	/* kprobes don't want to hook the spurious faults: */
1280 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1281 		return;
1282 
1283 	/*
1284 	 * Reserved bits are never expected to be set on
1285 	 * entries in the user portion of the page tables.
1286 	 */
1287 	if (unlikely(error_code & X86_PF_RSVD))
1288 		pgtable_bad(regs, error_code, address);
1289 
1290 	/*
1291 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1292 	 * pages in the user address space.  The odd case here is WRUSS,
1293 	 * which, according to the preliminary documentation, does not respect
1294 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1295 	 * enforcement appears to be consistent with the USER bit.
1296 	 */
1297 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1298 		     !(error_code & X86_PF_USER) &&
1299 		     !(regs->flags & X86_EFLAGS_AC))) {
1300 		/*
1301 		 * No extable entry here.  This was a kernel access to an
1302 		 * invalid pointer.  get_kernel_nofault() will not get here.
1303 		 */
1304 		page_fault_oops(regs, error_code, address);
1305 		return;
1306 	}
1307 
1308 	/*
1309 	 * If we're in an interrupt, have no user context or are running
1310 	 * in a region with pagefaults disabled then we must not take the fault
1311 	 */
1312 	if (unlikely(faulthandler_disabled() || !mm)) {
1313 		bad_area_nosemaphore(regs, error_code, address);
1314 		return;
1315 	}
1316 
1317 	/*
1318 	 * It's safe to allow irq's after cr2 has been saved and the
1319 	 * vmalloc fault has been handled.
1320 	 *
1321 	 * User-mode registers count as a user access even for any
1322 	 * potential system fault or CPU buglet:
1323 	 */
1324 	if (user_mode(regs)) {
1325 		local_irq_enable();
1326 		flags |= FAULT_FLAG_USER;
1327 	} else {
1328 		if (regs->flags & X86_EFLAGS_IF)
1329 			local_irq_enable();
1330 	}
1331 
1332 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1333 
1334 	if (error_code & X86_PF_WRITE)
1335 		flags |= FAULT_FLAG_WRITE;
1336 	if (error_code & X86_PF_INSTR)
1337 		flags |= FAULT_FLAG_INSTRUCTION;
1338 
1339 #ifdef CONFIG_X86_64
1340 	/*
1341 	 * Faults in the vsyscall page might need emulation.  The
1342 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1343 	 * considered to be part of the user address space.
1344 	 *
1345 	 * The vsyscall page does not have a "real" VMA, so do this
1346 	 * emulation before we go searching for VMAs.
1347 	 *
1348 	 * PKRU never rejects instruction fetches, so we don't need
1349 	 * to consider the PF_PK bit.
1350 	 */
1351 	if (is_vsyscall_vaddr(address)) {
1352 		if (emulate_vsyscall(error_code, regs, address))
1353 			return;
1354 	}
1355 #endif
1356 
1357 	/*
1358 	 * Kernel-mode access to the user address space should only occur
1359 	 * on well-defined single instructions listed in the exception
1360 	 * tables.  But, an erroneous kernel fault occurring outside one of
1361 	 * those areas which also holds mmap_lock might deadlock attempting
1362 	 * to validate the fault against the address space.
1363 	 *
1364 	 * Only do the expensive exception table search when we might be at
1365 	 * risk of a deadlock.  This happens if we
1366 	 * 1. Failed to acquire mmap_lock, and
1367 	 * 2. The access did not originate in userspace.
1368 	 */
1369 	if (unlikely(!mmap_read_trylock(mm))) {
1370 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1371 			/*
1372 			 * Fault from code in kernel from
1373 			 * which we do not expect faults.
1374 			 */
1375 			bad_area_nosemaphore(regs, error_code, address);
1376 			return;
1377 		}
1378 retry:
1379 		mmap_read_lock(mm);
1380 	} else {
1381 		/*
1382 		 * The above down_read_trylock() might have succeeded in
1383 		 * which case we'll have missed the might_sleep() from
1384 		 * down_read():
1385 		 */
1386 		might_sleep();
1387 	}
1388 
1389 	vma = find_vma(mm, address);
1390 	if (unlikely(!vma)) {
1391 		bad_area(regs, error_code, address);
1392 		return;
1393 	}
1394 	if (likely(vma->vm_start <= address))
1395 		goto good_area;
1396 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1397 		bad_area(regs, error_code, address);
1398 		return;
1399 	}
1400 	if (unlikely(expand_stack(vma, address))) {
1401 		bad_area(regs, error_code, address);
1402 		return;
1403 	}
1404 
1405 	/*
1406 	 * Ok, we have a good vm_area for this memory access, so
1407 	 * we can handle it..
1408 	 */
1409 good_area:
1410 	if (unlikely(access_error(error_code, vma))) {
1411 		bad_area_access_error(regs, error_code, address, vma);
1412 		return;
1413 	}
1414 
1415 	/*
1416 	 * If for any reason at all we couldn't handle the fault,
1417 	 * make sure we exit gracefully rather than endlessly redo
1418 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1419 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1420 	 *
1421 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1422 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1423 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1424 	 * (potentially after handling any pending signal during the return to
1425 	 * userland). The return to userland is identified whenever
1426 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1427 	 */
1428 	fault = handle_mm_fault(vma, address, flags, regs);
1429 
1430 	if (fault_signal_pending(fault, regs)) {
1431 		/*
1432 		 * Quick path to respond to signals.  The core mm code
1433 		 * has unlocked the mm for us if we get here.
1434 		 */
1435 		if (!user_mode(regs))
1436 			kernelmode_fixup_or_oops(regs, error_code, address,
1437 						 SIGBUS, BUS_ADRERR,
1438 						 ARCH_DEFAULT_PKEY);
1439 		return;
1440 	}
1441 
1442 	/* The fault is fully completed (including releasing mmap lock) */
1443 	if (fault & VM_FAULT_COMPLETED)
1444 		return;
1445 
1446 	/*
1447 	 * If we need to retry the mmap_lock has already been released,
1448 	 * and if there is a fatal signal pending there is no guarantee
1449 	 * that we made any progress. Handle this case first.
1450 	 */
1451 	if (unlikely(fault & VM_FAULT_RETRY)) {
1452 		flags |= FAULT_FLAG_TRIED;
1453 		goto retry;
1454 	}
1455 
1456 	mmap_read_unlock(mm);
1457 	if (likely(!(fault & VM_FAULT_ERROR)))
1458 		return;
1459 
1460 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1461 		kernelmode_fixup_or_oops(regs, error_code, address,
1462 					 0, 0, ARCH_DEFAULT_PKEY);
1463 		return;
1464 	}
1465 
1466 	if (fault & VM_FAULT_OOM) {
1467 		/* Kernel mode? Handle exceptions or die: */
1468 		if (!user_mode(regs)) {
1469 			kernelmode_fixup_or_oops(regs, error_code, address,
1470 						 SIGSEGV, SEGV_MAPERR,
1471 						 ARCH_DEFAULT_PKEY);
1472 			return;
1473 		}
1474 
1475 		/*
1476 		 * We ran out of memory, call the OOM killer, and return the
1477 		 * userspace (which will retry the fault, or kill us if we got
1478 		 * oom-killed):
1479 		 */
1480 		pagefault_out_of_memory();
1481 	} else {
1482 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1483 			     VM_FAULT_HWPOISON_LARGE))
1484 			do_sigbus(regs, error_code, address, fault);
1485 		else if (fault & VM_FAULT_SIGSEGV)
1486 			bad_area_nosemaphore(regs, error_code, address);
1487 		else
1488 			BUG();
1489 	}
1490 }
1491 NOKPROBE_SYMBOL(do_user_addr_fault);
1492 
1493 static __always_inline void
1494 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1495 			 unsigned long address)
1496 {
1497 	if (!trace_pagefault_enabled())
1498 		return;
1499 
1500 	if (user_mode(regs))
1501 		trace_page_fault_user(address, regs, error_code);
1502 	else
1503 		trace_page_fault_kernel(address, regs, error_code);
1504 }
1505 
1506 static __always_inline void
1507 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1508 			      unsigned long address)
1509 {
1510 	trace_page_fault_entries(regs, error_code, address);
1511 
1512 	if (unlikely(kmmio_fault(regs, address)))
1513 		return;
1514 
1515 	/* Was the fault on kernel-controlled part of the address space? */
1516 	if (unlikely(fault_in_kernel_space(address))) {
1517 		do_kern_addr_fault(regs, error_code, address);
1518 	} else {
1519 		do_user_addr_fault(regs, error_code, address);
1520 		/*
1521 		 * User address page fault handling might have reenabled
1522 		 * interrupts. Fixing up all potential exit points of
1523 		 * do_user_addr_fault() and its leaf functions is just not
1524 		 * doable w/o creating an unholy mess or turning the code
1525 		 * upside down.
1526 		 */
1527 		local_irq_disable();
1528 	}
1529 }
1530 
1531 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1532 {
1533 	unsigned long address = read_cr2();
1534 	irqentry_state_t state;
1535 
1536 	prefetchw(&current->mm->mmap_lock);
1537 
1538 	/*
1539 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1540 	 * (asynchronous page fault mechanism). The event happens when a
1541 	 * userspace task is trying to access some valid (from guest's point of
1542 	 * view) memory which is not currently mapped by the host (e.g. the
1543 	 * memory is swapped out). Note, the corresponding "page ready" event
1544 	 * which is injected when the memory becomes available, is delivered via
1545 	 * an interrupt mechanism and not a #PF exception
1546 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1547 	 *
1548 	 * We are relying on the interrupted context being sane (valid RSP,
1549 	 * relevant locks not held, etc.), which is fine as long as the
1550 	 * interrupted context had IF=1.  We are also relying on the KVM
1551 	 * async pf type field and CR2 being read consistently instead of
1552 	 * getting values from real and async page faults mixed up.
1553 	 *
1554 	 * Fingers crossed.
1555 	 *
1556 	 * The async #PF handling code takes care of idtentry handling
1557 	 * itself.
1558 	 */
1559 	if (kvm_handle_async_pf(regs, (u32)address))
1560 		return;
1561 
1562 	/*
1563 	 * Entry handling for valid #PF from kernel mode is slightly
1564 	 * different: RCU is already watching and ct_irq_enter() must not
1565 	 * be invoked because a kernel fault on a user space address might
1566 	 * sleep.
1567 	 *
1568 	 * In case the fault hit a RCU idle region the conditional entry
1569 	 * code reenabled RCU to avoid subsequent wreckage which helps
1570 	 * debuggability.
1571 	 */
1572 	state = irqentry_enter(regs);
1573 
1574 	instrumentation_begin();
1575 	handle_page_fault(regs, error_code, address);
1576 	instrumentation_end();
1577 
1578 	irqentry_exit(regs, state);
1579 }
1580