xref: /openbmc/linux/arch/x86/mm/fault.c (revision 3db55767)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15 #include <linux/perf_event.h>		/* perf_sw_event		*/
16 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17 #include <linux/prefetch.h>		/* prefetchw			*/
18 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h>			/* find_and_lock_vma() */
23 
24 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
25 #include <asm/traps.h>			/* dotraplinkage, ...		*/
26 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
27 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
28 #include <asm/vm86.h>			/* struct vm86			*/
29 #include <asm/mmu_context.h>		/* vma_pkey()			*/
30 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
31 #include <asm/desc.h>			/* store_idt(), ...		*/
32 #include <asm/cpu_entry_area.h>		/* exception stack		*/
33 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
34 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
35 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
36 #include <asm/irq_stack.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <asm/trace/exceptions.h>
40 
41 /*
42  * Returns 0 if mmiotrace is disabled, or if the fault is not
43  * handled by mmiotrace:
44  */
45 static nokprobe_inline int
46 kmmio_fault(struct pt_regs *regs, unsigned long addr)
47 {
48 	if (unlikely(is_kmmio_active()))
49 		if (kmmio_handler(regs, addr) == 1)
50 			return -1;
51 	return 0;
52 }
53 
54 /*
55  * Prefetch quirks:
56  *
57  * 32-bit mode:
58  *
59  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
60  *   Check that here and ignore it.  This is AMD erratum #91.
61  *
62  * 64-bit mode:
63  *
64  *   Sometimes the CPU reports invalid exceptions on prefetch.
65  *   Check that here and ignore it.
66  *
67  * Opcode checker based on code by Richard Brunner.
68  */
69 static inline int
70 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
71 		      unsigned char opcode, int *prefetch)
72 {
73 	unsigned char instr_hi = opcode & 0xf0;
74 	unsigned char instr_lo = opcode & 0x0f;
75 
76 	switch (instr_hi) {
77 	case 0x20:
78 	case 0x30:
79 		/*
80 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
81 		 * In X86_64 long mode, the CPU will signal invalid
82 		 * opcode if some of these prefixes are present so
83 		 * X86_64 will never get here anyway
84 		 */
85 		return ((instr_lo & 7) == 0x6);
86 #ifdef CONFIG_X86_64
87 	case 0x40:
88 		/*
89 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
90 		 */
91 		return (!user_mode(regs) || user_64bit_mode(regs));
92 #endif
93 	case 0x60:
94 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
95 		return (instr_lo & 0xC) == 0x4;
96 	case 0xF0:
97 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 		return !instr_lo || (instr_lo>>1) == 1;
99 	case 0x00:
100 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
101 		if (get_kernel_nofault(opcode, instr))
102 			return 0;
103 
104 		*prefetch = (instr_lo == 0xF) &&
105 			(opcode == 0x0D || opcode == 0x18);
106 		return 0;
107 	default:
108 		return 0;
109 	}
110 }
111 
112 static bool is_amd_k8_pre_npt(void)
113 {
114 	struct cpuinfo_x86 *c = &boot_cpu_data;
115 
116 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
117 			c->x86_vendor == X86_VENDOR_AMD &&
118 			c->x86 == 0xf && c->x86_model < 0x40);
119 }
120 
121 static int
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 	unsigned char *max_instr;
125 	unsigned char *instr;
126 	int prefetch = 0;
127 
128 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
129 	if (!is_amd_k8_pre_npt())
130 		return 0;
131 
132 	/*
133 	 * If it was a exec (instruction fetch) fault on NX page, then
134 	 * do not ignore the fault:
135 	 */
136 	if (error_code & X86_PF_INSTR)
137 		return 0;
138 
139 	instr = (void *)convert_ip_to_linear(current, regs);
140 	max_instr = instr + 15;
141 
142 	/*
143 	 * This code has historically always bailed out if IP points to a
144 	 * not-present page (e.g. due to a race).  No one has ever
145 	 * complained about this.
146 	 */
147 	pagefault_disable();
148 
149 	while (instr < max_instr) {
150 		unsigned char opcode;
151 
152 		if (user_mode(regs)) {
153 			if (get_user(opcode, (unsigned char __user *) instr))
154 				break;
155 		} else {
156 			if (get_kernel_nofault(opcode, instr))
157 				break;
158 		}
159 
160 		instr++;
161 
162 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 			break;
164 	}
165 
166 	pagefault_enable();
167 	return prefetch;
168 }
169 
170 DEFINE_SPINLOCK(pgd_lock);
171 LIST_HEAD(pgd_list);
172 
173 #ifdef CONFIG_X86_32
174 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
175 {
176 	unsigned index = pgd_index(address);
177 	pgd_t *pgd_k;
178 	p4d_t *p4d, *p4d_k;
179 	pud_t *pud, *pud_k;
180 	pmd_t *pmd, *pmd_k;
181 
182 	pgd += index;
183 	pgd_k = init_mm.pgd + index;
184 
185 	if (!pgd_present(*pgd_k))
186 		return NULL;
187 
188 	/*
189 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
190 	 * and redundant with the set_pmd() on non-PAE. As would
191 	 * set_p4d/set_pud.
192 	 */
193 	p4d = p4d_offset(pgd, address);
194 	p4d_k = p4d_offset(pgd_k, address);
195 	if (!p4d_present(*p4d_k))
196 		return NULL;
197 
198 	pud = pud_offset(p4d, address);
199 	pud_k = pud_offset(p4d_k, address);
200 	if (!pud_present(*pud_k))
201 		return NULL;
202 
203 	pmd = pmd_offset(pud, address);
204 	pmd_k = pmd_offset(pud_k, address);
205 
206 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
207 		set_pmd(pmd, *pmd_k);
208 
209 	if (!pmd_present(*pmd_k))
210 		return NULL;
211 	else
212 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
213 
214 	return pmd_k;
215 }
216 
217 /*
218  *   Handle a fault on the vmalloc or module mapping area
219  *
220  *   This is needed because there is a race condition between the time
221  *   when the vmalloc mapping code updates the PMD to the point in time
222  *   where it synchronizes this update with the other page-tables in the
223  *   system.
224  *
225  *   In this race window another thread/CPU can map an area on the same
226  *   PMD, finds it already present and does not synchronize it with the
227  *   rest of the system yet. As a result v[mz]alloc might return areas
228  *   which are not mapped in every page-table in the system, causing an
229  *   unhandled page-fault when they are accessed.
230  */
231 static noinline int vmalloc_fault(unsigned long address)
232 {
233 	unsigned long pgd_paddr;
234 	pmd_t *pmd_k;
235 	pte_t *pte_k;
236 
237 	/* Make sure we are in vmalloc area: */
238 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
239 		return -1;
240 
241 	/*
242 	 * Synchronize this task's top level page-table
243 	 * with the 'reference' page table.
244 	 *
245 	 * Do _not_ use "current" here. We might be inside
246 	 * an interrupt in the middle of a task switch..
247 	 */
248 	pgd_paddr = read_cr3_pa();
249 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
250 	if (!pmd_k)
251 		return -1;
252 
253 	if (pmd_large(*pmd_k))
254 		return 0;
255 
256 	pte_k = pte_offset_kernel(pmd_k, address);
257 	if (!pte_present(*pte_k))
258 		return -1;
259 
260 	return 0;
261 }
262 NOKPROBE_SYMBOL(vmalloc_fault);
263 
264 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
265 {
266 	unsigned long addr;
267 
268 	for (addr = start & PMD_MASK;
269 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
270 	     addr += PMD_SIZE) {
271 		struct page *page;
272 
273 		spin_lock(&pgd_lock);
274 		list_for_each_entry(page, &pgd_list, lru) {
275 			spinlock_t *pgt_lock;
276 
277 			/* the pgt_lock only for Xen */
278 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
279 
280 			spin_lock(pgt_lock);
281 			vmalloc_sync_one(page_address(page), addr);
282 			spin_unlock(pgt_lock);
283 		}
284 		spin_unlock(&pgd_lock);
285 	}
286 }
287 
288 static bool low_pfn(unsigned long pfn)
289 {
290 	return pfn < max_low_pfn;
291 }
292 
293 static void dump_pagetable(unsigned long address)
294 {
295 	pgd_t *base = __va(read_cr3_pa());
296 	pgd_t *pgd = &base[pgd_index(address)];
297 	p4d_t *p4d;
298 	pud_t *pud;
299 	pmd_t *pmd;
300 	pte_t *pte;
301 
302 #ifdef CONFIG_X86_PAE
303 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
304 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305 		goto out;
306 #define pr_pde pr_cont
307 #else
308 #define pr_pde pr_info
309 #endif
310 	p4d = p4d_offset(pgd, address);
311 	pud = pud_offset(p4d, address);
312 	pmd = pmd_offset(pud, address);
313 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
314 #undef pr_pde
315 
316 	/*
317 	 * We must not directly access the pte in the highpte
318 	 * case if the page table is located in highmem.
319 	 * And let's rather not kmap-atomic the pte, just in case
320 	 * it's allocated already:
321 	 */
322 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
323 		goto out;
324 
325 	pte = pte_offset_kernel(pmd, address);
326 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
327 out:
328 	pr_cont("\n");
329 }
330 
331 #else /* CONFIG_X86_64: */
332 
333 #ifdef CONFIG_CPU_SUP_AMD
334 static const char errata93_warning[] =
335 KERN_ERR
336 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
337 "******* Working around it, but it may cause SEGVs or burn power.\n"
338 "******* Please consider a BIOS update.\n"
339 "******* Disabling USB legacy in the BIOS may also help.\n";
340 #endif
341 
342 static int bad_address(void *p)
343 {
344 	unsigned long dummy;
345 
346 	return get_kernel_nofault(dummy, (unsigned long *)p);
347 }
348 
349 static void dump_pagetable(unsigned long address)
350 {
351 	pgd_t *base = __va(read_cr3_pa());
352 	pgd_t *pgd = base + pgd_index(address);
353 	p4d_t *p4d;
354 	pud_t *pud;
355 	pmd_t *pmd;
356 	pte_t *pte;
357 
358 	if (bad_address(pgd))
359 		goto bad;
360 
361 	pr_info("PGD %lx ", pgd_val(*pgd));
362 
363 	if (!pgd_present(*pgd))
364 		goto out;
365 
366 	p4d = p4d_offset(pgd, address);
367 	if (bad_address(p4d))
368 		goto bad;
369 
370 	pr_cont("P4D %lx ", p4d_val(*p4d));
371 	if (!p4d_present(*p4d) || p4d_large(*p4d))
372 		goto out;
373 
374 	pud = pud_offset(p4d, address);
375 	if (bad_address(pud))
376 		goto bad;
377 
378 	pr_cont("PUD %lx ", pud_val(*pud));
379 	if (!pud_present(*pud) || pud_large(*pud))
380 		goto out;
381 
382 	pmd = pmd_offset(pud, address);
383 	if (bad_address(pmd))
384 		goto bad;
385 
386 	pr_cont("PMD %lx ", pmd_val(*pmd));
387 	if (!pmd_present(*pmd) || pmd_large(*pmd))
388 		goto out;
389 
390 	pte = pte_offset_kernel(pmd, address);
391 	if (bad_address(pte))
392 		goto bad;
393 
394 	pr_cont("PTE %lx", pte_val(*pte));
395 out:
396 	pr_cont("\n");
397 	return;
398 bad:
399 	pr_info("BAD\n");
400 }
401 
402 #endif /* CONFIG_X86_64 */
403 
404 /*
405  * Workaround for K8 erratum #93 & buggy BIOS.
406  *
407  * BIOS SMM functions are required to use a specific workaround
408  * to avoid corruption of the 64bit RIP register on C stepping K8.
409  *
410  * A lot of BIOS that didn't get tested properly miss this.
411  *
412  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
413  * Try to work around it here.
414  *
415  * Note we only handle faults in kernel here.
416  * Does nothing on 32-bit.
417  */
418 static int is_errata93(struct pt_regs *regs, unsigned long address)
419 {
420 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
421 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
422 	    || boot_cpu_data.x86 != 0xf)
423 		return 0;
424 
425 	if (user_mode(regs))
426 		return 0;
427 
428 	if (address != regs->ip)
429 		return 0;
430 
431 	if ((address >> 32) != 0)
432 		return 0;
433 
434 	address |= 0xffffffffUL << 32;
435 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
436 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
437 		printk_once(errata93_warning);
438 		regs->ip = address;
439 		return 1;
440 	}
441 #endif
442 	return 0;
443 }
444 
445 /*
446  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
447  * to illegal addresses >4GB.
448  *
449  * We catch this in the page fault handler because these addresses
450  * are not reachable. Just detect this case and return.  Any code
451  * segment in LDT is compatibility mode.
452  */
453 static int is_errata100(struct pt_regs *regs, unsigned long address)
454 {
455 #ifdef CONFIG_X86_64
456 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
457 		return 1;
458 #endif
459 	return 0;
460 }
461 
462 /* Pentium F0 0F C7 C8 bug workaround: */
463 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
464 		       unsigned long address)
465 {
466 #ifdef CONFIG_X86_F00F_BUG
467 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
468 	    idt_is_f00f_address(address)) {
469 		handle_invalid_op(regs);
470 		return 1;
471 	}
472 #endif
473 	return 0;
474 }
475 
476 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
477 {
478 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
479 	unsigned long addr;
480 	struct ldttss_desc desc;
481 
482 	if (index == 0) {
483 		pr_alert("%s: NULL\n", name);
484 		return;
485 	}
486 
487 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
488 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
489 		return;
490 	}
491 
492 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
493 			      sizeof(struct ldttss_desc))) {
494 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
495 			 name, index);
496 		return;
497 	}
498 
499 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
500 #ifdef CONFIG_X86_64
501 	addr |= ((u64)desc.base3 << 32);
502 #endif
503 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
504 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
505 }
506 
507 static void
508 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
509 {
510 	if (!oops_may_print())
511 		return;
512 
513 	if (error_code & X86_PF_INSTR) {
514 		unsigned int level;
515 		pgd_t *pgd;
516 		pte_t *pte;
517 
518 		pgd = __va(read_cr3_pa());
519 		pgd += pgd_index(address);
520 
521 		pte = lookup_address_in_pgd(pgd, address, &level);
522 
523 		if (pte && pte_present(*pte) && !pte_exec(*pte))
524 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
525 				from_kuid(&init_user_ns, current_uid()));
526 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
527 				(pgd_flags(*pgd) & _PAGE_USER) &&
528 				(__read_cr4() & X86_CR4_SMEP))
529 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
530 				from_kuid(&init_user_ns, current_uid()));
531 	}
532 
533 	if (address < PAGE_SIZE && !user_mode(regs))
534 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
535 			(void *)address);
536 	else
537 		pr_alert("BUG: unable to handle page fault for address: %px\n",
538 			(void *)address);
539 
540 	pr_alert("#PF: %s %s in %s mode\n",
541 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
542 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
543 		 (error_code & X86_PF_WRITE) ? "write access" :
544 					       "read access",
545 			     user_mode(regs) ? "user" : "kernel");
546 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
547 		 !(error_code & X86_PF_PROT) ? "not-present page" :
548 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
549 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
550 					       "permissions violation");
551 
552 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
553 		struct desc_ptr idt, gdt;
554 		u16 ldtr, tr;
555 
556 		/*
557 		 * This can happen for quite a few reasons.  The more obvious
558 		 * ones are faults accessing the GDT, or LDT.  Perhaps
559 		 * surprisingly, if the CPU tries to deliver a benign or
560 		 * contributory exception from user code and gets a page fault
561 		 * during delivery, the page fault can be delivered as though
562 		 * it originated directly from user code.  This could happen
563 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
564 		 * kernel or IST stack.
565 		 */
566 		store_idt(&idt);
567 
568 		/* Usable even on Xen PV -- it's just slow. */
569 		native_store_gdt(&gdt);
570 
571 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
572 			 idt.address, idt.size, gdt.address, gdt.size);
573 
574 		store_ldt(ldtr);
575 		show_ldttss(&gdt, "LDTR", ldtr);
576 
577 		store_tr(tr);
578 		show_ldttss(&gdt, "TR", tr);
579 	}
580 
581 	dump_pagetable(address);
582 }
583 
584 static noinline void
585 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
586 	    unsigned long address)
587 {
588 	struct task_struct *tsk;
589 	unsigned long flags;
590 	int sig;
591 
592 	flags = oops_begin();
593 	tsk = current;
594 	sig = SIGKILL;
595 
596 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
597 	       tsk->comm, address);
598 	dump_pagetable(address);
599 
600 	if (__die("Bad pagetable", regs, error_code))
601 		sig = 0;
602 
603 	oops_end(flags, regs, sig);
604 }
605 
606 static void sanitize_error_code(unsigned long address,
607 				unsigned long *error_code)
608 {
609 	/*
610 	 * To avoid leaking information about the kernel page
611 	 * table layout, pretend that user-mode accesses to
612 	 * kernel addresses are always protection faults.
613 	 *
614 	 * NB: This means that failed vsyscalls with vsyscall=none
615 	 * will have the PROT bit.  This doesn't leak any
616 	 * information and does not appear to cause any problems.
617 	 */
618 	if (address >= TASK_SIZE_MAX)
619 		*error_code |= X86_PF_PROT;
620 }
621 
622 static void set_signal_archinfo(unsigned long address,
623 				unsigned long error_code)
624 {
625 	struct task_struct *tsk = current;
626 
627 	tsk->thread.trap_nr = X86_TRAP_PF;
628 	tsk->thread.error_code = error_code | X86_PF_USER;
629 	tsk->thread.cr2 = address;
630 }
631 
632 static noinline void
633 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
634 		unsigned long address)
635 {
636 #ifdef CONFIG_VMAP_STACK
637 	struct stack_info info;
638 #endif
639 	unsigned long flags;
640 	int sig;
641 
642 	if (user_mode(regs)) {
643 		/*
644 		 * Implicit kernel access from user mode?  Skip the stack
645 		 * overflow and EFI special cases.
646 		 */
647 		goto oops;
648 	}
649 
650 #ifdef CONFIG_VMAP_STACK
651 	/*
652 	 * Stack overflow?  During boot, we can fault near the initial
653 	 * stack in the direct map, but that's not an overflow -- check
654 	 * that we're in vmalloc space to avoid this.
655 	 */
656 	if (is_vmalloc_addr((void *)address) &&
657 	    get_stack_guard_info((void *)address, &info)) {
658 		/*
659 		 * We're likely to be running with very little stack space
660 		 * left.  It's plausible that we'd hit this condition but
661 		 * double-fault even before we get this far, in which case
662 		 * we're fine: the double-fault handler will deal with it.
663 		 *
664 		 * We don't want to make it all the way into the oops code
665 		 * and then double-fault, though, because we're likely to
666 		 * break the console driver and lose most of the stack dump.
667 		 */
668 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
669 			      handle_stack_overflow,
670 			      ASM_CALL_ARG3,
671 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
672 
673 		unreachable();
674 	}
675 #endif
676 
677 	/*
678 	 * Buggy firmware could access regions which might page fault.  If
679 	 * this happens, EFI has a special OOPS path that will try to
680 	 * avoid hanging the system.
681 	 */
682 	if (IS_ENABLED(CONFIG_EFI))
683 		efi_crash_gracefully_on_page_fault(address);
684 
685 	/* Only not-present faults should be handled by KFENCE. */
686 	if (!(error_code & X86_PF_PROT) &&
687 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
688 		return;
689 
690 oops:
691 	/*
692 	 * Oops. The kernel tried to access some bad page. We'll have to
693 	 * terminate things with extreme prejudice:
694 	 */
695 	flags = oops_begin();
696 
697 	show_fault_oops(regs, error_code, address);
698 
699 	if (task_stack_end_corrupted(current))
700 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
701 
702 	sig = SIGKILL;
703 	if (__die("Oops", regs, error_code))
704 		sig = 0;
705 
706 	/* Executive summary in case the body of the oops scrolled away */
707 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
708 
709 	oops_end(flags, regs, sig);
710 }
711 
712 static noinline void
713 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
714 			 unsigned long address, int signal, int si_code,
715 			 u32 pkey)
716 {
717 	WARN_ON_ONCE(user_mode(regs));
718 
719 	/* Are we prepared to handle this kernel fault? */
720 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
721 		/*
722 		 * Any interrupt that takes a fault gets the fixup. This makes
723 		 * the below recursive fault logic only apply to a faults from
724 		 * task context.
725 		 */
726 		if (in_interrupt())
727 			return;
728 
729 		/*
730 		 * Per the above we're !in_interrupt(), aka. task context.
731 		 *
732 		 * In this case we need to make sure we're not recursively
733 		 * faulting through the emulate_vsyscall() logic.
734 		 */
735 		if (current->thread.sig_on_uaccess_err && signal) {
736 			sanitize_error_code(address, &error_code);
737 
738 			set_signal_archinfo(address, error_code);
739 
740 			if (si_code == SEGV_PKUERR) {
741 				force_sig_pkuerr((void __user *)address, pkey);
742 			} else {
743 				/* XXX: hwpoison faults will set the wrong code. */
744 				force_sig_fault(signal, si_code, (void __user *)address);
745 			}
746 		}
747 
748 		/*
749 		 * Barring that, we can do the fixup and be happy.
750 		 */
751 		return;
752 	}
753 
754 	/*
755 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
756 	 * instruction.
757 	 */
758 	if (is_prefetch(regs, error_code, address))
759 		return;
760 
761 	page_fault_oops(regs, error_code, address);
762 }
763 
764 /*
765  * Print out info about fatal segfaults, if the show_unhandled_signals
766  * sysctl is set:
767  */
768 static inline void
769 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
770 		unsigned long address, struct task_struct *tsk)
771 {
772 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
773 	/* This is a racy snapshot, but it's better than nothing. */
774 	int cpu = raw_smp_processor_id();
775 
776 	if (!unhandled_signal(tsk, SIGSEGV))
777 		return;
778 
779 	if (!printk_ratelimit())
780 		return;
781 
782 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
783 		loglvl, tsk->comm, task_pid_nr(tsk), address,
784 		(void *)regs->ip, (void *)regs->sp, error_code);
785 
786 	print_vma_addr(KERN_CONT " in ", regs->ip);
787 
788 	/*
789 	 * Dump the likely CPU where the fatal segfault happened.
790 	 * This can help identify faulty hardware.
791 	 */
792 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
793 	       topology_core_id(cpu), topology_physical_package_id(cpu));
794 
795 
796 	printk(KERN_CONT "\n");
797 
798 	show_opcodes(regs, loglvl);
799 }
800 
801 /*
802  * The (legacy) vsyscall page is the long page in the kernel portion
803  * of the address space that has user-accessible permissions.
804  */
805 static bool is_vsyscall_vaddr(unsigned long vaddr)
806 {
807 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
808 }
809 
810 static void
811 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
812 		       unsigned long address, u32 pkey, int si_code)
813 {
814 	struct task_struct *tsk = current;
815 
816 	if (!user_mode(regs)) {
817 		kernelmode_fixup_or_oops(regs, error_code, address,
818 					 SIGSEGV, si_code, pkey);
819 		return;
820 	}
821 
822 	if (!(error_code & X86_PF_USER)) {
823 		/* Implicit user access to kernel memory -- just oops */
824 		page_fault_oops(regs, error_code, address);
825 		return;
826 	}
827 
828 	/*
829 	 * User mode accesses just cause a SIGSEGV.
830 	 * It's possible to have interrupts off here:
831 	 */
832 	local_irq_enable();
833 
834 	/*
835 	 * Valid to do another page fault here because this one came
836 	 * from user space:
837 	 */
838 	if (is_prefetch(regs, error_code, address))
839 		return;
840 
841 	if (is_errata100(regs, address))
842 		return;
843 
844 	sanitize_error_code(address, &error_code);
845 
846 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
847 		return;
848 
849 	if (likely(show_unhandled_signals))
850 		show_signal_msg(regs, error_code, address, tsk);
851 
852 	set_signal_archinfo(address, error_code);
853 
854 	if (si_code == SEGV_PKUERR)
855 		force_sig_pkuerr((void __user *)address, pkey);
856 	else
857 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
858 
859 	local_irq_disable();
860 }
861 
862 static noinline void
863 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
864 		     unsigned long address)
865 {
866 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
867 }
868 
869 static void
870 __bad_area(struct pt_regs *regs, unsigned long error_code,
871 	   unsigned long address, u32 pkey, int si_code)
872 {
873 	struct mm_struct *mm = current->mm;
874 	/*
875 	 * Something tried to access memory that isn't in our memory map..
876 	 * Fix it, but check if it's kernel or user first..
877 	 */
878 	mmap_read_unlock(mm);
879 
880 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
881 }
882 
883 static noinline void
884 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
885 {
886 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
887 }
888 
889 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
890 		struct vm_area_struct *vma)
891 {
892 	/* This code is always called on the current mm */
893 	bool foreign = false;
894 
895 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
896 		return false;
897 	if (error_code & X86_PF_PK)
898 		return true;
899 	/* this checks permission keys on the VMA: */
900 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
901 				       (error_code & X86_PF_INSTR), foreign))
902 		return true;
903 	return false;
904 }
905 
906 static noinline void
907 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
908 		      unsigned long address, struct vm_area_struct *vma)
909 {
910 	/*
911 	 * This OSPKE check is not strictly necessary at runtime.
912 	 * But, doing it this way allows compiler optimizations
913 	 * if pkeys are compiled out.
914 	 */
915 	if (bad_area_access_from_pkeys(error_code, vma)) {
916 		/*
917 		 * A protection key fault means that the PKRU value did not allow
918 		 * access to some PTE.  Userspace can figure out what PKRU was
919 		 * from the XSAVE state.  This function captures the pkey from
920 		 * the vma and passes it to userspace so userspace can discover
921 		 * which protection key was set on the PTE.
922 		 *
923 		 * If we get here, we know that the hardware signaled a X86_PF_PK
924 		 * fault and that there was a VMA once we got in the fault
925 		 * handler.  It does *not* guarantee that the VMA we find here
926 		 * was the one that we faulted on.
927 		 *
928 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
929 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
930 		 * 3. T1   : faults...
931 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
932 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
933 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
934 		 *	     faulted on a pte with its pkey=4.
935 		 */
936 		u32 pkey = vma_pkey(vma);
937 
938 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
939 	} else {
940 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
941 	}
942 }
943 
944 static void
945 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
946 	  vm_fault_t fault)
947 {
948 	/* Kernel mode? Handle exceptions or die: */
949 	if (!user_mode(regs)) {
950 		kernelmode_fixup_or_oops(regs, error_code, address,
951 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
952 		return;
953 	}
954 
955 	/* User-space => ok to do another page fault: */
956 	if (is_prefetch(regs, error_code, address))
957 		return;
958 
959 	sanitize_error_code(address, &error_code);
960 
961 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
962 		return;
963 
964 	set_signal_archinfo(address, error_code);
965 
966 #ifdef CONFIG_MEMORY_FAILURE
967 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
968 		struct task_struct *tsk = current;
969 		unsigned lsb = 0;
970 
971 		pr_err(
972 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
973 			tsk->comm, tsk->pid, address);
974 		if (fault & VM_FAULT_HWPOISON_LARGE)
975 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
976 		if (fault & VM_FAULT_HWPOISON)
977 			lsb = PAGE_SHIFT;
978 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
979 		return;
980 	}
981 #endif
982 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
983 }
984 
985 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
986 {
987 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
988 		return 0;
989 
990 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
991 		return 0;
992 
993 	return 1;
994 }
995 
996 /*
997  * Handle a spurious fault caused by a stale TLB entry.
998  *
999  * This allows us to lazily refresh the TLB when increasing the
1000  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1001  * eagerly is very expensive since that implies doing a full
1002  * cross-processor TLB flush, even if no stale TLB entries exist
1003  * on other processors.
1004  *
1005  * Spurious faults may only occur if the TLB contains an entry with
1006  * fewer permission than the page table entry.  Non-present (P = 0)
1007  * and reserved bit (R = 1) faults are never spurious.
1008  *
1009  * There are no security implications to leaving a stale TLB when
1010  * increasing the permissions on a page.
1011  *
1012  * Returns non-zero if a spurious fault was handled, zero otherwise.
1013  *
1014  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1015  * (Optional Invalidation).
1016  */
1017 static noinline int
1018 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1019 {
1020 	pgd_t *pgd;
1021 	p4d_t *p4d;
1022 	pud_t *pud;
1023 	pmd_t *pmd;
1024 	pte_t *pte;
1025 	int ret;
1026 
1027 	/*
1028 	 * Only writes to RO or instruction fetches from NX may cause
1029 	 * spurious faults.
1030 	 *
1031 	 * These could be from user or supervisor accesses but the TLB
1032 	 * is only lazily flushed after a kernel mapping protection
1033 	 * change, so user accesses are not expected to cause spurious
1034 	 * faults.
1035 	 */
1036 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1037 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1038 		return 0;
1039 
1040 	pgd = init_mm.pgd + pgd_index(address);
1041 	if (!pgd_present(*pgd))
1042 		return 0;
1043 
1044 	p4d = p4d_offset(pgd, address);
1045 	if (!p4d_present(*p4d))
1046 		return 0;
1047 
1048 	if (p4d_large(*p4d))
1049 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1050 
1051 	pud = pud_offset(p4d, address);
1052 	if (!pud_present(*pud))
1053 		return 0;
1054 
1055 	if (pud_large(*pud))
1056 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1057 
1058 	pmd = pmd_offset(pud, address);
1059 	if (!pmd_present(*pmd))
1060 		return 0;
1061 
1062 	if (pmd_large(*pmd))
1063 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1064 
1065 	pte = pte_offset_kernel(pmd, address);
1066 	if (!pte_present(*pte))
1067 		return 0;
1068 
1069 	ret = spurious_kernel_fault_check(error_code, pte);
1070 	if (!ret)
1071 		return 0;
1072 
1073 	/*
1074 	 * Make sure we have permissions in PMD.
1075 	 * If not, then there's a bug in the page tables:
1076 	 */
1077 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1078 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1079 
1080 	return ret;
1081 }
1082 NOKPROBE_SYMBOL(spurious_kernel_fault);
1083 
1084 int show_unhandled_signals = 1;
1085 
1086 static inline int
1087 access_error(unsigned long error_code, struct vm_area_struct *vma)
1088 {
1089 	/* This is only called for the current mm, so: */
1090 	bool foreign = false;
1091 
1092 	/*
1093 	 * Read or write was blocked by protection keys.  This is
1094 	 * always an unconditional error and can never result in
1095 	 * a follow-up action to resolve the fault, like a COW.
1096 	 */
1097 	if (error_code & X86_PF_PK)
1098 		return 1;
1099 
1100 	/*
1101 	 * SGX hardware blocked the access.  This usually happens
1102 	 * when the enclave memory contents have been destroyed, like
1103 	 * after a suspend/resume cycle. In any case, the kernel can't
1104 	 * fix the cause of the fault.  Handle the fault as an access
1105 	 * error even in cases where no actual access violation
1106 	 * occurred.  This allows userspace to rebuild the enclave in
1107 	 * response to the signal.
1108 	 */
1109 	if (unlikely(error_code & X86_PF_SGX))
1110 		return 1;
1111 
1112 	/*
1113 	 * Make sure to check the VMA so that we do not perform
1114 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1115 	 * page.
1116 	 */
1117 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1118 				       (error_code & X86_PF_INSTR), foreign))
1119 		return 1;
1120 
1121 	if (error_code & X86_PF_WRITE) {
1122 		/* write, present and write, not present: */
1123 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1124 			return 1;
1125 		return 0;
1126 	}
1127 
1128 	/* read, present: */
1129 	if (unlikely(error_code & X86_PF_PROT))
1130 		return 1;
1131 
1132 	/* read, not present: */
1133 	if (unlikely(!vma_is_accessible(vma)))
1134 		return 1;
1135 
1136 	return 0;
1137 }
1138 
1139 bool fault_in_kernel_space(unsigned long address)
1140 {
1141 	/*
1142 	 * On 64-bit systems, the vsyscall page is at an address above
1143 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1144 	 * address space.
1145 	 */
1146 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1147 		return false;
1148 
1149 	return address >= TASK_SIZE_MAX;
1150 }
1151 
1152 /*
1153  * Called for all faults where 'address' is part of the kernel address
1154  * space.  Might get called for faults that originate from *code* that
1155  * ran in userspace or the kernel.
1156  */
1157 static void
1158 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1159 		   unsigned long address)
1160 {
1161 	/*
1162 	 * Protection keys exceptions only happen on user pages.  We
1163 	 * have no user pages in the kernel portion of the address
1164 	 * space, so do not expect them here.
1165 	 */
1166 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1167 
1168 #ifdef CONFIG_X86_32
1169 	/*
1170 	 * We can fault-in kernel-space virtual memory on-demand. The
1171 	 * 'reference' page table is init_mm.pgd.
1172 	 *
1173 	 * NOTE! We MUST NOT take any locks for this case. We may
1174 	 * be in an interrupt or a critical region, and should
1175 	 * only copy the information from the master page table,
1176 	 * nothing more.
1177 	 *
1178 	 * Before doing this on-demand faulting, ensure that the
1179 	 * fault is not any of the following:
1180 	 * 1. A fault on a PTE with a reserved bit set.
1181 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1182 	 *    fault kernel memory due to user-mode accesses).
1183 	 * 3. A fault caused by a page-level protection violation.
1184 	 *    (A demand fault would be on a non-present page which
1185 	 *     would have X86_PF_PROT==0).
1186 	 *
1187 	 * This is only needed to close a race condition on x86-32 in
1188 	 * the vmalloc mapping/unmapping code. See the comment above
1189 	 * vmalloc_fault() for details. On x86-64 the race does not
1190 	 * exist as the vmalloc mappings don't need to be synchronized
1191 	 * there.
1192 	 */
1193 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1194 		if (vmalloc_fault(address) >= 0)
1195 			return;
1196 	}
1197 #endif
1198 
1199 	if (is_f00f_bug(regs, hw_error_code, address))
1200 		return;
1201 
1202 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1203 	if (spurious_kernel_fault(hw_error_code, address))
1204 		return;
1205 
1206 	/* kprobes don't want to hook the spurious faults: */
1207 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1208 		return;
1209 
1210 	/*
1211 	 * Note, despite being a "bad area", there are quite a few
1212 	 * acceptable reasons to get here, such as erratum fixups
1213 	 * and handling kernel code that can fault, like get_user().
1214 	 *
1215 	 * Don't take the mm semaphore here. If we fixup a prefetch
1216 	 * fault we could otherwise deadlock:
1217 	 */
1218 	bad_area_nosemaphore(regs, hw_error_code, address);
1219 }
1220 NOKPROBE_SYMBOL(do_kern_addr_fault);
1221 
1222 /*
1223  * Handle faults in the user portion of the address space.  Nothing in here
1224  * should check X86_PF_USER without a specific justification: for almost
1225  * all purposes, we should treat a normal kernel access to user memory
1226  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1227  * The one exception is AC flag handling, which is, per the x86
1228  * architecture, special for WRUSS.
1229  */
1230 static inline
1231 void do_user_addr_fault(struct pt_regs *regs,
1232 			unsigned long error_code,
1233 			unsigned long address)
1234 {
1235 	struct vm_area_struct *vma;
1236 	struct task_struct *tsk;
1237 	struct mm_struct *mm;
1238 	vm_fault_t fault;
1239 	unsigned int flags = FAULT_FLAG_DEFAULT;
1240 
1241 	tsk = current;
1242 	mm = tsk->mm;
1243 
1244 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1245 		/*
1246 		 * Whoops, this is kernel mode code trying to execute from
1247 		 * user memory.  Unless this is AMD erratum #93, which
1248 		 * corrupts RIP such that it looks like a user address,
1249 		 * this is unrecoverable.  Don't even try to look up the
1250 		 * VMA or look for extable entries.
1251 		 */
1252 		if (is_errata93(regs, address))
1253 			return;
1254 
1255 		page_fault_oops(regs, error_code, address);
1256 		return;
1257 	}
1258 
1259 	/* kprobes don't want to hook the spurious faults: */
1260 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1261 		return;
1262 
1263 	/*
1264 	 * Reserved bits are never expected to be set on
1265 	 * entries in the user portion of the page tables.
1266 	 */
1267 	if (unlikely(error_code & X86_PF_RSVD))
1268 		pgtable_bad(regs, error_code, address);
1269 
1270 	/*
1271 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1272 	 * pages in the user address space.  The odd case here is WRUSS,
1273 	 * which, according to the preliminary documentation, does not respect
1274 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1275 	 * enforcement appears to be consistent with the USER bit.
1276 	 */
1277 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1278 		     !(error_code & X86_PF_USER) &&
1279 		     !(regs->flags & X86_EFLAGS_AC))) {
1280 		/*
1281 		 * No extable entry here.  This was a kernel access to an
1282 		 * invalid pointer.  get_kernel_nofault() will not get here.
1283 		 */
1284 		page_fault_oops(regs, error_code, address);
1285 		return;
1286 	}
1287 
1288 	/*
1289 	 * If we're in an interrupt, have no user context or are running
1290 	 * in a region with pagefaults disabled then we must not take the fault
1291 	 */
1292 	if (unlikely(faulthandler_disabled() || !mm)) {
1293 		bad_area_nosemaphore(regs, error_code, address);
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * It's safe to allow irq's after cr2 has been saved and the
1299 	 * vmalloc fault has been handled.
1300 	 *
1301 	 * User-mode registers count as a user access even for any
1302 	 * potential system fault or CPU buglet:
1303 	 */
1304 	if (user_mode(regs)) {
1305 		local_irq_enable();
1306 		flags |= FAULT_FLAG_USER;
1307 	} else {
1308 		if (regs->flags & X86_EFLAGS_IF)
1309 			local_irq_enable();
1310 	}
1311 
1312 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1313 
1314 	if (error_code & X86_PF_WRITE)
1315 		flags |= FAULT_FLAG_WRITE;
1316 	if (error_code & X86_PF_INSTR)
1317 		flags |= FAULT_FLAG_INSTRUCTION;
1318 
1319 #ifdef CONFIG_X86_64
1320 	/*
1321 	 * Faults in the vsyscall page might need emulation.  The
1322 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1323 	 * considered to be part of the user address space.
1324 	 *
1325 	 * The vsyscall page does not have a "real" VMA, so do this
1326 	 * emulation before we go searching for VMAs.
1327 	 *
1328 	 * PKRU never rejects instruction fetches, so we don't need
1329 	 * to consider the PF_PK bit.
1330 	 */
1331 	if (is_vsyscall_vaddr(address)) {
1332 		if (emulate_vsyscall(error_code, regs, address))
1333 			return;
1334 	}
1335 #endif
1336 
1337 #ifdef CONFIG_PER_VMA_LOCK
1338 	if (!(flags & FAULT_FLAG_USER))
1339 		goto lock_mmap;
1340 
1341 	vma = lock_vma_under_rcu(mm, address);
1342 	if (!vma)
1343 		goto lock_mmap;
1344 
1345 	if (unlikely(access_error(error_code, vma))) {
1346 		vma_end_read(vma);
1347 		goto lock_mmap;
1348 	}
1349 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1350 	vma_end_read(vma);
1351 
1352 	if (!(fault & VM_FAULT_RETRY)) {
1353 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1354 		goto done;
1355 	}
1356 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1357 
1358 	/* Quick path to respond to signals */
1359 	if (fault_signal_pending(fault, regs)) {
1360 		if (!user_mode(regs))
1361 			kernelmode_fixup_or_oops(regs, error_code, address,
1362 						 SIGBUS, BUS_ADRERR,
1363 						 ARCH_DEFAULT_PKEY);
1364 		return;
1365 	}
1366 lock_mmap:
1367 #endif /* CONFIG_PER_VMA_LOCK */
1368 
1369 	/*
1370 	 * Kernel-mode access to the user address space should only occur
1371 	 * on well-defined single instructions listed in the exception
1372 	 * tables.  But, an erroneous kernel fault occurring outside one of
1373 	 * those areas which also holds mmap_lock might deadlock attempting
1374 	 * to validate the fault against the address space.
1375 	 *
1376 	 * Only do the expensive exception table search when we might be at
1377 	 * risk of a deadlock.  This happens if we
1378 	 * 1. Failed to acquire mmap_lock, and
1379 	 * 2. The access did not originate in userspace.
1380 	 */
1381 	if (unlikely(!mmap_read_trylock(mm))) {
1382 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1383 			/*
1384 			 * Fault from code in kernel from
1385 			 * which we do not expect faults.
1386 			 */
1387 			bad_area_nosemaphore(regs, error_code, address);
1388 			return;
1389 		}
1390 retry:
1391 		mmap_read_lock(mm);
1392 	} else {
1393 		/*
1394 		 * The above down_read_trylock() might have succeeded in
1395 		 * which case we'll have missed the might_sleep() from
1396 		 * down_read():
1397 		 */
1398 		might_sleep();
1399 	}
1400 
1401 	vma = find_vma(mm, address);
1402 	if (unlikely(!vma)) {
1403 		bad_area(regs, error_code, address);
1404 		return;
1405 	}
1406 	if (likely(vma->vm_start <= address))
1407 		goto good_area;
1408 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409 		bad_area(regs, error_code, address);
1410 		return;
1411 	}
1412 	if (unlikely(expand_stack(vma, address))) {
1413 		bad_area(regs, error_code, address);
1414 		return;
1415 	}
1416 
1417 	/*
1418 	 * Ok, we have a good vm_area for this memory access, so
1419 	 * we can handle it..
1420 	 */
1421 good_area:
1422 	if (unlikely(access_error(error_code, vma))) {
1423 		bad_area_access_error(regs, error_code, address, vma);
1424 		return;
1425 	}
1426 
1427 	/*
1428 	 * If for any reason at all we couldn't handle the fault,
1429 	 * make sure we exit gracefully rather than endlessly redo
1430 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1431 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1432 	 *
1433 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1434 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1435 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1436 	 * (potentially after handling any pending signal during the return to
1437 	 * userland). The return to userland is identified whenever
1438 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1439 	 */
1440 	fault = handle_mm_fault(vma, address, flags, regs);
1441 
1442 	if (fault_signal_pending(fault, regs)) {
1443 		/*
1444 		 * Quick path to respond to signals.  The core mm code
1445 		 * has unlocked the mm for us if we get here.
1446 		 */
1447 		if (!user_mode(regs))
1448 			kernelmode_fixup_or_oops(regs, error_code, address,
1449 						 SIGBUS, BUS_ADRERR,
1450 						 ARCH_DEFAULT_PKEY);
1451 		return;
1452 	}
1453 
1454 	/* The fault is fully completed (including releasing mmap lock) */
1455 	if (fault & VM_FAULT_COMPLETED)
1456 		return;
1457 
1458 	/*
1459 	 * If we need to retry the mmap_lock has already been released,
1460 	 * and if there is a fatal signal pending there is no guarantee
1461 	 * that we made any progress. Handle this case first.
1462 	 */
1463 	if (unlikely(fault & VM_FAULT_RETRY)) {
1464 		flags |= FAULT_FLAG_TRIED;
1465 		goto retry;
1466 	}
1467 
1468 	mmap_read_unlock(mm);
1469 #ifdef CONFIG_PER_VMA_LOCK
1470 done:
1471 #endif
1472 	if (likely(!(fault & VM_FAULT_ERROR)))
1473 		return;
1474 
1475 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1476 		kernelmode_fixup_or_oops(regs, error_code, address,
1477 					 0, 0, ARCH_DEFAULT_PKEY);
1478 		return;
1479 	}
1480 
1481 	if (fault & VM_FAULT_OOM) {
1482 		/* Kernel mode? Handle exceptions or die: */
1483 		if (!user_mode(regs)) {
1484 			kernelmode_fixup_or_oops(regs, error_code, address,
1485 						 SIGSEGV, SEGV_MAPERR,
1486 						 ARCH_DEFAULT_PKEY);
1487 			return;
1488 		}
1489 
1490 		/*
1491 		 * We ran out of memory, call the OOM killer, and return the
1492 		 * userspace (which will retry the fault, or kill us if we got
1493 		 * oom-killed):
1494 		 */
1495 		pagefault_out_of_memory();
1496 	} else {
1497 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1498 			     VM_FAULT_HWPOISON_LARGE))
1499 			do_sigbus(regs, error_code, address, fault);
1500 		else if (fault & VM_FAULT_SIGSEGV)
1501 			bad_area_nosemaphore(regs, error_code, address);
1502 		else
1503 			BUG();
1504 	}
1505 }
1506 NOKPROBE_SYMBOL(do_user_addr_fault);
1507 
1508 static __always_inline void
1509 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1510 			 unsigned long address)
1511 {
1512 	if (!trace_pagefault_enabled())
1513 		return;
1514 
1515 	if (user_mode(regs))
1516 		trace_page_fault_user(address, regs, error_code);
1517 	else
1518 		trace_page_fault_kernel(address, regs, error_code);
1519 }
1520 
1521 static __always_inline void
1522 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1523 			      unsigned long address)
1524 {
1525 	trace_page_fault_entries(regs, error_code, address);
1526 
1527 	if (unlikely(kmmio_fault(regs, address)))
1528 		return;
1529 
1530 	/* Was the fault on kernel-controlled part of the address space? */
1531 	if (unlikely(fault_in_kernel_space(address))) {
1532 		do_kern_addr_fault(regs, error_code, address);
1533 	} else {
1534 		do_user_addr_fault(regs, error_code, address);
1535 		/*
1536 		 * User address page fault handling might have reenabled
1537 		 * interrupts. Fixing up all potential exit points of
1538 		 * do_user_addr_fault() and its leaf functions is just not
1539 		 * doable w/o creating an unholy mess or turning the code
1540 		 * upside down.
1541 		 */
1542 		local_irq_disable();
1543 	}
1544 }
1545 
1546 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1547 {
1548 	unsigned long address = read_cr2();
1549 	irqentry_state_t state;
1550 
1551 	prefetchw(&current->mm->mmap_lock);
1552 
1553 	/*
1554 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1555 	 * (asynchronous page fault mechanism). The event happens when a
1556 	 * userspace task is trying to access some valid (from guest's point of
1557 	 * view) memory which is not currently mapped by the host (e.g. the
1558 	 * memory is swapped out). Note, the corresponding "page ready" event
1559 	 * which is injected when the memory becomes available, is delivered via
1560 	 * an interrupt mechanism and not a #PF exception
1561 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1562 	 *
1563 	 * We are relying on the interrupted context being sane (valid RSP,
1564 	 * relevant locks not held, etc.), which is fine as long as the
1565 	 * interrupted context had IF=1.  We are also relying on the KVM
1566 	 * async pf type field and CR2 being read consistently instead of
1567 	 * getting values from real and async page faults mixed up.
1568 	 *
1569 	 * Fingers crossed.
1570 	 *
1571 	 * The async #PF handling code takes care of idtentry handling
1572 	 * itself.
1573 	 */
1574 	if (kvm_handle_async_pf(regs, (u32)address))
1575 		return;
1576 
1577 	/*
1578 	 * Entry handling for valid #PF from kernel mode is slightly
1579 	 * different: RCU is already watching and ct_irq_enter() must not
1580 	 * be invoked because a kernel fault on a user space address might
1581 	 * sleep.
1582 	 *
1583 	 * In case the fault hit a RCU idle region the conditional entry
1584 	 * code reenabled RCU to avoid subsequent wreckage which helps
1585 	 * debuggability.
1586 	 */
1587 	state = irqentry_enter(regs);
1588 
1589 	instrumentation_begin();
1590 	handle_page_fault(regs, error_code, address);
1591 	instrumentation_end();
1592 
1593 	irqentry_exit(regs, state);
1594 }
1595