1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 5 */ 6 #include <linux/sched.h> /* test_thread_flag(), ... */ 7 #include <linux/kdebug.h> /* oops_begin/end, ... */ 8 #include <linux/module.h> /* search_exception_table */ 9 #include <linux/bootmem.h> /* max_low_pfn */ 10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 12 #include <linux/perf_event.h> /* perf_sw_event */ 13 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 14 #include <linux/prefetch.h> /* prefetchw */ 15 #include <linux/context_tracking.h> /* exception_enter(), ... */ 16 17 #include <asm/traps.h> /* dotraplinkage, ... */ 18 #include <asm/pgalloc.h> /* pgd_*(), ... */ 19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 20 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 21 #include <asm/vsyscall.h> /* emulate_vsyscall */ 22 23 #define CREATE_TRACE_POINTS 24 #include <asm/trace/exceptions.h> 25 26 /* 27 * Page fault error code bits: 28 * 29 * bit 0 == 0: no page found 1: protection fault 30 * bit 1 == 0: read access 1: write access 31 * bit 2 == 0: kernel-mode access 1: user-mode access 32 * bit 3 == 1: use of reserved bit detected 33 * bit 4 == 1: fault was an instruction fetch 34 */ 35 enum x86_pf_error_code { 36 37 PF_PROT = 1 << 0, 38 PF_WRITE = 1 << 1, 39 PF_USER = 1 << 2, 40 PF_RSVD = 1 << 3, 41 PF_INSTR = 1 << 4, 42 }; 43 44 /* 45 * Returns 0 if mmiotrace is disabled, or if the fault is not 46 * handled by mmiotrace: 47 */ 48 static nokprobe_inline int 49 kmmio_fault(struct pt_regs *regs, unsigned long addr) 50 { 51 if (unlikely(is_kmmio_active())) 52 if (kmmio_handler(regs, addr) == 1) 53 return -1; 54 return 0; 55 } 56 57 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 58 { 59 int ret = 0; 60 61 /* kprobe_running() needs smp_processor_id() */ 62 if (kprobes_built_in() && !user_mode_vm(regs)) { 63 preempt_disable(); 64 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 65 ret = 1; 66 preempt_enable(); 67 } 68 69 return ret; 70 } 71 72 /* 73 * Prefetch quirks: 74 * 75 * 32-bit mode: 76 * 77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 78 * Check that here and ignore it. 79 * 80 * 64-bit mode: 81 * 82 * Sometimes the CPU reports invalid exceptions on prefetch. 83 * Check that here and ignore it. 84 * 85 * Opcode checker based on code by Richard Brunner. 86 */ 87 static inline int 88 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 89 unsigned char opcode, int *prefetch) 90 { 91 unsigned char instr_hi = opcode & 0xf0; 92 unsigned char instr_lo = opcode & 0x0f; 93 94 switch (instr_hi) { 95 case 0x20: 96 case 0x30: 97 /* 98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 99 * In X86_64 long mode, the CPU will signal invalid 100 * opcode if some of these prefixes are present so 101 * X86_64 will never get here anyway 102 */ 103 return ((instr_lo & 7) == 0x6); 104 #ifdef CONFIG_X86_64 105 case 0x40: 106 /* 107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 108 * Need to figure out under what instruction mode the 109 * instruction was issued. Could check the LDT for lm, 110 * but for now it's good enough to assume that long 111 * mode only uses well known segments or kernel. 112 */ 113 return (!user_mode(regs) || user_64bit_mode(regs)); 114 #endif 115 case 0x60: 116 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 117 return (instr_lo & 0xC) == 0x4; 118 case 0xF0: 119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 120 return !instr_lo || (instr_lo>>1) == 1; 121 case 0x00: 122 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 123 if (probe_kernel_address(instr, opcode)) 124 return 0; 125 126 *prefetch = (instr_lo == 0xF) && 127 (opcode == 0x0D || opcode == 0x18); 128 return 0; 129 default: 130 return 0; 131 } 132 } 133 134 static int 135 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 136 { 137 unsigned char *max_instr; 138 unsigned char *instr; 139 int prefetch = 0; 140 141 /* 142 * If it was a exec (instruction fetch) fault on NX page, then 143 * do not ignore the fault: 144 */ 145 if (error_code & PF_INSTR) 146 return 0; 147 148 instr = (void *)convert_ip_to_linear(current, regs); 149 max_instr = instr + 15; 150 151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 152 return 0; 153 154 while (instr < max_instr) { 155 unsigned char opcode; 156 157 if (probe_kernel_address(instr, opcode)) 158 break; 159 160 instr++; 161 162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 163 break; 164 } 165 return prefetch; 166 } 167 168 static void 169 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 170 struct task_struct *tsk, int fault) 171 { 172 unsigned lsb = 0; 173 siginfo_t info; 174 175 info.si_signo = si_signo; 176 info.si_errno = 0; 177 info.si_code = si_code; 178 info.si_addr = (void __user *)address; 179 if (fault & VM_FAULT_HWPOISON_LARGE) 180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 181 if (fault & VM_FAULT_HWPOISON) 182 lsb = PAGE_SHIFT; 183 info.si_addr_lsb = lsb; 184 185 force_sig_info(si_signo, &info, tsk); 186 } 187 188 DEFINE_SPINLOCK(pgd_lock); 189 LIST_HEAD(pgd_list); 190 191 #ifdef CONFIG_X86_32 192 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 193 { 194 unsigned index = pgd_index(address); 195 pgd_t *pgd_k; 196 pud_t *pud, *pud_k; 197 pmd_t *pmd, *pmd_k; 198 199 pgd += index; 200 pgd_k = init_mm.pgd + index; 201 202 if (!pgd_present(*pgd_k)) 203 return NULL; 204 205 /* 206 * set_pgd(pgd, *pgd_k); here would be useless on PAE 207 * and redundant with the set_pmd() on non-PAE. As would 208 * set_pud. 209 */ 210 pud = pud_offset(pgd, address); 211 pud_k = pud_offset(pgd_k, address); 212 if (!pud_present(*pud_k)) 213 return NULL; 214 215 pmd = pmd_offset(pud, address); 216 pmd_k = pmd_offset(pud_k, address); 217 if (!pmd_present(*pmd_k)) 218 return NULL; 219 220 if (!pmd_present(*pmd)) 221 set_pmd(pmd, *pmd_k); 222 else 223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 224 225 return pmd_k; 226 } 227 228 void vmalloc_sync_all(void) 229 { 230 unsigned long address; 231 232 if (SHARED_KERNEL_PMD) 233 return; 234 235 for (address = VMALLOC_START & PMD_MASK; 236 address >= TASK_SIZE && address < FIXADDR_TOP; 237 address += PMD_SIZE) { 238 struct page *page; 239 240 spin_lock(&pgd_lock); 241 list_for_each_entry(page, &pgd_list, lru) { 242 spinlock_t *pgt_lock; 243 pmd_t *ret; 244 245 /* the pgt_lock only for Xen */ 246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 247 248 spin_lock(pgt_lock); 249 ret = vmalloc_sync_one(page_address(page), address); 250 spin_unlock(pgt_lock); 251 252 if (!ret) 253 break; 254 } 255 spin_unlock(&pgd_lock); 256 } 257 } 258 259 /* 260 * 32-bit: 261 * 262 * Handle a fault on the vmalloc or module mapping area 263 */ 264 static noinline int vmalloc_fault(unsigned long address) 265 { 266 unsigned long pgd_paddr; 267 pmd_t *pmd_k; 268 pte_t *pte_k; 269 270 /* Make sure we are in vmalloc area: */ 271 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 272 return -1; 273 274 WARN_ON_ONCE(in_nmi()); 275 276 /* 277 * Synchronize this task's top level page-table 278 * with the 'reference' page table. 279 * 280 * Do _not_ use "current" here. We might be inside 281 * an interrupt in the middle of a task switch.. 282 */ 283 pgd_paddr = read_cr3(); 284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 285 if (!pmd_k) 286 return -1; 287 288 pte_k = pte_offset_kernel(pmd_k, address); 289 if (!pte_present(*pte_k)) 290 return -1; 291 292 return 0; 293 } 294 NOKPROBE_SYMBOL(vmalloc_fault); 295 296 /* 297 * Did it hit the DOS screen memory VA from vm86 mode? 298 */ 299 static inline void 300 check_v8086_mode(struct pt_regs *regs, unsigned long address, 301 struct task_struct *tsk) 302 { 303 unsigned long bit; 304 305 if (!v8086_mode(regs)) 306 return; 307 308 bit = (address - 0xA0000) >> PAGE_SHIFT; 309 if (bit < 32) 310 tsk->thread.screen_bitmap |= 1 << bit; 311 } 312 313 static bool low_pfn(unsigned long pfn) 314 { 315 return pfn < max_low_pfn; 316 } 317 318 static void dump_pagetable(unsigned long address) 319 { 320 pgd_t *base = __va(read_cr3()); 321 pgd_t *pgd = &base[pgd_index(address)]; 322 pmd_t *pmd; 323 pte_t *pte; 324 325 #ifdef CONFIG_X86_PAE 326 printk("*pdpt = %016Lx ", pgd_val(*pgd)); 327 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 328 goto out; 329 #endif 330 pmd = pmd_offset(pud_offset(pgd, address), address); 331 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 332 333 /* 334 * We must not directly access the pte in the highpte 335 * case if the page table is located in highmem. 336 * And let's rather not kmap-atomic the pte, just in case 337 * it's allocated already: 338 */ 339 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 340 goto out; 341 342 pte = pte_offset_kernel(pmd, address); 343 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 344 out: 345 printk("\n"); 346 } 347 348 #else /* CONFIG_X86_64: */ 349 350 void vmalloc_sync_all(void) 351 { 352 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0); 353 } 354 355 /* 356 * 64-bit: 357 * 358 * Handle a fault on the vmalloc area 359 * 360 * This assumes no large pages in there. 361 */ 362 static noinline int vmalloc_fault(unsigned long address) 363 { 364 pgd_t *pgd, *pgd_ref; 365 pud_t *pud, *pud_ref; 366 pmd_t *pmd, *pmd_ref; 367 pte_t *pte, *pte_ref; 368 369 /* Make sure we are in vmalloc area: */ 370 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 371 return -1; 372 373 WARN_ON_ONCE(in_nmi()); 374 375 /* 376 * Copy kernel mappings over when needed. This can also 377 * happen within a race in page table update. In the later 378 * case just flush: 379 */ 380 pgd = pgd_offset(current->active_mm, address); 381 pgd_ref = pgd_offset_k(address); 382 if (pgd_none(*pgd_ref)) 383 return -1; 384 385 if (pgd_none(*pgd)) { 386 set_pgd(pgd, *pgd_ref); 387 arch_flush_lazy_mmu_mode(); 388 } else { 389 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 390 } 391 392 /* 393 * Below here mismatches are bugs because these lower tables 394 * are shared: 395 */ 396 397 pud = pud_offset(pgd, address); 398 pud_ref = pud_offset(pgd_ref, address); 399 if (pud_none(*pud_ref)) 400 return -1; 401 402 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) 403 BUG(); 404 405 pmd = pmd_offset(pud, address); 406 pmd_ref = pmd_offset(pud_ref, address); 407 if (pmd_none(*pmd_ref)) 408 return -1; 409 410 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) 411 BUG(); 412 413 pte_ref = pte_offset_kernel(pmd_ref, address); 414 if (!pte_present(*pte_ref)) 415 return -1; 416 417 pte = pte_offset_kernel(pmd, address); 418 419 /* 420 * Don't use pte_page here, because the mappings can point 421 * outside mem_map, and the NUMA hash lookup cannot handle 422 * that: 423 */ 424 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 425 BUG(); 426 427 return 0; 428 } 429 NOKPROBE_SYMBOL(vmalloc_fault); 430 431 #ifdef CONFIG_CPU_SUP_AMD 432 static const char errata93_warning[] = 433 KERN_ERR 434 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 435 "******* Working around it, but it may cause SEGVs or burn power.\n" 436 "******* Please consider a BIOS update.\n" 437 "******* Disabling USB legacy in the BIOS may also help.\n"; 438 #endif 439 440 /* 441 * No vm86 mode in 64-bit mode: 442 */ 443 static inline void 444 check_v8086_mode(struct pt_regs *regs, unsigned long address, 445 struct task_struct *tsk) 446 { 447 } 448 449 static int bad_address(void *p) 450 { 451 unsigned long dummy; 452 453 return probe_kernel_address((unsigned long *)p, dummy); 454 } 455 456 static void dump_pagetable(unsigned long address) 457 { 458 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK); 459 pgd_t *pgd = base + pgd_index(address); 460 pud_t *pud; 461 pmd_t *pmd; 462 pte_t *pte; 463 464 if (bad_address(pgd)) 465 goto bad; 466 467 printk("PGD %lx ", pgd_val(*pgd)); 468 469 if (!pgd_present(*pgd)) 470 goto out; 471 472 pud = pud_offset(pgd, address); 473 if (bad_address(pud)) 474 goto bad; 475 476 printk("PUD %lx ", pud_val(*pud)); 477 if (!pud_present(*pud) || pud_large(*pud)) 478 goto out; 479 480 pmd = pmd_offset(pud, address); 481 if (bad_address(pmd)) 482 goto bad; 483 484 printk("PMD %lx ", pmd_val(*pmd)); 485 if (!pmd_present(*pmd) || pmd_large(*pmd)) 486 goto out; 487 488 pte = pte_offset_kernel(pmd, address); 489 if (bad_address(pte)) 490 goto bad; 491 492 printk("PTE %lx", pte_val(*pte)); 493 out: 494 printk("\n"); 495 return; 496 bad: 497 printk("BAD\n"); 498 } 499 500 #endif /* CONFIG_X86_64 */ 501 502 /* 503 * Workaround for K8 erratum #93 & buggy BIOS. 504 * 505 * BIOS SMM functions are required to use a specific workaround 506 * to avoid corruption of the 64bit RIP register on C stepping K8. 507 * 508 * A lot of BIOS that didn't get tested properly miss this. 509 * 510 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 511 * Try to work around it here. 512 * 513 * Note we only handle faults in kernel here. 514 * Does nothing on 32-bit. 515 */ 516 static int is_errata93(struct pt_regs *regs, unsigned long address) 517 { 518 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 519 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 520 || boot_cpu_data.x86 != 0xf) 521 return 0; 522 523 if (address != regs->ip) 524 return 0; 525 526 if ((address >> 32) != 0) 527 return 0; 528 529 address |= 0xffffffffUL << 32; 530 if ((address >= (u64)_stext && address <= (u64)_etext) || 531 (address >= MODULES_VADDR && address <= MODULES_END)) { 532 printk_once(errata93_warning); 533 regs->ip = address; 534 return 1; 535 } 536 #endif 537 return 0; 538 } 539 540 /* 541 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 542 * to illegal addresses >4GB. 543 * 544 * We catch this in the page fault handler because these addresses 545 * are not reachable. Just detect this case and return. Any code 546 * segment in LDT is compatibility mode. 547 */ 548 static int is_errata100(struct pt_regs *regs, unsigned long address) 549 { 550 #ifdef CONFIG_X86_64 551 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 552 return 1; 553 #endif 554 return 0; 555 } 556 557 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 558 { 559 #ifdef CONFIG_X86_F00F_BUG 560 unsigned long nr; 561 562 /* 563 * Pentium F0 0F C7 C8 bug workaround: 564 */ 565 if (boot_cpu_has_bug(X86_BUG_F00F)) { 566 nr = (address - idt_descr.address) >> 3; 567 568 if (nr == 6) { 569 do_invalid_op(regs, 0); 570 return 1; 571 } 572 } 573 #endif 574 return 0; 575 } 576 577 static const char nx_warning[] = KERN_CRIT 578 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 579 static const char smep_warning[] = KERN_CRIT 580 "unable to execute userspace code (SMEP?) (uid: %d)\n"; 581 582 static void 583 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 584 unsigned long address) 585 { 586 if (!oops_may_print()) 587 return; 588 589 if (error_code & PF_INSTR) { 590 unsigned int level; 591 pgd_t *pgd; 592 pte_t *pte; 593 594 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK); 595 pgd += pgd_index(address); 596 597 pte = lookup_address_in_pgd(pgd, address, &level); 598 599 if (pte && pte_present(*pte) && !pte_exec(*pte)) 600 printk(nx_warning, from_kuid(&init_user_ns, current_uid())); 601 if (pte && pte_present(*pte) && pte_exec(*pte) && 602 (pgd_flags(*pgd) & _PAGE_USER) && 603 (read_cr4() & X86_CR4_SMEP)) 604 printk(smep_warning, from_kuid(&init_user_ns, current_uid())); 605 } 606 607 printk(KERN_ALERT "BUG: unable to handle kernel "); 608 if (address < PAGE_SIZE) 609 printk(KERN_CONT "NULL pointer dereference"); 610 else 611 printk(KERN_CONT "paging request"); 612 613 printk(KERN_CONT " at %p\n", (void *) address); 614 printk(KERN_ALERT "IP:"); 615 printk_address(regs->ip); 616 617 dump_pagetable(address); 618 } 619 620 static noinline void 621 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 622 unsigned long address) 623 { 624 struct task_struct *tsk; 625 unsigned long flags; 626 int sig; 627 628 flags = oops_begin(); 629 tsk = current; 630 sig = SIGKILL; 631 632 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 633 tsk->comm, address); 634 dump_pagetable(address); 635 636 tsk->thread.cr2 = address; 637 tsk->thread.trap_nr = X86_TRAP_PF; 638 tsk->thread.error_code = error_code; 639 640 if (__die("Bad pagetable", regs, error_code)) 641 sig = 0; 642 643 oops_end(flags, regs, sig); 644 } 645 646 static noinline void 647 no_context(struct pt_regs *regs, unsigned long error_code, 648 unsigned long address, int signal, int si_code) 649 { 650 struct task_struct *tsk = current; 651 unsigned long flags; 652 int sig; 653 654 /* Are we prepared to handle this kernel fault? */ 655 if (fixup_exception(regs)) { 656 /* 657 * Any interrupt that takes a fault gets the fixup. This makes 658 * the below recursive fault logic only apply to a faults from 659 * task context. 660 */ 661 if (in_interrupt()) 662 return; 663 664 /* 665 * Per the above we're !in_interrupt(), aka. task context. 666 * 667 * In this case we need to make sure we're not recursively 668 * faulting through the emulate_vsyscall() logic. 669 */ 670 if (current_thread_info()->sig_on_uaccess_error && signal) { 671 tsk->thread.trap_nr = X86_TRAP_PF; 672 tsk->thread.error_code = error_code | PF_USER; 673 tsk->thread.cr2 = address; 674 675 /* XXX: hwpoison faults will set the wrong code. */ 676 force_sig_info_fault(signal, si_code, address, tsk, 0); 677 } 678 679 /* 680 * Barring that, we can do the fixup and be happy. 681 */ 682 return; 683 } 684 685 /* 686 * 32-bit: 687 * 688 * Valid to do another page fault here, because if this fault 689 * had been triggered by is_prefetch fixup_exception would have 690 * handled it. 691 * 692 * 64-bit: 693 * 694 * Hall of shame of CPU/BIOS bugs. 695 */ 696 if (is_prefetch(regs, error_code, address)) 697 return; 698 699 if (is_errata93(regs, address)) 700 return; 701 702 /* 703 * Oops. The kernel tried to access some bad page. We'll have to 704 * terminate things with extreme prejudice: 705 */ 706 flags = oops_begin(); 707 708 show_fault_oops(regs, error_code, address); 709 710 if (task_stack_end_corrupted(tsk)) 711 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 712 713 tsk->thread.cr2 = address; 714 tsk->thread.trap_nr = X86_TRAP_PF; 715 tsk->thread.error_code = error_code; 716 717 sig = SIGKILL; 718 if (__die("Oops", regs, error_code)) 719 sig = 0; 720 721 /* Executive summary in case the body of the oops scrolled away */ 722 printk(KERN_DEFAULT "CR2: %016lx\n", address); 723 724 oops_end(flags, regs, sig); 725 } 726 727 /* 728 * Print out info about fatal segfaults, if the show_unhandled_signals 729 * sysctl is set: 730 */ 731 static inline void 732 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 733 unsigned long address, struct task_struct *tsk) 734 { 735 if (!unhandled_signal(tsk, SIGSEGV)) 736 return; 737 738 if (!printk_ratelimit()) 739 return; 740 741 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 742 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 743 tsk->comm, task_pid_nr(tsk), address, 744 (void *)regs->ip, (void *)regs->sp, error_code); 745 746 print_vma_addr(KERN_CONT " in ", regs->ip); 747 748 printk(KERN_CONT "\n"); 749 } 750 751 static void 752 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 753 unsigned long address, int si_code) 754 { 755 struct task_struct *tsk = current; 756 757 /* User mode accesses just cause a SIGSEGV */ 758 if (error_code & PF_USER) { 759 /* 760 * It's possible to have interrupts off here: 761 */ 762 local_irq_enable(); 763 764 /* 765 * Valid to do another page fault here because this one came 766 * from user space: 767 */ 768 if (is_prefetch(regs, error_code, address)) 769 return; 770 771 if (is_errata100(regs, address)) 772 return; 773 774 #ifdef CONFIG_X86_64 775 /* 776 * Instruction fetch faults in the vsyscall page might need 777 * emulation. 778 */ 779 if (unlikely((error_code & PF_INSTR) && 780 ((address & ~0xfff) == VSYSCALL_ADDR))) { 781 if (emulate_vsyscall(regs, address)) 782 return; 783 } 784 #endif 785 /* Kernel addresses are always protection faults: */ 786 if (address >= TASK_SIZE) 787 error_code |= PF_PROT; 788 789 if (likely(show_unhandled_signals)) 790 show_signal_msg(regs, error_code, address, tsk); 791 792 tsk->thread.cr2 = address; 793 tsk->thread.error_code = error_code; 794 tsk->thread.trap_nr = X86_TRAP_PF; 795 796 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0); 797 798 return; 799 } 800 801 if (is_f00f_bug(regs, address)) 802 return; 803 804 no_context(regs, error_code, address, SIGSEGV, si_code); 805 } 806 807 static noinline void 808 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 809 unsigned long address) 810 { 811 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 812 } 813 814 static void 815 __bad_area(struct pt_regs *regs, unsigned long error_code, 816 unsigned long address, int si_code) 817 { 818 struct mm_struct *mm = current->mm; 819 820 /* 821 * Something tried to access memory that isn't in our memory map.. 822 * Fix it, but check if it's kernel or user first.. 823 */ 824 up_read(&mm->mmap_sem); 825 826 __bad_area_nosemaphore(regs, error_code, address, si_code); 827 } 828 829 static noinline void 830 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 831 { 832 __bad_area(regs, error_code, address, SEGV_MAPERR); 833 } 834 835 static noinline void 836 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 837 unsigned long address) 838 { 839 __bad_area(regs, error_code, address, SEGV_ACCERR); 840 } 841 842 static void 843 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 844 unsigned int fault) 845 { 846 struct task_struct *tsk = current; 847 struct mm_struct *mm = tsk->mm; 848 int code = BUS_ADRERR; 849 850 up_read(&mm->mmap_sem); 851 852 /* Kernel mode? Handle exceptions or die: */ 853 if (!(error_code & PF_USER)) { 854 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 855 return; 856 } 857 858 /* User-space => ok to do another page fault: */ 859 if (is_prefetch(regs, error_code, address)) 860 return; 861 862 tsk->thread.cr2 = address; 863 tsk->thread.error_code = error_code; 864 tsk->thread.trap_nr = X86_TRAP_PF; 865 866 #ifdef CONFIG_MEMORY_FAILURE 867 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 868 printk(KERN_ERR 869 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 870 tsk->comm, tsk->pid, address); 871 code = BUS_MCEERR_AR; 872 } 873 #endif 874 force_sig_info_fault(SIGBUS, code, address, tsk, fault); 875 } 876 877 static noinline void 878 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 879 unsigned long address, unsigned int fault) 880 { 881 if (fatal_signal_pending(current) && !(error_code & PF_USER)) { 882 up_read(¤t->mm->mmap_sem); 883 no_context(regs, error_code, address, 0, 0); 884 return; 885 } 886 887 if (fault & VM_FAULT_OOM) { 888 /* Kernel mode? Handle exceptions or die: */ 889 if (!(error_code & PF_USER)) { 890 up_read(¤t->mm->mmap_sem); 891 no_context(regs, error_code, address, 892 SIGSEGV, SEGV_MAPERR); 893 return; 894 } 895 896 up_read(¤t->mm->mmap_sem); 897 898 /* 899 * We ran out of memory, call the OOM killer, and return the 900 * userspace (which will retry the fault, or kill us if we got 901 * oom-killed): 902 */ 903 pagefault_out_of_memory(); 904 } else { 905 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 906 VM_FAULT_HWPOISON_LARGE)) 907 do_sigbus(regs, error_code, address, fault); 908 else 909 BUG(); 910 } 911 } 912 913 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 914 { 915 if ((error_code & PF_WRITE) && !pte_write(*pte)) 916 return 0; 917 918 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 919 return 0; 920 921 return 1; 922 } 923 924 /* 925 * Handle a spurious fault caused by a stale TLB entry. 926 * 927 * This allows us to lazily refresh the TLB when increasing the 928 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 929 * eagerly is very expensive since that implies doing a full 930 * cross-processor TLB flush, even if no stale TLB entries exist 931 * on other processors. 932 * 933 * Spurious faults may only occur if the TLB contains an entry with 934 * fewer permission than the page table entry. Non-present (P = 0) 935 * and reserved bit (R = 1) faults are never spurious. 936 * 937 * There are no security implications to leaving a stale TLB when 938 * increasing the permissions on a page. 939 * 940 * Returns non-zero if a spurious fault was handled, zero otherwise. 941 * 942 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 943 * (Optional Invalidation). 944 */ 945 static noinline int 946 spurious_fault(unsigned long error_code, unsigned long address) 947 { 948 pgd_t *pgd; 949 pud_t *pud; 950 pmd_t *pmd; 951 pte_t *pte; 952 int ret; 953 954 /* 955 * Only writes to RO or instruction fetches from NX may cause 956 * spurious faults. 957 * 958 * These could be from user or supervisor accesses but the TLB 959 * is only lazily flushed after a kernel mapping protection 960 * change, so user accesses are not expected to cause spurious 961 * faults. 962 */ 963 if (error_code != (PF_WRITE | PF_PROT) 964 && error_code != (PF_INSTR | PF_PROT)) 965 return 0; 966 967 pgd = init_mm.pgd + pgd_index(address); 968 if (!pgd_present(*pgd)) 969 return 0; 970 971 pud = pud_offset(pgd, address); 972 if (!pud_present(*pud)) 973 return 0; 974 975 if (pud_large(*pud)) 976 return spurious_fault_check(error_code, (pte_t *) pud); 977 978 pmd = pmd_offset(pud, address); 979 if (!pmd_present(*pmd)) 980 return 0; 981 982 if (pmd_large(*pmd)) 983 return spurious_fault_check(error_code, (pte_t *) pmd); 984 985 pte = pte_offset_kernel(pmd, address); 986 if (!pte_present(*pte)) 987 return 0; 988 989 ret = spurious_fault_check(error_code, pte); 990 if (!ret) 991 return 0; 992 993 /* 994 * Make sure we have permissions in PMD. 995 * If not, then there's a bug in the page tables: 996 */ 997 ret = spurious_fault_check(error_code, (pte_t *) pmd); 998 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 999 1000 return ret; 1001 } 1002 NOKPROBE_SYMBOL(spurious_fault); 1003 1004 int show_unhandled_signals = 1; 1005 1006 static inline int 1007 access_error(unsigned long error_code, struct vm_area_struct *vma) 1008 { 1009 if (error_code & PF_WRITE) { 1010 /* write, present and write, not present: */ 1011 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1012 return 1; 1013 return 0; 1014 } 1015 1016 /* read, present: */ 1017 if (unlikely(error_code & PF_PROT)) 1018 return 1; 1019 1020 /* read, not present: */ 1021 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1022 return 1; 1023 1024 return 0; 1025 } 1026 1027 static int fault_in_kernel_space(unsigned long address) 1028 { 1029 return address >= TASK_SIZE_MAX; 1030 } 1031 1032 static inline bool smap_violation(int error_code, struct pt_regs *regs) 1033 { 1034 if (!IS_ENABLED(CONFIG_X86_SMAP)) 1035 return false; 1036 1037 if (!static_cpu_has(X86_FEATURE_SMAP)) 1038 return false; 1039 1040 if (error_code & PF_USER) 1041 return false; 1042 1043 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC)) 1044 return false; 1045 1046 return true; 1047 } 1048 1049 /* 1050 * This routine handles page faults. It determines the address, 1051 * and the problem, and then passes it off to one of the appropriate 1052 * routines. 1053 * 1054 * This function must have noinline because both callers 1055 * {,trace_}do_page_fault() have notrace on. Having this an actual function 1056 * guarantees there's a function trace entry. 1057 */ 1058 static noinline void 1059 __do_page_fault(struct pt_regs *regs, unsigned long error_code, 1060 unsigned long address) 1061 { 1062 struct vm_area_struct *vma; 1063 struct task_struct *tsk; 1064 struct mm_struct *mm; 1065 int fault; 1066 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1067 1068 tsk = current; 1069 mm = tsk->mm; 1070 1071 /* 1072 * Detect and handle instructions that would cause a page fault for 1073 * both a tracked kernel page and a userspace page. 1074 */ 1075 if (kmemcheck_active(regs)) 1076 kmemcheck_hide(regs); 1077 prefetchw(&mm->mmap_sem); 1078 1079 if (unlikely(kmmio_fault(regs, address))) 1080 return; 1081 1082 /* 1083 * We fault-in kernel-space virtual memory on-demand. The 1084 * 'reference' page table is init_mm.pgd. 1085 * 1086 * NOTE! We MUST NOT take any locks for this case. We may 1087 * be in an interrupt or a critical region, and should 1088 * only copy the information from the master page table, 1089 * nothing more. 1090 * 1091 * This verifies that the fault happens in kernel space 1092 * (error_code & 4) == 0, and that the fault was not a 1093 * protection error (error_code & 9) == 0. 1094 */ 1095 if (unlikely(fault_in_kernel_space(address))) { 1096 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 1097 if (vmalloc_fault(address) >= 0) 1098 return; 1099 1100 if (kmemcheck_fault(regs, address, error_code)) 1101 return; 1102 } 1103 1104 /* Can handle a stale RO->RW TLB: */ 1105 if (spurious_fault(error_code, address)) 1106 return; 1107 1108 /* kprobes don't want to hook the spurious faults: */ 1109 if (kprobes_fault(regs)) 1110 return; 1111 /* 1112 * Don't take the mm semaphore here. If we fixup a prefetch 1113 * fault we could otherwise deadlock: 1114 */ 1115 bad_area_nosemaphore(regs, error_code, address); 1116 1117 return; 1118 } 1119 1120 /* kprobes don't want to hook the spurious faults: */ 1121 if (unlikely(kprobes_fault(regs))) 1122 return; 1123 1124 if (unlikely(error_code & PF_RSVD)) 1125 pgtable_bad(regs, error_code, address); 1126 1127 if (unlikely(smap_violation(error_code, regs))) { 1128 bad_area_nosemaphore(regs, error_code, address); 1129 return; 1130 } 1131 1132 /* 1133 * If we're in an interrupt, have no user context or are running 1134 * in an atomic region then we must not take the fault: 1135 */ 1136 if (unlikely(in_atomic() || !mm)) { 1137 bad_area_nosemaphore(regs, error_code, address); 1138 return; 1139 } 1140 1141 /* 1142 * It's safe to allow irq's after cr2 has been saved and the 1143 * vmalloc fault has been handled. 1144 * 1145 * User-mode registers count as a user access even for any 1146 * potential system fault or CPU buglet: 1147 */ 1148 if (user_mode_vm(regs)) { 1149 local_irq_enable(); 1150 error_code |= PF_USER; 1151 flags |= FAULT_FLAG_USER; 1152 } else { 1153 if (regs->flags & X86_EFLAGS_IF) 1154 local_irq_enable(); 1155 } 1156 1157 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1158 1159 if (error_code & PF_WRITE) 1160 flags |= FAULT_FLAG_WRITE; 1161 1162 /* 1163 * When running in the kernel we expect faults to occur only to 1164 * addresses in user space. All other faults represent errors in 1165 * the kernel and should generate an OOPS. Unfortunately, in the 1166 * case of an erroneous fault occurring in a code path which already 1167 * holds mmap_sem we will deadlock attempting to validate the fault 1168 * against the address space. Luckily the kernel only validly 1169 * references user space from well defined areas of code, which are 1170 * listed in the exceptions table. 1171 * 1172 * As the vast majority of faults will be valid we will only perform 1173 * the source reference check when there is a possibility of a 1174 * deadlock. Attempt to lock the address space, if we cannot we then 1175 * validate the source. If this is invalid we can skip the address 1176 * space check, thus avoiding the deadlock: 1177 */ 1178 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1179 if ((error_code & PF_USER) == 0 && 1180 !search_exception_tables(regs->ip)) { 1181 bad_area_nosemaphore(regs, error_code, address); 1182 return; 1183 } 1184 retry: 1185 down_read(&mm->mmap_sem); 1186 } else { 1187 /* 1188 * The above down_read_trylock() might have succeeded in 1189 * which case we'll have missed the might_sleep() from 1190 * down_read(): 1191 */ 1192 might_sleep(); 1193 } 1194 1195 vma = find_vma(mm, address); 1196 if (unlikely(!vma)) { 1197 bad_area(regs, error_code, address); 1198 return; 1199 } 1200 if (likely(vma->vm_start <= address)) 1201 goto good_area; 1202 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1203 bad_area(regs, error_code, address); 1204 return; 1205 } 1206 if (error_code & PF_USER) { 1207 /* 1208 * Accessing the stack below %sp is always a bug. 1209 * The large cushion allows instructions like enter 1210 * and pusha to work. ("enter $65535, $31" pushes 1211 * 32 pointers and then decrements %sp by 65535.) 1212 */ 1213 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1214 bad_area(regs, error_code, address); 1215 return; 1216 } 1217 } 1218 if (unlikely(expand_stack(vma, address))) { 1219 bad_area(regs, error_code, address); 1220 return; 1221 } 1222 1223 /* 1224 * Ok, we have a good vm_area for this memory access, so 1225 * we can handle it.. 1226 */ 1227 good_area: 1228 if (unlikely(access_error(error_code, vma))) { 1229 bad_area_access_error(regs, error_code, address); 1230 return; 1231 } 1232 1233 /* 1234 * If for any reason at all we couldn't handle the fault, 1235 * make sure we exit gracefully rather than endlessly redo 1236 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1237 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1238 */ 1239 fault = handle_mm_fault(mm, vma, address, flags); 1240 1241 /* 1242 * If we need to retry but a fatal signal is pending, handle the 1243 * signal first. We do not need to release the mmap_sem because it 1244 * would already be released in __lock_page_or_retry in mm/filemap.c. 1245 */ 1246 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))) 1247 return; 1248 1249 if (unlikely(fault & VM_FAULT_ERROR)) { 1250 mm_fault_error(regs, error_code, address, fault); 1251 return; 1252 } 1253 1254 /* 1255 * Major/minor page fault accounting is only done on the 1256 * initial attempt. If we go through a retry, it is extremely 1257 * likely that the page will be found in page cache at that point. 1258 */ 1259 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1260 if (fault & VM_FAULT_MAJOR) { 1261 tsk->maj_flt++; 1262 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 1263 regs, address); 1264 } else { 1265 tsk->min_flt++; 1266 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 1267 regs, address); 1268 } 1269 if (fault & VM_FAULT_RETRY) { 1270 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 1271 * of starvation. */ 1272 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1273 flags |= FAULT_FLAG_TRIED; 1274 goto retry; 1275 } 1276 } 1277 1278 check_v8086_mode(regs, address, tsk); 1279 1280 up_read(&mm->mmap_sem); 1281 } 1282 NOKPROBE_SYMBOL(__do_page_fault); 1283 1284 dotraplinkage void notrace 1285 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1286 { 1287 unsigned long address = read_cr2(); /* Get the faulting address */ 1288 enum ctx_state prev_state; 1289 1290 /* 1291 * We must have this function tagged with __kprobes, notrace and call 1292 * read_cr2() before calling anything else. To avoid calling any kind 1293 * of tracing machinery before we've observed the CR2 value. 1294 * 1295 * exception_{enter,exit}() contain all sorts of tracepoints. 1296 */ 1297 1298 prev_state = exception_enter(); 1299 __do_page_fault(regs, error_code, address); 1300 exception_exit(prev_state); 1301 } 1302 NOKPROBE_SYMBOL(do_page_fault); 1303 1304 #ifdef CONFIG_TRACING 1305 static nokprobe_inline void 1306 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1307 unsigned long error_code) 1308 { 1309 if (user_mode(regs)) 1310 trace_page_fault_user(address, regs, error_code); 1311 else 1312 trace_page_fault_kernel(address, regs, error_code); 1313 } 1314 1315 dotraplinkage void notrace 1316 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code) 1317 { 1318 /* 1319 * The exception_enter and tracepoint processing could 1320 * trigger another page faults (user space callchain 1321 * reading) and destroy the original cr2 value, so read 1322 * the faulting address now. 1323 */ 1324 unsigned long address = read_cr2(); 1325 enum ctx_state prev_state; 1326 1327 prev_state = exception_enter(); 1328 trace_page_fault_entries(address, regs, error_code); 1329 __do_page_fault(regs, error_code, address); 1330 exception_exit(prev_state); 1331 } 1332 NOKPROBE_SYMBOL(trace_do_page_fault); 1333 #endif /* CONFIG_TRACING */ 1334