xref: /openbmc/linux/arch/x86/mm/fault.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15 #include <linux/perf_event.h>		/* perf_sw_event		*/
16 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17 #include <linux/prefetch.h>		/* prefetchw			*/
18 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 
23 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
24 #include <asm/traps.h>			/* dotraplinkage, ...		*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
34 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
35 #include <asm/irq_stack.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <asm/trace/exceptions.h>
39 
40 /*
41  * Returns 0 if mmiotrace is disabled, or if the fault is not
42  * handled by mmiotrace:
43  */
44 static nokprobe_inline int
45 kmmio_fault(struct pt_regs *regs, unsigned long addr)
46 {
47 	if (unlikely(is_kmmio_active()))
48 		if (kmmio_handler(regs, addr) == 1)
49 			return -1;
50 	return 0;
51 }
52 
53 /*
54  * Prefetch quirks:
55  *
56  * 32-bit mode:
57  *
58  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
59  *   Check that here and ignore it.  This is AMD erratum #91.
60  *
61  * 64-bit mode:
62  *
63  *   Sometimes the CPU reports invalid exceptions on prefetch.
64  *   Check that here and ignore it.
65  *
66  * Opcode checker based on code by Richard Brunner.
67  */
68 static inline int
69 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
70 		      unsigned char opcode, int *prefetch)
71 {
72 	unsigned char instr_hi = opcode & 0xf0;
73 	unsigned char instr_lo = opcode & 0x0f;
74 
75 	switch (instr_hi) {
76 	case 0x20:
77 	case 0x30:
78 		/*
79 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
80 		 * In X86_64 long mode, the CPU will signal invalid
81 		 * opcode if some of these prefixes are present so
82 		 * X86_64 will never get here anyway
83 		 */
84 		return ((instr_lo & 7) == 0x6);
85 #ifdef CONFIG_X86_64
86 	case 0x40:
87 		/*
88 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
89 		 */
90 		return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 	case 0x60:
93 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
94 		return (instr_lo & 0xC) == 0x4;
95 	case 0xF0:
96 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 		return !instr_lo || (instr_lo>>1) == 1;
98 	case 0x00:
99 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
100 		if (get_kernel_nofault(opcode, instr))
101 			return 0;
102 
103 		*prefetch = (instr_lo == 0xF) &&
104 			(opcode == 0x0D || opcode == 0x18);
105 		return 0;
106 	default:
107 		return 0;
108 	}
109 }
110 
111 static bool is_amd_k8_pre_npt(void)
112 {
113 	struct cpuinfo_x86 *c = &boot_cpu_data;
114 
115 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
116 			c->x86_vendor == X86_VENDOR_AMD &&
117 			c->x86 == 0xf && c->x86_model < 0x40);
118 }
119 
120 static int
121 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
122 {
123 	unsigned char *max_instr;
124 	unsigned char *instr;
125 	int prefetch = 0;
126 
127 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
128 	if (!is_amd_k8_pre_npt())
129 		return 0;
130 
131 	/*
132 	 * If it was a exec (instruction fetch) fault on NX page, then
133 	 * do not ignore the fault:
134 	 */
135 	if (error_code & X86_PF_INSTR)
136 		return 0;
137 
138 	instr = (void *)convert_ip_to_linear(current, regs);
139 	max_instr = instr + 15;
140 
141 	/*
142 	 * This code has historically always bailed out if IP points to a
143 	 * not-present page (e.g. due to a race).  No one has ever
144 	 * complained about this.
145 	 */
146 	pagefault_disable();
147 
148 	while (instr < max_instr) {
149 		unsigned char opcode;
150 
151 		if (user_mode(regs)) {
152 			if (get_user(opcode, (unsigned char __user *) instr))
153 				break;
154 		} else {
155 			if (get_kernel_nofault(opcode, instr))
156 				break;
157 		}
158 
159 		instr++;
160 
161 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
162 			break;
163 	}
164 
165 	pagefault_enable();
166 	return prefetch;
167 }
168 
169 DEFINE_SPINLOCK(pgd_lock);
170 LIST_HEAD(pgd_list);
171 
172 #ifdef CONFIG_X86_32
173 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
174 {
175 	unsigned index = pgd_index(address);
176 	pgd_t *pgd_k;
177 	p4d_t *p4d, *p4d_k;
178 	pud_t *pud, *pud_k;
179 	pmd_t *pmd, *pmd_k;
180 
181 	pgd += index;
182 	pgd_k = init_mm.pgd + index;
183 
184 	if (!pgd_present(*pgd_k))
185 		return NULL;
186 
187 	/*
188 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
189 	 * and redundant with the set_pmd() on non-PAE. As would
190 	 * set_p4d/set_pud.
191 	 */
192 	p4d = p4d_offset(pgd, address);
193 	p4d_k = p4d_offset(pgd_k, address);
194 	if (!p4d_present(*p4d_k))
195 		return NULL;
196 
197 	pud = pud_offset(p4d, address);
198 	pud_k = pud_offset(p4d_k, address);
199 	if (!pud_present(*pud_k))
200 		return NULL;
201 
202 	pmd = pmd_offset(pud, address);
203 	pmd_k = pmd_offset(pud_k, address);
204 
205 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
206 		set_pmd(pmd, *pmd_k);
207 
208 	if (!pmd_present(*pmd_k))
209 		return NULL;
210 	else
211 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
212 
213 	return pmd_k;
214 }
215 
216 /*
217  *   Handle a fault on the vmalloc or module mapping area
218  *
219  *   This is needed because there is a race condition between the time
220  *   when the vmalloc mapping code updates the PMD to the point in time
221  *   where it synchronizes this update with the other page-tables in the
222  *   system.
223  *
224  *   In this race window another thread/CPU can map an area on the same
225  *   PMD, finds it already present and does not synchronize it with the
226  *   rest of the system yet. As a result v[mz]alloc might return areas
227  *   which are not mapped in every page-table in the system, causing an
228  *   unhandled page-fault when they are accessed.
229  */
230 static noinline int vmalloc_fault(unsigned long address)
231 {
232 	unsigned long pgd_paddr;
233 	pmd_t *pmd_k;
234 	pte_t *pte_k;
235 
236 	/* Make sure we are in vmalloc area: */
237 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
238 		return -1;
239 
240 	/*
241 	 * Synchronize this task's top level page-table
242 	 * with the 'reference' page table.
243 	 *
244 	 * Do _not_ use "current" here. We might be inside
245 	 * an interrupt in the middle of a task switch..
246 	 */
247 	pgd_paddr = read_cr3_pa();
248 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
249 	if (!pmd_k)
250 		return -1;
251 
252 	if (pmd_large(*pmd_k))
253 		return 0;
254 
255 	pte_k = pte_offset_kernel(pmd_k, address);
256 	if (!pte_present(*pte_k))
257 		return -1;
258 
259 	return 0;
260 }
261 NOKPROBE_SYMBOL(vmalloc_fault);
262 
263 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
264 {
265 	unsigned long addr;
266 
267 	for (addr = start & PMD_MASK;
268 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
269 	     addr += PMD_SIZE) {
270 		struct page *page;
271 
272 		spin_lock(&pgd_lock);
273 		list_for_each_entry(page, &pgd_list, lru) {
274 			spinlock_t *pgt_lock;
275 
276 			/* the pgt_lock only for Xen */
277 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
278 
279 			spin_lock(pgt_lock);
280 			vmalloc_sync_one(page_address(page), addr);
281 			spin_unlock(pgt_lock);
282 		}
283 		spin_unlock(&pgd_lock);
284 	}
285 }
286 
287 static bool low_pfn(unsigned long pfn)
288 {
289 	return pfn < max_low_pfn;
290 }
291 
292 static void dump_pagetable(unsigned long address)
293 {
294 	pgd_t *base = __va(read_cr3_pa());
295 	pgd_t *pgd = &base[pgd_index(address)];
296 	p4d_t *p4d;
297 	pud_t *pud;
298 	pmd_t *pmd;
299 	pte_t *pte;
300 
301 #ifdef CONFIG_X86_PAE
302 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
303 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
304 		goto out;
305 #define pr_pde pr_cont
306 #else
307 #define pr_pde pr_info
308 #endif
309 	p4d = p4d_offset(pgd, address);
310 	pud = pud_offset(p4d, address);
311 	pmd = pmd_offset(pud, address);
312 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
313 #undef pr_pde
314 
315 	/*
316 	 * We must not directly access the pte in the highpte
317 	 * case if the page table is located in highmem.
318 	 * And let's rather not kmap-atomic the pte, just in case
319 	 * it's allocated already:
320 	 */
321 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
322 		goto out;
323 
324 	pte = pte_offset_kernel(pmd, address);
325 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
326 out:
327 	pr_cont("\n");
328 }
329 
330 #else /* CONFIG_X86_64: */
331 
332 #ifdef CONFIG_CPU_SUP_AMD
333 static const char errata93_warning[] =
334 KERN_ERR
335 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
336 "******* Working around it, but it may cause SEGVs or burn power.\n"
337 "******* Please consider a BIOS update.\n"
338 "******* Disabling USB legacy in the BIOS may also help.\n";
339 #endif
340 
341 static int bad_address(void *p)
342 {
343 	unsigned long dummy;
344 
345 	return get_kernel_nofault(dummy, (unsigned long *)p);
346 }
347 
348 static void dump_pagetable(unsigned long address)
349 {
350 	pgd_t *base = __va(read_cr3_pa());
351 	pgd_t *pgd = base + pgd_index(address);
352 	p4d_t *p4d;
353 	pud_t *pud;
354 	pmd_t *pmd;
355 	pte_t *pte;
356 
357 	if (bad_address(pgd))
358 		goto bad;
359 
360 	pr_info("PGD %lx ", pgd_val(*pgd));
361 
362 	if (!pgd_present(*pgd))
363 		goto out;
364 
365 	p4d = p4d_offset(pgd, address);
366 	if (bad_address(p4d))
367 		goto bad;
368 
369 	pr_cont("P4D %lx ", p4d_val(*p4d));
370 	if (!p4d_present(*p4d) || p4d_large(*p4d))
371 		goto out;
372 
373 	pud = pud_offset(p4d, address);
374 	if (bad_address(pud))
375 		goto bad;
376 
377 	pr_cont("PUD %lx ", pud_val(*pud));
378 	if (!pud_present(*pud) || pud_large(*pud))
379 		goto out;
380 
381 	pmd = pmd_offset(pud, address);
382 	if (bad_address(pmd))
383 		goto bad;
384 
385 	pr_cont("PMD %lx ", pmd_val(*pmd));
386 	if (!pmd_present(*pmd) || pmd_large(*pmd))
387 		goto out;
388 
389 	pte = pte_offset_kernel(pmd, address);
390 	if (bad_address(pte))
391 		goto bad;
392 
393 	pr_cont("PTE %lx", pte_val(*pte));
394 out:
395 	pr_cont("\n");
396 	return;
397 bad:
398 	pr_info("BAD\n");
399 }
400 
401 #endif /* CONFIG_X86_64 */
402 
403 /*
404  * Workaround for K8 erratum #93 & buggy BIOS.
405  *
406  * BIOS SMM functions are required to use a specific workaround
407  * to avoid corruption of the 64bit RIP register on C stepping K8.
408  *
409  * A lot of BIOS that didn't get tested properly miss this.
410  *
411  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
412  * Try to work around it here.
413  *
414  * Note we only handle faults in kernel here.
415  * Does nothing on 32-bit.
416  */
417 static int is_errata93(struct pt_regs *regs, unsigned long address)
418 {
419 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
420 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
421 	    || boot_cpu_data.x86 != 0xf)
422 		return 0;
423 
424 	if (user_mode(regs))
425 		return 0;
426 
427 	if (address != regs->ip)
428 		return 0;
429 
430 	if ((address >> 32) != 0)
431 		return 0;
432 
433 	address |= 0xffffffffUL << 32;
434 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
435 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
436 		printk_once(errata93_warning);
437 		regs->ip = address;
438 		return 1;
439 	}
440 #endif
441 	return 0;
442 }
443 
444 /*
445  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
446  * to illegal addresses >4GB.
447  *
448  * We catch this in the page fault handler because these addresses
449  * are not reachable. Just detect this case and return.  Any code
450  * segment in LDT is compatibility mode.
451  */
452 static int is_errata100(struct pt_regs *regs, unsigned long address)
453 {
454 #ifdef CONFIG_X86_64
455 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
456 		return 1;
457 #endif
458 	return 0;
459 }
460 
461 /* Pentium F0 0F C7 C8 bug workaround: */
462 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
463 		       unsigned long address)
464 {
465 #ifdef CONFIG_X86_F00F_BUG
466 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
467 	    idt_is_f00f_address(address)) {
468 		handle_invalid_op(regs);
469 		return 1;
470 	}
471 #endif
472 	return 0;
473 }
474 
475 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
476 {
477 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
478 	unsigned long addr;
479 	struct ldttss_desc desc;
480 
481 	if (index == 0) {
482 		pr_alert("%s: NULL\n", name);
483 		return;
484 	}
485 
486 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
487 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
488 		return;
489 	}
490 
491 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
492 			      sizeof(struct ldttss_desc))) {
493 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
494 			 name, index);
495 		return;
496 	}
497 
498 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
499 #ifdef CONFIG_X86_64
500 	addr |= ((u64)desc.base3 << 32);
501 #endif
502 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
503 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
504 }
505 
506 static void
507 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
508 {
509 	if (!oops_may_print())
510 		return;
511 
512 	if (error_code & X86_PF_INSTR) {
513 		unsigned int level;
514 		pgd_t *pgd;
515 		pte_t *pte;
516 
517 		pgd = __va(read_cr3_pa());
518 		pgd += pgd_index(address);
519 
520 		pte = lookup_address_in_pgd(pgd, address, &level);
521 
522 		if (pte && pte_present(*pte) && !pte_exec(*pte))
523 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
524 				from_kuid(&init_user_ns, current_uid()));
525 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
526 				(pgd_flags(*pgd) & _PAGE_USER) &&
527 				(__read_cr4() & X86_CR4_SMEP))
528 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
529 				from_kuid(&init_user_ns, current_uid()));
530 	}
531 
532 	if (address < PAGE_SIZE && !user_mode(regs))
533 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
534 			(void *)address);
535 	else
536 		pr_alert("BUG: unable to handle page fault for address: %px\n",
537 			(void *)address);
538 
539 	pr_alert("#PF: %s %s in %s mode\n",
540 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
541 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
542 		 (error_code & X86_PF_WRITE) ? "write access" :
543 					       "read access",
544 			     user_mode(regs) ? "user" : "kernel");
545 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
546 		 !(error_code & X86_PF_PROT) ? "not-present page" :
547 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
548 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
549 					       "permissions violation");
550 
551 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
552 		struct desc_ptr idt, gdt;
553 		u16 ldtr, tr;
554 
555 		/*
556 		 * This can happen for quite a few reasons.  The more obvious
557 		 * ones are faults accessing the GDT, or LDT.  Perhaps
558 		 * surprisingly, if the CPU tries to deliver a benign or
559 		 * contributory exception from user code and gets a page fault
560 		 * during delivery, the page fault can be delivered as though
561 		 * it originated directly from user code.  This could happen
562 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
563 		 * kernel or IST stack.
564 		 */
565 		store_idt(&idt);
566 
567 		/* Usable even on Xen PV -- it's just slow. */
568 		native_store_gdt(&gdt);
569 
570 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
571 			 idt.address, idt.size, gdt.address, gdt.size);
572 
573 		store_ldt(ldtr);
574 		show_ldttss(&gdt, "LDTR", ldtr);
575 
576 		store_tr(tr);
577 		show_ldttss(&gdt, "TR", tr);
578 	}
579 
580 	dump_pagetable(address);
581 }
582 
583 static noinline void
584 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
585 	    unsigned long address)
586 {
587 	struct task_struct *tsk;
588 	unsigned long flags;
589 	int sig;
590 
591 	flags = oops_begin();
592 	tsk = current;
593 	sig = SIGKILL;
594 
595 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
596 	       tsk->comm, address);
597 	dump_pagetable(address);
598 
599 	if (__die("Bad pagetable", regs, error_code))
600 		sig = 0;
601 
602 	oops_end(flags, regs, sig);
603 }
604 
605 static void sanitize_error_code(unsigned long address,
606 				unsigned long *error_code)
607 {
608 	/*
609 	 * To avoid leaking information about the kernel page
610 	 * table layout, pretend that user-mode accesses to
611 	 * kernel addresses are always protection faults.
612 	 *
613 	 * NB: This means that failed vsyscalls with vsyscall=none
614 	 * will have the PROT bit.  This doesn't leak any
615 	 * information and does not appear to cause any problems.
616 	 */
617 	if (address >= TASK_SIZE_MAX)
618 		*error_code |= X86_PF_PROT;
619 }
620 
621 static void set_signal_archinfo(unsigned long address,
622 				unsigned long error_code)
623 {
624 	struct task_struct *tsk = current;
625 
626 	tsk->thread.trap_nr = X86_TRAP_PF;
627 	tsk->thread.error_code = error_code | X86_PF_USER;
628 	tsk->thread.cr2 = address;
629 }
630 
631 static noinline void
632 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
633 		unsigned long address)
634 {
635 #ifdef CONFIG_VMAP_STACK
636 	struct stack_info info;
637 #endif
638 	unsigned long flags;
639 	int sig;
640 
641 	if (user_mode(regs)) {
642 		/*
643 		 * Implicit kernel access from user mode?  Skip the stack
644 		 * overflow and EFI special cases.
645 		 */
646 		goto oops;
647 	}
648 
649 #ifdef CONFIG_VMAP_STACK
650 	/*
651 	 * Stack overflow?  During boot, we can fault near the initial
652 	 * stack in the direct map, but that's not an overflow -- check
653 	 * that we're in vmalloc space to avoid this.
654 	 */
655 	if (is_vmalloc_addr((void *)address) &&
656 	    get_stack_guard_info((void *)address, &info)) {
657 		/*
658 		 * We're likely to be running with very little stack space
659 		 * left.  It's plausible that we'd hit this condition but
660 		 * double-fault even before we get this far, in which case
661 		 * we're fine: the double-fault handler will deal with it.
662 		 *
663 		 * We don't want to make it all the way into the oops code
664 		 * and then double-fault, though, because we're likely to
665 		 * break the console driver and lose most of the stack dump.
666 		 */
667 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
668 			      handle_stack_overflow,
669 			      ASM_CALL_ARG3,
670 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
671 
672 		unreachable();
673 	}
674 #endif
675 
676 	/*
677 	 * Buggy firmware could access regions which might page fault.  If
678 	 * this happens, EFI has a special OOPS path that will try to
679 	 * avoid hanging the system.
680 	 */
681 	if (IS_ENABLED(CONFIG_EFI))
682 		efi_crash_gracefully_on_page_fault(address);
683 
684 	/* Only not-present faults should be handled by KFENCE. */
685 	if (!(error_code & X86_PF_PROT) &&
686 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
687 		return;
688 
689 oops:
690 	/*
691 	 * Oops. The kernel tried to access some bad page. We'll have to
692 	 * terminate things with extreme prejudice:
693 	 */
694 	flags = oops_begin();
695 
696 	show_fault_oops(regs, error_code, address);
697 
698 	if (task_stack_end_corrupted(current))
699 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
700 
701 	sig = SIGKILL;
702 	if (__die("Oops", regs, error_code))
703 		sig = 0;
704 
705 	/* Executive summary in case the body of the oops scrolled away */
706 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
707 
708 	oops_end(flags, regs, sig);
709 }
710 
711 static noinline void
712 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
713 			 unsigned long address, int signal, int si_code,
714 			 u32 pkey)
715 {
716 	WARN_ON_ONCE(user_mode(regs));
717 
718 	/* Are we prepared to handle this kernel fault? */
719 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
720 		/*
721 		 * Any interrupt that takes a fault gets the fixup. This makes
722 		 * the below recursive fault logic only apply to a faults from
723 		 * task context.
724 		 */
725 		if (in_interrupt())
726 			return;
727 
728 		/*
729 		 * Per the above we're !in_interrupt(), aka. task context.
730 		 *
731 		 * In this case we need to make sure we're not recursively
732 		 * faulting through the emulate_vsyscall() logic.
733 		 */
734 		if (current->thread.sig_on_uaccess_err && signal) {
735 			sanitize_error_code(address, &error_code);
736 
737 			set_signal_archinfo(address, error_code);
738 
739 			if (si_code == SEGV_PKUERR) {
740 				force_sig_pkuerr((void __user *)address, pkey);
741 			} else {
742 				/* XXX: hwpoison faults will set the wrong code. */
743 				force_sig_fault(signal, si_code, (void __user *)address);
744 			}
745 		}
746 
747 		/*
748 		 * Barring that, we can do the fixup and be happy.
749 		 */
750 		return;
751 	}
752 
753 	/*
754 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
755 	 * instruction.
756 	 */
757 	if (is_prefetch(regs, error_code, address))
758 		return;
759 
760 	page_fault_oops(regs, error_code, address);
761 }
762 
763 /*
764  * Print out info about fatal segfaults, if the show_unhandled_signals
765  * sysctl is set:
766  */
767 static inline void
768 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
769 		unsigned long address, struct task_struct *tsk)
770 {
771 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
772 	/* This is a racy snapshot, but it's better than nothing. */
773 	int cpu = raw_smp_processor_id();
774 
775 	if (!unhandled_signal(tsk, SIGSEGV))
776 		return;
777 
778 	if (!printk_ratelimit())
779 		return;
780 
781 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
782 		loglvl, tsk->comm, task_pid_nr(tsk), address,
783 		(void *)regs->ip, (void *)regs->sp, error_code);
784 
785 	print_vma_addr(KERN_CONT " in ", regs->ip);
786 
787 	/*
788 	 * Dump the likely CPU where the fatal segfault happened.
789 	 * This can help identify faulty hardware.
790 	 */
791 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
792 	       topology_core_id(cpu), topology_physical_package_id(cpu));
793 
794 
795 	printk(KERN_CONT "\n");
796 
797 	show_opcodes(regs, loglvl);
798 }
799 
800 /*
801  * The (legacy) vsyscall page is the long page in the kernel portion
802  * of the address space that has user-accessible permissions.
803  */
804 static bool is_vsyscall_vaddr(unsigned long vaddr)
805 {
806 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
807 }
808 
809 static void
810 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
811 		       unsigned long address, u32 pkey, int si_code)
812 {
813 	struct task_struct *tsk = current;
814 
815 	if (!user_mode(regs)) {
816 		kernelmode_fixup_or_oops(regs, error_code, address,
817 					 SIGSEGV, si_code, pkey);
818 		return;
819 	}
820 
821 	if (!(error_code & X86_PF_USER)) {
822 		/* Implicit user access to kernel memory -- just oops */
823 		page_fault_oops(regs, error_code, address);
824 		return;
825 	}
826 
827 	/*
828 	 * User mode accesses just cause a SIGSEGV.
829 	 * It's possible to have interrupts off here:
830 	 */
831 	local_irq_enable();
832 
833 	/*
834 	 * Valid to do another page fault here because this one came
835 	 * from user space:
836 	 */
837 	if (is_prefetch(regs, error_code, address))
838 		return;
839 
840 	if (is_errata100(regs, address))
841 		return;
842 
843 	sanitize_error_code(address, &error_code);
844 
845 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
846 		return;
847 
848 	if (likely(show_unhandled_signals))
849 		show_signal_msg(regs, error_code, address, tsk);
850 
851 	set_signal_archinfo(address, error_code);
852 
853 	if (si_code == SEGV_PKUERR)
854 		force_sig_pkuerr((void __user *)address, pkey);
855 	else
856 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
857 
858 	local_irq_disable();
859 }
860 
861 static noinline void
862 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
863 		     unsigned long address)
864 {
865 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
866 }
867 
868 static void
869 __bad_area(struct pt_regs *regs, unsigned long error_code,
870 	   unsigned long address, u32 pkey, int si_code)
871 {
872 	struct mm_struct *mm = current->mm;
873 	/*
874 	 * Something tried to access memory that isn't in our memory map..
875 	 * Fix it, but check if it's kernel or user first..
876 	 */
877 	mmap_read_unlock(mm);
878 
879 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
880 }
881 
882 static noinline void
883 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
884 {
885 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
886 }
887 
888 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
889 		struct vm_area_struct *vma)
890 {
891 	/* This code is always called on the current mm */
892 	bool foreign = false;
893 
894 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
895 		return false;
896 	if (error_code & X86_PF_PK)
897 		return true;
898 	/* this checks permission keys on the VMA: */
899 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
900 				       (error_code & X86_PF_INSTR), foreign))
901 		return true;
902 	return false;
903 }
904 
905 static noinline void
906 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
907 		      unsigned long address, struct vm_area_struct *vma)
908 {
909 	/*
910 	 * This OSPKE check is not strictly necessary at runtime.
911 	 * But, doing it this way allows compiler optimizations
912 	 * if pkeys are compiled out.
913 	 */
914 	if (bad_area_access_from_pkeys(error_code, vma)) {
915 		/*
916 		 * A protection key fault means that the PKRU value did not allow
917 		 * access to some PTE.  Userspace can figure out what PKRU was
918 		 * from the XSAVE state.  This function captures the pkey from
919 		 * the vma and passes it to userspace so userspace can discover
920 		 * which protection key was set on the PTE.
921 		 *
922 		 * If we get here, we know that the hardware signaled a X86_PF_PK
923 		 * fault and that there was a VMA once we got in the fault
924 		 * handler.  It does *not* guarantee that the VMA we find here
925 		 * was the one that we faulted on.
926 		 *
927 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
928 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
929 		 * 3. T1   : faults...
930 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
931 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
932 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
933 		 *	     faulted on a pte with its pkey=4.
934 		 */
935 		u32 pkey = vma_pkey(vma);
936 
937 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
938 	} else {
939 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
940 	}
941 }
942 
943 static void
944 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
945 	  vm_fault_t fault)
946 {
947 	/* Kernel mode? Handle exceptions or die: */
948 	if (!user_mode(regs)) {
949 		kernelmode_fixup_or_oops(regs, error_code, address,
950 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
951 		return;
952 	}
953 
954 	/* User-space => ok to do another page fault: */
955 	if (is_prefetch(regs, error_code, address))
956 		return;
957 
958 	sanitize_error_code(address, &error_code);
959 
960 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
961 		return;
962 
963 	set_signal_archinfo(address, error_code);
964 
965 #ifdef CONFIG_MEMORY_FAILURE
966 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
967 		struct task_struct *tsk = current;
968 		unsigned lsb = 0;
969 
970 		pr_err(
971 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
972 			tsk->comm, tsk->pid, address);
973 		if (fault & VM_FAULT_HWPOISON_LARGE)
974 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
975 		if (fault & VM_FAULT_HWPOISON)
976 			lsb = PAGE_SHIFT;
977 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
978 		return;
979 	}
980 #endif
981 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
982 }
983 
984 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
985 {
986 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
987 		return 0;
988 
989 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
990 		return 0;
991 
992 	return 1;
993 }
994 
995 /*
996  * Handle a spurious fault caused by a stale TLB entry.
997  *
998  * This allows us to lazily refresh the TLB when increasing the
999  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1000  * eagerly is very expensive since that implies doing a full
1001  * cross-processor TLB flush, even if no stale TLB entries exist
1002  * on other processors.
1003  *
1004  * Spurious faults may only occur if the TLB contains an entry with
1005  * fewer permission than the page table entry.  Non-present (P = 0)
1006  * and reserved bit (R = 1) faults are never spurious.
1007  *
1008  * There are no security implications to leaving a stale TLB when
1009  * increasing the permissions on a page.
1010  *
1011  * Returns non-zero if a spurious fault was handled, zero otherwise.
1012  *
1013  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1014  * (Optional Invalidation).
1015  */
1016 static noinline int
1017 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1018 {
1019 	pgd_t *pgd;
1020 	p4d_t *p4d;
1021 	pud_t *pud;
1022 	pmd_t *pmd;
1023 	pte_t *pte;
1024 	int ret;
1025 
1026 	/*
1027 	 * Only writes to RO or instruction fetches from NX may cause
1028 	 * spurious faults.
1029 	 *
1030 	 * These could be from user or supervisor accesses but the TLB
1031 	 * is only lazily flushed after a kernel mapping protection
1032 	 * change, so user accesses are not expected to cause spurious
1033 	 * faults.
1034 	 */
1035 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1036 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1037 		return 0;
1038 
1039 	pgd = init_mm.pgd + pgd_index(address);
1040 	if (!pgd_present(*pgd))
1041 		return 0;
1042 
1043 	p4d = p4d_offset(pgd, address);
1044 	if (!p4d_present(*p4d))
1045 		return 0;
1046 
1047 	if (p4d_large(*p4d))
1048 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1049 
1050 	pud = pud_offset(p4d, address);
1051 	if (!pud_present(*pud))
1052 		return 0;
1053 
1054 	if (pud_large(*pud))
1055 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1056 
1057 	pmd = pmd_offset(pud, address);
1058 	if (!pmd_present(*pmd))
1059 		return 0;
1060 
1061 	if (pmd_large(*pmd))
1062 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063 
1064 	pte = pte_offset_kernel(pmd, address);
1065 	if (!pte_present(*pte))
1066 		return 0;
1067 
1068 	ret = spurious_kernel_fault_check(error_code, pte);
1069 	if (!ret)
1070 		return 0;
1071 
1072 	/*
1073 	 * Make sure we have permissions in PMD.
1074 	 * If not, then there's a bug in the page tables:
1075 	 */
1076 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1077 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1078 
1079 	return ret;
1080 }
1081 NOKPROBE_SYMBOL(spurious_kernel_fault);
1082 
1083 int show_unhandled_signals = 1;
1084 
1085 static inline int
1086 access_error(unsigned long error_code, struct vm_area_struct *vma)
1087 {
1088 	/* This is only called for the current mm, so: */
1089 	bool foreign = false;
1090 
1091 	/*
1092 	 * Read or write was blocked by protection keys.  This is
1093 	 * always an unconditional error and can never result in
1094 	 * a follow-up action to resolve the fault, like a COW.
1095 	 */
1096 	if (error_code & X86_PF_PK)
1097 		return 1;
1098 
1099 	/*
1100 	 * SGX hardware blocked the access.  This usually happens
1101 	 * when the enclave memory contents have been destroyed, like
1102 	 * after a suspend/resume cycle. In any case, the kernel can't
1103 	 * fix the cause of the fault.  Handle the fault as an access
1104 	 * error even in cases where no actual access violation
1105 	 * occurred.  This allows userspace to rebuild the enclave in
1106 	 * response to the signal.
1107 	 */
1108 	if (unlikely(error_code & X86_PF_SGX))
1109 		return 1;
1110 
1111 	/*
1112 	 * Make sure to check the VMA so that we do not perform
1113 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1114 	 * page.
1115 	 */
1116 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1117 				       (error_code & X86_PF_INSTR), foreign))
1118 		return 1;
1119 
1120 	if (error_code & X86_PF_WRITE) {
1121 		/* write, present and write, not present: */
1122 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123 			return 1;
1124 		return 0;
1125 	}
1126 
1127 	/* read, present: */
1128 	if (unlikely(error_code & X86_PF_PROT))
1129 		return 1;
1130 
1131 	/* read, not present: */
1132 	if (unlikely(!vma_is_accessible(vma)))
1133 		return 1;
1134 
1135 	return 0;
1136 }
1137 
1138 bool fault_in_kernel_space(unsigned long address)
1139 {
1140 	/*
1141 	 * On 64-bit systems, the vsyscall page is at an address above
1142 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143 	 * address space.
1144 	 */
1145 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146 		return false;
1147 
1148 	return address >= TASK_SIZE_MAX;
1149 }
1150 
1151 /*
1152  * Called for all faults where 'address' is part of the kernel address
1153  * space.  Might get called for faults that originate from *code* that
1154  * ran in userspace or the kernel.
1155  */
1156 static void
1157 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158 		   unsigned long address)
1159 {
1160 	/*
1161 	 * Protection keys exceptions only happen on user pages.  We
1162 	 * have no user pages in the kernel portion of the address
1163 	 * space, so do not expect them here.
1164 	 */
1165 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166 
1167 #ifdef CONFIG_X86_32
1168 	/*
1169 	 * We can fault-in kernel-space virtual memory on-demand. The
1170 	 * 'reference' page table is init_mm.pgd.
1171 	 *
1172 	 * NOTE! We MUST NOT take any locks for this case. We may
1173 	 * be in an interrupt or a critical region, and should
1174 	 * only copy the information from the master page table,
1175 	 * nothing more.
1176 	 *
1177 	 * Before doing this on-demand faulting, ensure that the
1178 	 * fault is not any of the following:
1179 	 * 1. A fault on a PTE with a reserved bit set.
1180 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181 	 *    fault kernel memory due to user-mode accesses).
1182 	 * 3. A fault caused by a page-level protection violation.
1183 	 *    (A demand fault would be on a non-present page which
1184 	 *     would have X86_PF_PROT==0).
1185 	 *
1186 	 * This is only needed to close a race condition on x86-32 in
1187 	 * the vmalloc mapping/unmapping code. See the comment above
1188 	 * vmalloc_fault() for details. On x86-64 the race does not
1189 	 * exist as the vmalloc mappings don't need to be synchronized
1190 	 * there.
1191 	 */
1192 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193 		if (vmalloc_fault(address) >= 0)
1194 			return;
1195 	}
1196 #endif
1197 
1198 	if (is_f00f_bug(regs, hw_error_code, address))
1199 		return;
1200 
1201 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1202 	if (spurious_kernel_fault(hw_error_code, address))
1203 		return;
1204 
1205 	/* kprobes don't want to hook the spurious faults: */
1206 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207 		return;
1208 
1209 	/*
1210 	 * Note, despite being a "bad area", there are quite a few
1211 	 * acceptable reasons to get here, such as erratum fixups
1212 	 * and handling kernel code that can fault, like get_user().
1213 	 *
1214 	 * Don't take the mm semaphore here. If we fixup a prefetch
1215 	 * fault we could otherwise deadlock:
1216 	 */
1217 	bad_area_nosemaphore(regs, hw_error_code, address);
1218 }
1219 NOKPROBE_SYMBOL(do_kern_addr_fault);
1220 
1221 /*
1222  * Handle faults in the user portion of the address space.  Nothing in here
1223  * should check X86_PF_USER without a specific justification: for almost
1224  * all purposes, we should treat a normal kernel access to user memory
1225  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226  * The one exception is AC flag handling, which is, per the x86
1227  * architecture, special for WRUSS.
1228  */
1229 static inline
1230 void do_user_addr_fault(struct pt_regs *regs,
1231 			unsigned long error_code,
1232 			unsigned long address)
1233 {
1234 	struct vm_area_struct *vma;
1235 	struct task_struct *tsk;
1236 	struct mm_struct *mm;
1237 	vm_fault_t fault;
1238 	unsigned int flags = FAULT_FLAG_DEFAULT;
1239 
1240 	tsk = current;
1241 	mm = tsk->mm;
1242 
1243 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1244 		/*
1245 		 * Whoops, this is kernel mode code trying to execute from
1246 		 * user memory.  Unless this is AMD erratum #93, which
1247 		 * corrupts RIP such that it looks like a user address,
1248 		 * this is unrecoverable.  Don't even try to look up the
1249 		 * VMA or look for extable entries.
1250 		 */
1251 		if (is_errata93(regs, address))
1252 			return;
1253 
1254 		page_fault_oops(regs, error_code, address);
1255 		return;
1256 	}
1257 
1258 	/* kprobes don't want to hook the spurious faults: */
1259 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260 		return;
1261 
1262 	/*
1263 	 * Reserved bits are never expected to be set on
1264 	 * entries in the user portion of the page tables.
1265 	 */
1266 	if (unlikely(error_code & X86_PF_RSVD))
1267 		pgtable_bad(regs, error_code, address);
1268 
1269 	/*
1270 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271 	 * pages in the user address space.  The odd case here is WRUSS,
1272 	 * which, according to the preliminary documentation, does not respect
1273 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1274 	 * enforcement appears to be consistent with the USER bit.
1275 	 */
1276 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277 		     !(error_code & X86_PF_USER) &&
1278 		     !(regs->flags & X86_EFLAGS_AC))) {
1279 		/*
1280 		 * No extable entry here.  This was a kernel access to an
1281 		 * invalid pointer.  get_kernel_nofault() will not get here.
1282 		 */
1283 		page_fault_oops(regs, error_code, address);
1284 		return;
1285 	}
1286 
1287 	/*
1288 	 * If we're in an interrupt, have no user context or are running
1289 	 * in a region with pagefaults disabled then we must not take the fault
1290 	 */
1291 	if (unlikely(faulthandler_disabled() || !mm)) {
1292 		bad_area_nosemaphore(regs, error_code, address);
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * It's safe to allow irq's after cr2 has been saved and the
1298 	 * vmalloc fault has been handled.
1299 	 *
1300 	 * User-mode registers count as a user access even for any
1301 	 * potential system fault or CPU buglet:
1302 	 */
1303 	if (user_mode(regs)) {
1304 		local_irq_enable();
1305 		flags |= FAULT_FLAG_USER;
1306 	} else {
1307 		if (regs->flags & X86_EFLAGS_IF)
1308 			local_irq_enable();
1309 	}
1310 
1311 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312 
1313 	if (error_code & X86_PF_WRITE)
1314 		flags |= FAULT_FLAG_WRITE;
1315 	if (error_code & X86_PF_INSTR)
1316 		flags |= FAULT_FLAG_INSTRUCTION;
1317 
1318 #ifdef CONFIG_X86_64
1319 	/*
1320 	 * Faults in the vsyscall page might need emulation.  The
1321 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1322 	 * considered to be part of the user address space.
1323 	 *
1324 	 * The vsyscall page does not have a "real" VMA, so do this
1325 	 * emulation before we go searching for VMAs.
1326 	 *
1327 	 * PKRU never rejects instruction fetches, so we don't need
1328 	 * to consider the PF_PK bit.
1329 	 */
1330 	if (is_vsyscall_vaddr(address)) {
1331 		if (emulate_vsyscall(error_code, regs, address))
1332 			return;
1333 	}
1334 #endif
1335 
1336 	/*
1337 	 * Kernel-mode access to the user address space should only occur
1338 	 * on well-defined single instructions listed in the exception
1339 	 * tables.  But, an erroneous kernel fault occurring outside one of
1340 	 * those areas which also holds mmap_lock might deadlock attempting
1341 	 * to validate the fault against the address space.
1342 	 *
1343 	 * Only do the expensive exception table search when we might be at
1344 	 * risk of a deadlock.  This happens if we
1345 	 * 1. Failed to acquire mmap_lock, and
1346 	 * 2. The access did not originate in userspace.
1347 	 */
1348 	if (unlikely(!mmap_read_trylock(mm))) {
1349 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1350 			/*
1351 			 * Fault from code in kernel from
1352 			 * which we do not expect faults.
1353 			 */
1354 			bad_area_nosemaphore(regs, error_code, address);
1355 			return;
1356 		}
1357 retry:
1358 		mmap_read_lock(mm);
1359 	} else {
1360 		/*
1361 		 * The above down_read_trylock() might have succeeded in
1362 		 * which case we'll have missed the might_sleep() from
1363 		 * down_read():
1364 		 */
1365 		might_sleep();
1366 	}
1367 
1368 	vma = find_vma(mm, address);
1369 	if (unlikely(!vma)) {
1370 		bad_area(regs, error_code, address);
1371 		return;
1372 	}
1373 	if (likely(vma->vm_start <= address))
1374 		goto good_area;
1375 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1376 		bad_area(regs, error_code, address);
1377 		return;
1378 	}
1379 	if (unlikely(expand_stack(vma, address))) {
1380 		bad_area(regs, error_code, address);
1381 		return;
1382 	}
1383 
1384 	/*
1385 	 * Ok, we have a good vm_area for this memory access, so
1386 	 * we can handle it..
1387 	 */
1388 good_area:
1389 	if (unlikely(access_error(error_code, vma))) {
1390 		bad_area_access_error(regs, error_code, address, vma);
1391 		return;
1392 	}
1393 
1394 	/*
1395 	 * If for any reason at all we couldn't handle the fault,
1396 	 * make sure we exit gracefully rather than endlessly redo
1397 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1398 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1399 	 *
1400 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1401 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1402 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1403 	 * (potentially after handling any pending signal during the return to
1404 	 * userland). The return to userland is identified whenever
1405 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1406 	 */
1407 	fault = handle_mm_fault(vma, address, flags, regs);
1408 
1409 	if (fault_signal_pending(fault, regs)) {
1410 		/*
1411 		 * Quick path to respond to signals.  The core mm code
1412 		 * has unlocked the mm for us if we get here.
1413 		 */
1414 		if (!user_mode(regs))
1415 			kernelmode_fixup_or_oops(regs, error_code, address,
1416 						 SIGBUS, BUS_ADRERR,
1417 						 ARCH_DEFAULT_PKEY);
1418 		return;
1419 	}
1420 
1421 	/* The fault is fully completed (including releasing mmap lock) */
1422 	if (fault & VM_FAULT_COMPLETED)
1423 		return;
1424 
1425 	/*
1426 	 * If we need to retry the mmap_lock has already been released,
1427 	 * and if there is a fatal signal pending there is no guarantee
1428 	 * that we made any progress. Handle this case first.
1429 	 */
1430 	if (unlikely(fault & VM_FAULT_RETRY)) {
1431 		flags |= FAULT_FLAG_TRIED;
1432 		goto retry;
1433 	}
1434 
1435 	mmap_read_unlock(mm);
1436 	if (likely(!(fault & VM_FAULT_ERROR)))
1437 		return;
1438 
1439 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1440 		kernelmode_fixup_or_oops(regs, error_code, address,
1441 					 0, 0, ARCH_DEFAULT_PKEY);
1442 		return;
1443 	}
1444 
1445 	if (fault & VM_FAULT_OOM) {
1446 		/* Kernel mode? Handle exceptions or die: */
1447 		if (!user_mode(regs)) {
1448 			kernelmode_fixup_or_oops(regs, error_code, address,
1449 						 SIGSEGV, SEGV_MAPERR,
1450 						 ARCH_DEFAULT_PKEY);
1451 			return;
1452 		}
1453 
1454 		/*
1455 		 * We ran out of memory, call the OOM killer, and return the
1456 		 * userspace (which will retry the fault, or kill us if we got
1457 		 * oom-killed):
1458 		 */
1459 		pagefault_out_of_memory();
1460 	} else {
1461 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1462 			     VM_FAULT_HWPOISON_LARGE))
1463 			do_sigbus(regs, error_code, address, fault);
1464 		else if (fault & VM_FAULT_SIGSEGV)
1465 			bad_area_nosemaphore(regs, error_code, address);
1466 		else
1467 			BUG();
1468 	}
1469 }
1470 NOKPROBE_SYMBOL(do_user_addr_fault);
1471 
1472 static __always_inline void
1473 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1474 			 unsigned long address)
1475 {
1476 	if (!trace_pagefault_enabled())
1477 		return;
1478 
1479 	if (user_mode(regs))
1480 		trace_page_fault_user(address, regs, error_code);
1481 	else
1482 		trace_page_fault_kernel(address, regs, error_code);
1483 }
1484 
1485 static __always_inline void
1486 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1487 			      unsigned long address)
1488 {
1489 	trace_page_fault_entries(regs, error_code, address);
1490 
1491 	if (unlikely(kmmio_fault(regs, address)))
1492 		return;
1493 
1494 	/* Was the fault on kernel-controlled part of the address space? */
1495 	if (unlikely(fault_in_kernel_space(address))) {
1496 		do_kern_addr_fault(regs, error_code, address);
1497 	} else {
1498 		do_user_addr_fault(regs, error_code, address);
1499 		/*
1500 		 * User address page fault handling might have reenabled
1501 		 * interrupts. Fixing up all potential exit points of
1502 		 * do_user_addr_fault() and its leaf functions is just not
1503 		 * doable w/o creating an unholy mess or turning the code
1504 		 * upside down.
1505 		 */
1506 		local_irq_disable();
1507 	}
1508 }
1509 
1510 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1511 {
1512 	unsigned long address = read_cr2();
1513 	irqentry_state_t state;
1514 
1515 	prefetchw(&current->mm->mmap_lock);
1516 
1517 	/*
1518 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1519 	 * (asynchronous page fault mechanism). The event happens when a
1520 	 * userspace task is trying to access some valid (from guest's point of
1521 	 * view) memory which is not currently mapped by the host (e.g. the
1522 	 * memory is swapped out). Note, the corresponding "page ready" event
1523 	 * which is injected when the memory becomes available, is delivered via
1524 	 * an interrupt mechanism and not a #PF exception
1525 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1526 	 *
1527 	 * We are relying on the interrupted context being sane (valid RSP,
1528 	 * relevant locks not held, etc.), which is fine as long as the
1529 	 * interrupted context had IF=1.  We are also relying on the KVM
1530 	 * async pf type field and CR2 being read consistently instead of
1531 	 * getting values from real and async page faults mixed up.
1532 	 *
1533 	 * Fingers crossed.
1534 	 *
1535 	 * The async #PF handling code takes care of idtentry handling
1536 	 * itself.
1537 	 */
1538 	if (kvm_handle_async_pf(regs, (u32)address))
1539 		return;
1540 
1541 	/*
1542 	 * Entry handling for valid #PF from kernel mode is slightly
1543 	 * different: RCU is already watching and ct_irq_enter() must not
1544 	 * be invoked because a kernel fault on a user space address might
1545 	 * sleep.
1546 	 *
1547 	 * In case the fault hit a RCU idle region the conditional entry
1548 	 * code reenabled RCU to avoid subsequent wreckage which helps
1549 	 * debuggability.
1550 	 */
1551 	state = irqentry_enter(regs);
1552 
1553 	instrumentation_begin();
1554 	handle_page_fault(regs, error_code, address);
1555 	instrumentation_end();
1556 
1557 	irqentry_exit(regs, state);
1558 }
1559