xref: /openbmc/linux/arch/x86/mm/fault.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/bootmem.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 
20 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 #include <asm/traps.h>			/* dotraplinkage, ...		*/
22 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
23 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
31 
32 /*
33  * Page fault error code bits:
34  *
35  *   bit 0 ==	 0: no page found	1: protection fault
36  *   bit 1 ==	 0: read access		1: write access
37  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
38  *   bit 3 ==				1: use of reserved bit detected
39  *   bit 4 ==				1: fault was an instruction fetch
40  *   bit 5 ==				1: protection keys block access
41  */
42 enum x86_pf_error_code {
43 
44 	PF_PROT		=		1 << 0,
45 	PF_WRITE	=		1 << 1,
46 	PF_USER		=		1 << 2,
47 	PF_RSVD		=		1 << 3,
48 	PF_INSTR	=		1 << 4,
49 	PF_PK		=		1 << 5,
50 };
51 
52 /*
53  * Returns 0 if mmiotrace is disabled, or if the fault is not
54  * handled by mmiotrace:
55  */
56 static nokprobe_inline int
57 kmmio_fault(struct pt_regs *regs, unsigned long addr)
58 {
59 	if (unlikely(is_kmmio_active()))
60 		if (kmmio_handler(regs, addr) == 1)
61 			return -1;
62 	return 0;
63 }
64 
65 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
66 {
67 	int ret = 0;
68 
69 	/* kprobe_running() needs smp_processor_id() */
70 	if (kprobes_built_in() && !user_mode(regs)) {
71 		preempt_disable();
72 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 			ret = 1;
74 		preempt_enable();
75 	}
76 
77 	return ret;
78 }
79 
80 /*
81  * Prefetch quirks:
82  *
83  * 32-bit mode:
84  *
85  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86  *   Check that here and ignore it.
87  *
88  * 64-bit mode:
89  *
90  *   Sometimes the CPU reports invalid exceptions on prefetch.
91  *   Check that here and ignore it.
92  *
93  * Opcode checker based on code by Richard Brunner.
94  */
95 static inline int
96 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
97 		      unsigned char opcode, int *prefetch)
98 {
99 	unsigned char instr_hi = opcode & 0xf0;
100 	unsigned char instr_lo = opcode & 0x0f;
101 
102 	switch (instr_hi) {
103 	case 0x20:
104 	case 0x30:
105 		/*
106 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
107 		 * In X86_64 long mode, the CPU will signal invalid
108 		 * opcode if some of these prefixes are present so
109 		 * X86_64 will never get here anyway
110 		 */
111 		return ((instr_lo & 7) == 0x6);
112 #ifdef CONFIG_X86_64
113 	case 0x40:
114 		/*
115 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
116 		 * Need to figure out under what instruction mode the
117 		 * instruction was issued. Could check the LDT for lm,
118 		 * but for now it's good enough to assume that long
119 		 * mode only uses well known segments or kernel.
120 		 */
121 		return (!user_mode(regs) || user_64bit_mode(regs));
122 #endif
123 	case 0x60:
124 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
125 		return (instr_lo & 0xC) == 0x4;
126 	case 0xF0:
127 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
128 		return !instr_lo || (instr_lo>>1) == 1;
129 	case 0x00:
130 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
131 		if (probe_kernel_address(instr, opcode))
132 			return 0;
133 
134 		*prefetch = (instr_lo == 0xF) &&
135 			(opcode == 0x0D || opcode == 0x18);
136 		return 0;
137 	default:
138 		return 0;
139 	}
140 }
141 
142 static int
143 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
144 {
145 	unsigned char *max_instr;
146 	unsigned char *instr;
147 	int prefetch = 0;
148 
149 	/*
150 	 * If it was a exec (instruction fetch) fault on NX page, then
151 	 * do not ignore the fault:
152 	 */
153 	if (error_code & PF_INSTR)
154 		return 0;
155 
156 	instr = (void *)convert_ip_to_linear(current, regs);
157 	max_instr = instr + 15;
158 
159 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
160 		return 0;
161 
162 	while (instr < max_instr) {
163 		unsigned char opcode;
164 
165 		if (probe_kernel_address(instr, opcode))
166 			break;
167 
168 		instr++;
169 
170 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
171 			break;
172 	}
173 	return prefetch;
174 }
175 
176 /*
177  * A protection key fault means that the PKRU value did not allow
178  * access to some PTE.  Userspace can figure out what PKRU was
179  * from the XSAVE state, and this function fills out a field in
180  * siginfo so userspace can discover which protection key was set
181  * on the PTE.
182  *
183  * If we get here, we know that the hardware signaled a PF_PK
184  * fault and that there was a VMA once we got in the fault
185  * handler.  It does *not* guarantee that the VMA we find here
186  * was the one that we faulted on.
187  *
188  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
189  * 2. T1   : set PKRU to deny access to pkey=4, touches page
190  * 3. T1   : faults...
191  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
192  * 5. T1   : enters fault handler, takes mmap_sem, etc...
193  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
194  *	     faulted on a pte with its pkey=4.
195  */
196 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
197 {
198 	/* This is effectively an #ifdef */
199 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 		return;
201 
202 	/* Fault not from Protection Keys: nothing to do */
203 	if (si_code != SEGV_PKUERR)
204 		return;
205 	/*
206 	 * force_sig_info_fault() is called from a number of
207 	 * contexts, some of which have a VMA and some of which
208 	 * do not.  The PF_PK handing happens after we have a
209 	 * valid VMA, so we should never reach this without a
210 	 * valid VMA.
211 	 */
212 	if (!pkey) {
213 		WARN_ONCE(1, "PKU fault with no VMA passed in");
214 		info->si_pkey = 0;
215 		return;
216 	}
217 	/*
218 	 * si_pkey should be thought of as a strong hint, but not
219 	 * absolutely guranteed to be 100% accurate because of
220 	 * the race explained above.
221 	 */
222 	info->si_pkey = *pkey;
223 }
224 
225 static void
226 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 		     struct task_struct *tsk, u32 *pkey, int fault)
228 {
229 	unsigned lsb = 0;
230 	siginfo_t info;
231 
232 	info.si_signo	= si_signo;
233 	info.si_errno	= 0;
234 	info.si_code	= si_code;
235 	info.si_addr	= (void __user *)address;
236 	if (fault & VM_FAULT_HWPOISON_LARGE)
237 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 	if (fault & VM_FAULT_HWPOISON)
239 		lsb = PAGE_SHIFT;
240 	info.si_addr_lsb = lsb;
241 
242 	fill_sig_info_pkey(si_code, &info, pkey);
243 
244 	force_sig_info(si_signo, &info, tsk);
245 }
246 
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
249 
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252 {
253 	unsigned index = pgd_index(address);
254 	pgd_t *pgd_k;
255 	p4d_t *p4d, *p4d_k;
256 	pud_t *pud, *pud_k;
257 	pmd_t *pmd, *pmd_k;
258 
259 	pgd += index;
260 	pgd_k = init_mm.pgd + index;
261 
262 	if (!pgd_present(*pgd_k))
263 		return NULL;
264 
265 	/*
266 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 	 * and redundant with the set_pmd() on non-PAE. As would
268 	 * set_p4d/set_pud.
269 	 */
270 	p4d = p4d_offset(pgd, address);
271 	p4d_k = p4d_offset(pgd_k, address);
272 	if (!p4d_present(*p4d_k))
273 		return NULL;
274 
275 	pud = pud_offset(p4d, address);
276 	pud_k = pud_offset(p4d_k, address);
277 	if (!pud_present(*pud_k))
278 		return NULL;
279 
280 	pmd = pmd_offset(pud, address);
281 	pmd_k = pmd_offset(pud_k, address);
282 	if (!pmd_present(*pmd_k))
283 		return NULL;
284 
285 	if (!pmd_present(*pmd))
286 		set_pmd(pmd, *pmd_k);
287 	else
288 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
289 
290 	return pmd_k;
291 }
292 
293 void vmalloc_sync_all(void)
294 {
295 	unsigned long address;
296 
297 	if (SHARED_KERNEL_PMD)
298 		return;
299 
300 	for (address = VMALLOC_START & PMD_MASK;
301 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
302 	     address += PMD_SIZE) {
303 		struct page *page;
304 
305 		spin_lock(&pgd_lock);
306 		list_for_each_entry(page, &pgd_list, lru) {
307 			spinlock_t *pgt_lock;
308 			pmd_t *ret;
309 
310 			/* the pgt_lock only for Xen */
311 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
312 
313 			spin_lock(pgt_lock);
314 			ret = vmalloc_sync_one(page_address(page), address);
315 			spin_unlock(pgt_lock);
316 
317 			if (!ret)
318 				break;
319 		}
320 		spin_unlock(&pgd_lock);
321 	}
322 }
323 
324 /*
325  * 32-bit:
326  *
327  *   Handle a fault on the vmalloc or module mapping area
328  */
329 static noinline int vmalloc_fault(unsigned long address)
330 {
331 	unsigned long pgd_paddr;
332 	pmd_t *pmd_k;
333 	pte_t *pte_k;
334 
335 	/* Make sure we are in vmalloc area: */
336 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
337 		return -1;
338 
339 	WARN_ON_ONCE(in_nmi());
340 
341 	/*
342 	 * Synchronize this task's top level page-table
343 	 * with the 'reference' page table.
344 	 *
345 	 * Do _not_ use "current" here. We might be inside
346 	 * an interrupt in the middle of a task switch..
347 	 */
348 	pgd_paddr = read_cr3_pa();
349 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
350 	if (!pmd_k)
351 		return -1;
352 
353 	if (pmd_huge(*pmd_k))
354 		return 0;
355 
356 	pte_k = pte_offset_kernel(pmd_k, address);
357 	if (!pte_present(*pte_k))
358 		return -1;
359 
360 	return 0;
361 }
362 NOKPROBE_SYMBOL(vmalloc_fault);
363 
364 /*
365  * Did it hit the DOS screen memory VA from vm86 mode?
366  */
367 static inline void
368 check_v8086_mode(struct pt_regs *regs, unsigned long address,
369 		 struct task_struct *tsk)
370 {
371 #ifdef CONFIG_VM86
372 	unsigned long bit;
373 
374 	if (!v8086_mode(regs) || !tsk->thread.vm86)
375 		return;
376 
377 	bit = (address - 0xA0000) >> PAGE_SHIFT;
378 	if (bit < 32)
379 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
380 #endif
381 }
382 
383 static bool low_pfn(unsigned long pfn)
384 {
385 	return pfn < max_low_pfn;
386 }
387 
388 static void dump_pagetable(unsigned long address)
389 {
390 	pgd_t *base = __va(read_cr3_pa());
391 	pgd_t *pgd = &base[pgd_index(address)];
392 	p4d_t *p4d;
393 	pud_t *pud;
394 	pmd_t *pmd;
395 	pte_t *pte;
396 
397 #ifdef CONFIG_X86_PAE
398 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
399 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
400 		goto out;
401 #define pr_pde pr_cont
402 #else
403 #define pr_pde pr_info
404 #endif
405 	p4d = p4d_offset(pgd, address);
406 	pud = pud_offset(p4d, address);
407 	pmd = pmd_offset(pud, address);
408 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
409 #undef pr_pde
410 
411 	/*
412 	 * We must not directly access the pte in the highpte
413 	 * case if the page table is located in highmem.
414 	 * And let's rather not kmap-atomic the pte, just in case
415 	 * it's allocated already:
416 	 */
417 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
418 		goto out;
419 
420 	pte = pte_offset_kernel(pmd, address);
421 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
422 out:
423 	pr_cont("\n");
424 }
425 
426 #else /* CONFIG_X86_64: */
427 
428 void vmalloc_sync_all(void)
429 {
430 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
431 }
432 
433 /*
434  * 64-bit:
435  *
436  *   Handle a fault on the vmalloc area
437  */
438 static noinline int vmalloc_fault(unsigned long address)
439 {
440 	pgd_t *pgd, *pgd_ref;
441 	p4d_t *p4d, *p4d_ref;
442 	pud_t *pud, *pud_ref;
443 	pmd_t *pmd, *pmd_ref;
444 	pte_t *pte, *pte_ref;
445 
446 	/* Make sure we are in vmalloc area: */
447 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
448 		return -1;
449 
450 	WARN_ON_ONCE(in_nmi());
451 
452 	/*
453 	 * Copy kernel mappings over when needed. This can also
454 	 * happen within a race in page table update. In the later
455 	 * case just flush:
456 	 */
457 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
458 	pgd_ref = pgd_offset_k(address);
459 	if (pgd_none(*pgd_ref))
460 		return -1;
461 
462 	if (pgd_none(*pgd)) {
463 		set_pgd(pgd, *pgd_ref);
464 		arch_flush_lazy_mmu_mode();
465 	} else if (CONFIG_PGTABLE_LEVELS > 4) {
466 		/*
467 		 * With folded p4d, pgd_none() is always false, so the pgd may
468 		 * point to an empty page table entry and pgd_page_vaddr()
469 		 * will return garbage.
470 		 *
471 		 * We will do the correct sanity check on the p4d level.
472 		 */
473 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
474 	}
475 
476 	/* With 4-level paging, copying happens on the p4d level. */
477 	p4d = p4d_offset(pgd, address);
478 	p4d_ref = p4d_offset(pgd_ref, address);
479 	if (p4d_none(*p4d_ref))
480 		return -1;
481 
482 	if (p4d_none(*p4d)) {
483 		set_p4d(p4d, *p4d_ref);
484 		arch_flush_lazy_mmu_mode();
485 	} else {
486 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
487 	}
488 
489 	/*
490 	 * Below here mismatches are bugs because these lower tables
491 	 * are shared:
492 	 */
493 
494 	pud = pud_offset(p4d, address);
495 	pud_ref = pud_offset(p4d_ref, address);
496 	if (pud_none(*pud_ref))
497 		return -1;
498 
499 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
500 		BUG();
501 
502 	if (pud_huge(*pud))
503 		return 0;
504 
505 	pmd = pmd_offset(pud, address);
506 	pmd_ref = pmd_offset(pud_ref, address);
507 	if (pmd_none(*pmd_ref))
508 		return -1;
509 
510 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
511 		BUG();
512 
513 	if (pmd_huge(*pmd))
514 		return 0;
515 
516 	pte_ref = pte_offset_kernel(pmd_ref, address);
517 	if (!pte_present(*pte_ref))
518 		return -1;
519 
520 	pte = pte_offset_kernel(pmd, address);
521 
522 	/*
523 	 * Don't use pte_page here, because the mappings can point
524 	 * outside mem_map, and the NUMA hash lookup cannot handle
525 	 * that:
526 	 */
527 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
528 		BUG();
529 
530 	return 0;
531 }
532 NOKPROBE_SYMBOL(vmalloc_fault);
533 
534 #ifdef CONFIG_CPU_SUP_AMD
535 static const char errata93_warning[] =
536 KERN_ERR
537 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
538 "******* Working around it, but it may cause SEGVs or burn power.\n"
539 "******* Please consider a BIOS update.\n"
540 "******* Disabling USB legacy in the BIOS may also help.\n";
541 #endif
542 
543 /*
544  * No vm86 mode in 64-bit mode:
545  */
546 static inline void
547 check_v8086_mode(struct pt_regs *regs, unsigned long address,
548 		 struct task_struct *tsk)
549 {
550 }
551 
552 static int bad_address(void *p)
553 {
554 	unsigned long dummy;
555 
556 	return probe_kernel_address((unsigned long *)p, dummy);
557 }
558 
559 static void dump_pagetable(unsigned long address)
560 {
561 	pgd_t *base = __va(read_cr3_pa());
562 	pgd_t *pgd = base + pgd_index(address);
563 	p4d_t *p4d;
564 	pud_t *pud;
565 	pmd_t *pmd;
566 	pte_t *pte;
567 
568 	if (bad_address(pgd))
569 		goto bad;
570 
571 	pr_info("PGD %lx ", pgd_val(*pgd));
572 
573 	if (!pgd_present(*pgd))
574 		goto out;
575 
576 	p4d = p4d_offset(pgd, address);
577 	if (bad_address(p4d))
578 		goto bad;
579 
580 	pr_cont("P4D %lx ", p4d_val(*p4d));
581 	if (!p4d_present(*p4d) || p4d_large(*p4d))
582 		goto out;
583 
584 	pud = pud_offset(p4d, address);
585 	if (bad_address(pud))
586 		goto bad;
587 
588 	pr_cont("PUD %lx ", pud_val(*pud));
589 	if (!pud_present(*pud) || pud_large(*pud))
590 		goto out;
591 
592 	pmd = pmd_offset(pud, address);
593 	if (bad_address(pmd))
594 		goto bad;
595 
596 	pr_cont("PMD %lx ", pmd_val(*pmd));
597 	if (!pmd_present(*pmd) || pmd_large(*pmd))
598 		goto out;
599 
600 	pte = pte_offset_kernel(pmd, address);
601 	if (bad_address(pte))
602 		goto bad;
603 
604 	pr_cont("PTE %lx", pte_val(*pte));
605 out:
606 	pr_cont("\n");
607 	return;
608 bad:
609 	pr_info("BAD\n");
610 }
611 
612 #endif /* CONFIG_X86_64 */
613 
614 /*
615  * Workaround for K8 erratum #93 & buggy BIOS.
616  *
617  * BIOS SMM functions are required to use a specific workaround
618  * to avoid corruption of the 64bit RIP register on C stepping K8.
619  *
620  * A lot of BIOS that didn't get tested properly miss this.
621  *
622  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
623  * Try to work around it here.
624  *
625  * Note we only handle faults in kernel here.
626  * Does nothing on 32-bit.
627  */
628 static int is_errata93(struct pt_regs *regs, unsigned long address)
629 {
630 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
631 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
632 	    || boot_cpu_data.x86 != 0xf)
633 		return 0;
634 
635 	if (address != regs->ip)
636 		return 0;
637 
638 	if ((address >> 32) != 0)
639 		return 0;
640 
641 	address |= 0xffffffffUL << 32;
642 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
643 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
644 		printk_once(errata93_warning);
645 		regs->ip = address;
646 		return 1;
647 	}
648 #endif
649 	return 0;
650 }
651 
652 /*
653  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
654  * to illegal addresses >4GB.
655  *
656  * We catch this in the page fault handler because these addresses
657  * are not reachable. Just detect this case and return.  Any code
658  * segment in LDT is compatibility mode.
659  */
660 static int is_errata100(struct pt_regs *regs, unsigned long address)
661 {
662 #ifdef CONFIG_X86_64
663 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
664 		return 1;
665 #endif
666 	return 0;
667 }
668 
669 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
670 {
671 #ifdef CONFIG_X86_F00F_BUG
672 	unsigned long nr;
673 
674 	/*
675 	 * Pentium F0 0F C7 C8 bug workaround:
676 	 */
677 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
678 		nr = (address - idt_descr.address) >> 3;
679 
680 		if (nr == 6) {
681 			do_invalid_op(regs, 0);
682 			return 1;
683 		}
684 	}
685 #endif
686 	return 0;
687 }
688 
689 static const char nx_warning[] = KERN_CRIT
690 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
691 static const char smep_warning[] = KERN_CRIT
692 "unable to execute userspace code (SMEP?) (uid: %d)\n";
693 
694 static void
695 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
696 		unsigned long address)
697 {
698 	if (!oops_may_print())
699 		return;
700 
701 	if (error_code & PF_INSTR) {
702 		unsigned int level;
703 		pgd_t *pgd;
704 		pte_t *pte;
705 
706 		pgd = __va(read_cr3_pa());
707 		pgd += pgd_index(address);
708 
709 		pte = lookup_address_in_pgd(pgd, address, &level);
710 
711 		if (pte && pte_present(*pte) && !pte_exec(*pte))
712 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
713 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
714 				(pgd_flags(*pgd) & _PAGE_USER) &&
715 				(__read_cr4() & X86_CR4_SMEP))
716 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
717 	}
718 
719 	printk(KERN_ALERT "BUG: unable to handle kernel ");
720 	if (address < PAGE_SIZE)
721 		printk(KERN_CONT "NULL pointer dereference");
722 	else
723 		printk(KERN_CONT "paging request");
724 
725 	printk(KERN_CONT " at %p\n", (void *) address);
726 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
727 
728 	dump_pagetable(address);
729 }
730 
731 static noinline void
732 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
733 	    unsigned long address)
734 {
735 	struct task_struct *tsk;
736 	unsigned long flags;
737 	int sig;
738 
739 	flags = oops_begin();
740 	tsk = current;
741 	sig = SIGKILL;
742 
743 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
744 	       tsk->comm, address);
745 	dump_pagetable(address);
746 
747 	tsk->thread.cr2		= address;
748 	tsk->thread.trap_nr	= X86_TRAP_PF;
749 	tsk->thread.error_code	= error_code;
750 
751 	if (__die("Bad pagetable", regs, error_code))
752 		sig = 0;
753 
754 	oops_end(flags, regs, sig);
755 }
756 
757 static noinline void
758 no_context(struct pt_regs *regs, unsigned long error_code,
759 	   unsigned long address, int signal, int si_code)
760 {
761 	struct task_struct *tsk = current;
762 	unsigned long flags;
763 	int sig;
764 
765 	/* Are we prepared to handle this kernel fault? */
766 	if (fixup_exception(regs, X86_TRAP_PF)) {
767 		/*
768 		 * Any interrupt that takes a fault gets the fixup. This makes
769 		 * the below recursive fault logic only apply to a faults from
770 		 * task context.
771 		 */
772 		if (in_interrupt())
773 			return;
774 
775 		/*
776 		 * Per the above we're !in_interrupt(), aka. task context.
777 		 *
778 		 * In this case we need to make sure we're not recursively
779 		 * faulting through the emulate_vsyscall() logic.
780 		 */
781 		if (current->thread.sig_on_uaccess_err && signal) {
782 			tsk->thread.trap_nr = X86_TRAP_PF;
783 			tsk->thread.error_code = error_code | PF_USER;
784 			tsk->thread.cr2 = address;
785 
786 			/* XXX: hwpoison faults will set the wrong code. */
787 			force_sig_info_fault(signal, si_code, address,
788 					     tsk, NULL, 0);
789 		}
790 
791 		/*
792 		 * Barring that, we can do the fixup and be happy.
793 		 */
794 		return;
795 	}
796 
797 #ifdef CONFIG_VMAP_STACK
798 	/*
799 	 * Stack overflow?  During boot, we can fault near the initial
800 	 * stack in the direct map, but that's not an overflow -- check
801 	 * that we're in vmalloc space to avoid this.
802 	 */
803 	if (is_vmalloc_addr((void *)address) &&
804 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
805 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
806 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
807 		/*
808 		 * We're likely to be running with very little stack space
809 		 * left.  It's plausible that we'd hit this condition but
810 		 * double-fault even before we get this far, in which case
811 		 * we're fine: the double-fault handler will deal with it.
812 		 *
813 		 * We don't want to make it all the way into the oops code
814 		 * and then double-fault, though, because we're likely to
815 		 * break the console driver and lose most of the stack dump.
816 		 */
817 		asm volatile ("movq %[stack], %%rsp\n\t"
818 			      "call handle_stack_overflow\n\t"
819 			      "1: jmp 1b"
820 			      : ASM_CALL_CONSTRAINT
821 			      : "D" ("kernel stack overflow (page fault)"),
822 				"S" (regs), "d" (address),
823 				[stack] "rm" (stack));
824 		unreachable();
825 	}
826 #endif
827 
828 	/*
829 	 * 32-bit:
830 	 *
831 	 *   Valid to do another page fault here, because if this fault
832 	 *   had been triggered by is_prefetch fixup_exception would have
833 	 *   handled it.
834 	 *
835 	 * 64-bit:
836 	 *
837 	 *   Hall of shame of CPU/BIOS bugs.
838 	 */
839 	if (is_prefetch(regs, error_code, address))
840 		return;
841 
842 	if (is_errata93(regs, address))
843 		return;
844 
845 	/*
846 	 * Oops. The kernel tried to access some bad page. We'll have to
847 	 * terminate things with extreme prejudice:
848 	 */
849 	flags = oops_begin();
850 
851 	show_fault_oops(regs, error_code, address);
852 
853 	if (task_stack_end_corrupted(tsk))
854 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
855 
856 	tsk->thread.cr2		= address;
857 	tsk->thread.trap_nr	= X86_TRAP_PF;
858 	tsk->thread.error_code	= error_code;
859 
860 	sig = SIGKILL;
861 	if (__die("Oops", regs, error_code))
862 		sig = 0;
863 
864 	/* Executive summary in case the body of the oops scrolled away */
865 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
866 
867 	oops_end(flags, regs, sig);
868 }
869 
870 /*
871  * Print out info about fatal segfaults, if the show_unhandled_signals
872  * sysctl is set:
873  */
874 static inline void
875 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
876 		unsigned long address, struct task_struct *tsk)
877 {
878 	if (!unhandled_signal(tsk, SIGSEGV))
879 		return;
880 
881 	if (!printk_ratelimit())
882 		return;
883 
884 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
885 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
886 		tsk->comm, task_pid_nr(tsk), address,
887 		(void *)regs->ip, (void *)regs->sp, error_code);
888 
889 	print_vma_addr(KERN_CONT " in ", regs->ip);
890 
891 	printk(KERN_CONT "\n");
892 }
893 
894 static void
895 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
896 		       unsigned long address, u32 *pkey, int si_code)
897 {
898 	struct task_struct *tsk = current;
899 
900 	/* User mode accesses just cause a SIGSEGV */
901 	if (error_code & PF_USER) {
902 		/*
903 		 * It's possible to have interrupts off here:
904 		 */
905 		local_irq_enable();
906 
907 		/*
908 		 * Valid to do another page fault here because this one came
909 		 * from user space:
910 		 */
911 		if (is_prefetch(regs, error_code, address))
912 			return;
913 
914 		if (is_errata100(regs, address))
915 			return;
916 
917 #ifdef CONFIG_X86_64
918 		/*
919 		 * Instruction fetch faults in the vsyscall page might need
920 		 * emulation.
921 		 */
922 		if (unlikely((error_code & PF_INSTR) &&
923 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
924 			if (emulate_vsyscall(regs, address))
925 				return;
926 		}
927 #endif
928 
929 		/*
930 		 * To avoid leaking information about the kernel page table
931 		 * layout, pretend that user-mode accesses to kernel addresses
932 		 * are always protection faults.
933 		 */
934 		if (address >= TASK_SIZE_MAX)
935 			error_code |= PF_PROT;
936 
937 		if (likely(show_unhandled_signals))
938 			show_signal_msg(regs, error_code, address, tsk);
939 
940 		tsk->thread.cr2		= address;
941 		tsk->thread.error_code	= error_code;
942 		tsk->thread.trap_nr	= X86_TRAP_PF;
943 
944 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
945 
946 		return;
947 	}
948 
949 	if (is_f00f_bug(regs, address))
950 		return;
951 
952 	no_context(regs, error_code, address, SIGSEGV, si_code);
953 }
954 
955 static noinline void
956 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
957 		     unsigned long address, u32 *pkey)
958 {
959 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
960 }
961 
962 static void
963 __bad_area(struct pt_regs *regs, unsigned long error_code,
964 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
965 {
966 	struct mm_struct *mm = current->mm;
967 	u32 pkey;
968 
969 	if (vma)
970 		pkey = vma_pkey(vma);
971 
972 	/*
973 	 * Something tried to access memory that isn't in our memory map..
974 	 * Fix it, but check if it's kernel or user first..
975 	 */
976 	up_read(&mm->mmap_sem);
977 
978 	__bad_area_nosemaphore(regs, error_code, address,
979 			       (vma) ? &pkey : NULL, si_code);
980 }
981 
982 static noinline void
983 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
984 {
985 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
986 }
987 
988 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
989 		struct vm_area_struct *vma)
990 {
991 	/* This code is always called on the current mm */
992 	bool foreign = false;
993 
994 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
995 		return false;
996 	if (error_code & PF_PK)
997 		return true;
998 	/* this checks permission keys on the VMA: */
999 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1000 				(error_code & PF_INSTR), foreign))
1001 		return true;
1002 	return false;
1003 }
1004 
1005 static noinline void
1006 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1007 		      unsigned long address, struct vm_area_struct *vma)
1008 {
1009 	/*
1010 	 * This OSPKE check is not strictly necessary at runtime.
1011 	 * But, doing it this way allows compiler optimizations
1012 	 * if pkeys are compiled out.
1013 	 */
1014 	if (bad_area_access_from_pkeys(error_code, vma))
1015 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1016 	else
1017 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1018 }
1019 
1020 static void
1021 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022 	  u32 *pkey, unsigned int fault)
1023 {
1024 	struct task_struct *tsk = current;
1025 	int code = BUS_ADRERR;
1026 
1027 	/* Kernel mode? Handle exceptions or die: */
1028 	if (!(error_code & PF_USER)) {
1029 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1030 		return;
1031 	}
1032 
1033 	/* User-space => ok to do another page fault: */
1034 	if (is_prefetch(regs, error_code, address))
1035 		return;
1036 
1037 	tsk->thread.cr2		= address;
1038 	tsk->thread.error_code	= error_code;
1039 	tsk->thread.trap_nr	= X86_TRAP_PF;
1040 
1041 #ifdef CONFIG_MEMORY_FAILURE
1042 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1043 		printk(KERN_ERR
1044 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1045 			tsk->comm, tsk->pid, address);
1046 		code = BUS_MCEERR_AR;
1047 	}
1048 #endif
1049 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1050 }
1051 
1052 static noinline void
1053 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1054 	       unsigned long address, u32 *pkey, unsigned int fault)
1055 {
1056 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1057 		no_context(regs, error_code, address, 0, 0);
1058 		return;
1059 	}
1060 
1061 	if (fault & VM_FAULT_OOM) {
1062 		/* Kernel mode? Handle exceptions or die: */
1063 		if (!(error_code & PF_USER)) {
1064 			no_context(regs, error_code, address,
1065 				   SIGSEGV, SEGV_MAPERR);
1066 			return;
1067 		}
1068 
1069 		/*
1070 		 * We ran out of memory, call the OOM killer, and return the
1071 		 * userspace (which will retry the fault, or kill us if we got
1072 		 * oom-killed):
1073 		 */
1074 		pagefault_out_of_memory();
1075 	} else {
1076 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1077 			     VM_FAULT_HWPOISON_LARGE))
1078 			do_sigbus(regs, error_code, address, pkey, fault);
1079 		else if (fault & VM_FAULT_SIGSEGV)
1080 			bad_area_nosemaphore(regs, error_code, address, pkey);
1081 		else
1082 			BUG();
1083 	}
1084 }
1085 
1086 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1087 {
1088 	if ((error_code & PF_WRITE) && !pte_write(*pte))
1089 		return 0;
1090 
1091 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
1092 		return 0;
1093 	/*
1094 	 * Note: We do not do lazy flushing on protection key
1095 	 * changes, so no spurious fault will ever set PF_PK.
1096 	 */
1097 	if ((error_code & PF_PK))
1098 		return 1;
1099 
1100 	return 1;
1101 }
1102 
1103 /*
1104  * Handle a spurious fault caused by a stale TLB entry.
1105  *
1106  * This allows us to lazily refresh the TLB when increasing the
1107  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1108  * eagerly is very expensive since that implies doing a full
1109  * cross-processor TLB flush, even if no stale TLB entries exist
1110  * on other processors.
1111  *
1112  * Spurious faults may only occur if the TLB contains an entry with
1113  * fewer permission than the page table entry.  Non-present (P = 0)
1114  * and reserved bit (R = 1) faults are never spurious.
1115  *
1116  * There are no security implications to leaving a stale TLB when
1117  * increasing the permissions on a page.
1118  *
1119  * Returns non-zero if a spurious fault was handled, zero otherwise.
1120  *
1121  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1122  * (Optional Invalidation).
1123  */
1124 static noinline int
1125 spurious_fault(unsigned long error_code, unsigned long address)
1126 {
1127 	pgd_t *pgd;
1128 	p4d_t *p4d;
1129 	pud_t *pud;
1130 	pmd_t *pmd;
1131 	pte_t *pte;
1132 	int ret;
1133 
1134 	/*
1135 	 * Only writes to RO or instruction fetches from NX may cause
1136 	 * spurious faults.
1137 	 *
1138 	 * These could be from user or supervisor accesses but the TLB
1139 	 * is only lazily flushed after a kernel mapping protection
1140 	 * change, so user accesses are not expected to cause spurious
1141 	 * faults.
1142 	 */
1143 	if (error_code != (PF_WRITE | PF_PROT)
1144 	    && error_code != (PF_INSTR | PF_PROT))
1145 		return 0;
1146 
1147 	pgd = init_mm.pgd + pgd_index(address);
1148 	if (!pgd_present(*pgd))
1149 		return 0;
1150 
1151 	p4d = p4d_offset(pgd, address);
1152 	if (!p4d_present(*p4d))
1153 		return 0;
1154 
1155 	if (p4d_large(*p4d))
1156 		return spurious_fault_check(error_code, (pte_t *) p4d);
1157 
1158 	pud = pud_offset(p4d, address);
1159 	if (!pud_present(*pud))
1160 		return 0;
1161 
1162 	if (pud_large(*pud))
1163 		return spurious_fault_check(error_code, (pte_t *) pud);
1164 
1165 	pmd = pmd_offset(pud, address);
1166 	if (!pmd_present(*pmd))
1167 		return 0;
1168 
1169 	if (pmd_large(*pmd))
1170 		return spurious_fault_check(error_code, (pte_t *) pmd);
1171 
1172 	pte = pte_offset_kernel(pmd, address);
1173 	if (!pte_present(*pte))
1174 		return 0;
1175 
1176 	ret = spurious_fault_check(error_code, pte);
1177 	if (!ret)
1178 		return 0;
1179 
1180 	/*
1181 	 * Make sure we have permissions in PMD.
1182 	 * If not, then there's a bug in the page tables:
1183 	 */
1184 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1185 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1186 
1187 	return ret;
1188 }
1189 NOKPROBE_SYMBOL(spurious_fault);
1190 
1191 int show_unhandled_signals = 1;
1192 
1193 static inline int
1194 access_error(unsigned long error_code, struct vm_area_struct *vma)
1195 {
1196 	/* This is only called for the current mm, so: */
1197 	bool foreign = false;
1198 
1199 	/*
1200 	 * Read or write was blocked by protection keys.  This is
1201 	 * always an unconditional error and can never result in
1202 	 * a follow-up action to resolve the fault, like a COW.
1203 	 */
1204 	if (error_code & PF_PK)
1205 		return 1;
1206 
1207 	/*
1208 	 * Make sure to check the VMA so that we do not perform
1209 	 * faults just to hit a PF_PK as soon as we fill in a
1210 	 * page.
1211 	 */
1212 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1213 				(error_code & PF_INSTR), foreign))
1214 		return 1;
1215 
1216 	if (error_code & PF_WRITE) {
1217 		/* write, present and write, not present: */
1218 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1219 			return 1;
1220 		return 0;
1221 	}
1222 
1223 	/* read, present: */
1224 	if (unlikely(error_code & PF_PROT))
1225 		return 1;
1226 
1227 	/* read, not present: */
1228 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1229 		return 1;
1230 
1231 	return 0;
1232 }
1233 
1234 static int fault_in_kernel_space(unsigned long address)
1235 {
1236 	return address >= TASK_SIZE_MAX;
1237 }
1238 
1239 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1240 {
1241 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1242 		return false;
1243 
1244 	if (!static_cpu_has(X86_FEATURE_SMAP))
1245 		return false;
1246 
1247 	if (error_code & PF_USER)
1248 		return false;
1249 
1250 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1251 		return false;
1252 
1253 	return true;
1254 }
1255 
1256 /*
1257  * This routine handles page faults.  It determines the address,
1258  * and the problem, and then passes it off to one of the appropriate
1259  * routines.
1260  */
1261 static noinline void
1262 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1263 		unsigned long address)
1264 {
1265 	struct vm_area_struct *vma;
1266 	struct task_struct *tsk;
1267 	struct mm_struct *mm;
1268 	int fault, major = 0;
1269 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1270 	u32 pkey;
1271 
1272 	tsk = current;
1273 	mm = tsk->mm;
1274 
1275 	/*
1276 	 * Detect and handle instructions that would cause a page fault for
1277 	 * both a tracked kernel page and a userspace page.
1278 	 */
1279 	if (kmemcheck_active(regs))
1280 		kmemcheck_hide(regs);
1281 	prefetchw(&mm->mmap_sem);
1282 
1283 	if (unlikely(kmmio_fault(regs, address)))
1284 		return;
1285 
1286 	/*
1287 	 * We fault-in kernel-space virtual memory on-demand. The
1288 	 * 'reference' page table is init_mm.pgd.
1289 	 *
1290 	 * NOTE! We MUST NOT take any locks for this case. We may
1291 	 * be in an interrupt or a critical region, and should
1292 	 * only copy the information from the master page table,
1293 	 * nothing more.
1294 	 *
1295 	 * This verifies that the fault happens in kernel space
1296 	 * (error_code & 4) == 0, and that the fault was not a
1297 	 * protection error (error_code & 9) == 0.
1298 	 */
1299 	if (unlikely(fault_in_kernel_space(address))) {
1300 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1301 			if (vmalloc_fault(address) >= 0)
1302 				return;
1303 
1304 			if (kmemcheck_fault(regs, address, error_code))
1305 				return;
1306 		}
1307 
1308 		/* Can handle a stale RO->RW TLB: */
1309 		if (spurious_fault(error_code, address))
1310 			return;
1311 
1312 		/* kprobes don't want to hook the spurious faults: */
1313 		if (kprobes_fault(regs))
1314 			return;
1315 		/*
1316 		 * Don't take the mm semaphore here. If we fixup a prefetch
1317 		 * fault we could otherwise deadlock:
1318 		 */
1319 		bad_area_nosemaphore(regs, error_code, address, NULL);
1320 
1321 		return;
1322 	}
1323 
1324 	/* kprobes don't want to hook the spurious faults: */
1325 	if (unlikely(kprobes_fault(regs)))
1326 		return;
1327 
1328 	if (unlikely(error_code & PF_RSVD))
1329 		pgtable_bad(regs, error_code, address);
1330 
1331 	if (unlikely(smap_violation(error_code, regs))) {
1332 		bad_area_nosemaphore(regs, error_code, address, NULL);
1333 		return;
1334 	}
1335 
1336 	/*
1337 	 * If we're in an interrupt, have no user context or are running
1338 	 * in a region with pagefaults disabled then we must not take the fault
1339 	 */
1340 	if (unlikely(faulthandler_disabled() || !mm)) {
1341 		bad_area_nosemaphore(regs, error_code, address, NULL);
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * It's safe to allow irq's after cr2 has been saved and the
1347 	 * vmalloc fault has been handled.
1348 	 *
1349 	 * User-mode registers count as a user access even for any
1350 	 * potential system fault or CPU buglet:
1351 	 */
1352 	if (user_mode(regs)) {
1353 		local_irq_enable();
1354 		error_code |= PF_USER;
1355 		flags |= FAULT_FLAG_USER;
1356 	} else {
1357 		if (regs->flags & X86_EFLAGS_IF)
1358 			local_irq_enable();
1359 	}
1360 
1361 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1362 
1363 	if (error_code & PF_WRITE)
1364 		flags |= FAULT_FLAG_WRITE;
1365 	if (error_code & PF_INSTR)
1366 		flags |= FAULT_FLAG_INSTRUCTION;
1367 
1368 	/*
1369 	 * When running in the kernel we expect faults to occur only to
1370 	 * addresses in user space.  All other faults represent errors in
1371 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1372 	 * case of an erroneous fault occurring in a code path which already
1373 	 * holds mmap_sem we will deadlock attempting to validate the fault
1374 	 * against the address space.  Luckily the kernel only validly
1375 	 * references user space from well defined areas of code, which are
1376 	 * listed in the exceptions table.
1377 	 *
1378 	 * As the vast majority of faults will be valid we will only perform
1379 	 * the source reference check when there is a possibility of a
1380 	 * deadlock. Attempt to lock the address space, if we cannot we then
1381 	 * validate the source. If this is invalid we can skip the address
1382 	 * space check, thus avoiding the deadlock:
1383 	 */
1384 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385 		if ((error_code & PF_USER) == 0 &&
1386 		    !search_exception_tables(regs->ip)) {
1387 			bad_area_nosemaphore(regs, error_code, address, NULL);
1388 			return;
1389 		}
1390 retry:
1391 		down_read(&mm->mmap_sem);
1392 	} else {
1393 		/*
1394 		 * The above down_read_trylock() might have succeeded in
1395 		 * which case we'll have missed the might_sleep() from
1396 		 * down_read():
1397 		 */
1398 		might_sleep();
1399 	}
1400 
1401 	vma = find_vma(mm, address);
1402 	if (unlikely(!vma)) {
1403 		bad_area(regs, error_code, address);
1404 		return;
1405 	}
1406 	if (likely(vma->vm_start <= address))
1407 		goto good_area;
1408 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409 		bad_area(regs, error_code, address);
1410 		return;
1411 	}
1412 	if (error_code & PF_USER) {
1413 		/*
1414 		 * Accessing the stack below %sp is always a bug.
1415 		 * The large cushion allows instructions like enter
1416 		 * and pusha to work. ("enter $65535, $31" pushes
1417 		 * 32 pointers and then decrements %sp by 65535.)
1418 		 */
1419 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1420 			bad_area(regs, error_code, address);
1421 			return;
1422 		}
1423 	}
1424 	if (unlikely(expand_stack(vma, address))) {
1425 		bad_area(regs, error_code, address);
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * Ok, we have a good vm_area for this memory access, so
1431 	 * we can handle it..
1432 	 */
1433 good_area:
1434 	if (unlikely(access_error(error_code, vma))) {
1435 		bad_area_access_error(regs, error_code, address, vma);
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * If for any reason at all we couldn't handle the fault,
1441 	 * make sure we exit gracefully rather than endlessly redo
1442 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1444 	 *
1445 	 * Note that handle_userfault() may also release and reacquire mmap_sem
1446 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1447 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1448 	 * (potentially after handling any pending signal during the return to
1449 	 * userland). The return to userland is identified whenever
1450 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1451 	 * Thus we have to be careful about not touching vma after handling the
1452 	 * fault, so we read the pkey beforehand.
1453 	 */
1454 	pkey = vma_pkey(vma);
1455 	fault = handle_mm_fault(vma, address, flags);
1456 	major |= fault & VM_FAULT_MAJOR;
1457 
1458 	/*
1459 	 * If we need to retry the mmap_sem has already been released,
1460 	 * and if there is a fatal signal pending there is no guarantee
1461 	 * that we made any progress. Handle this case first.
1462 	 */
1463 	if (unlikely(fault & VM_FAULT_RETRY)) {
1464 		/* Retry at most once */
1465 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1466 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1467 			flags |= FAULT_FLAG_TRIED;
1468 			if (!fatal_signal_pending(tsk))
1469 				goto retry;
1470 		}
1471 
1472 		/* User mode? Just return to handle the fatal exception */
1473 		if (flags & FAULT_FLAG_USER)
1474 			return;
1475 
1476 		/* Not returning to user mode? Handle exceptions or die: */
1477 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1478 		return;
1479 	}
1480 
1481 	up_read(&mm->mmap_sem);
1482 	if (unlikely(fault & VM_FAULT_ERROR)) {
1483 		mm_fault_error(regs, error_code, address, &pkey, fault);
1484 		return;
1485 	}
1486 
1487 	/*
1488 	 * Major/minor page fault accounting. If any of the events
1489 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1490 	 */
1491 	if (major) {
1492 		tsk->maj_flt++;
1493 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1494 	} else {
1495 		tsk->min_flt++;
1496 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1497 	}
1498 
1499 	check_v8086_mode(regs, address, tsk);
1500 }
1501 NOKPROBE_SYMBOL(__do_page_fault);
1502 
1503 static nokprobe_inline void
1504 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1505 			 unsigned long error_code)
1506 {
1507 	if (user_mode(regs))
1508 		trace_page_fault_user(address, regs, error_code);
1509 	else
1510 		trace_page_fault_kernel(address, regs, error_code);
1511 }
1512 
1513 /*
1514  * We must have this function blacklisted from kprobes, tagged with notrace
1515  * and call read_cr2() before calling anything else. To avoid calling any
1516  * kind of tracing machinery before we've observed the CR2 value.
1517  *
1518  * exception_{enter,exit}() contains all sorts of tracepoints.
1519  */
1520 dotraplinkage void notrace
1521 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1522 {
1523 	unsigned long address = read_cr2(); /* Get the faulting address */
1524 	enum ctx_state prev_state;
1525 
1526 	prev_state = exception_enter();
1527 	if (trace_pagefault_enabled())
1528 		trace_page_fault_entries(address, regs, error_code);
1529 
1530 	__do_page_fault(regs, error_code, address);
1531 	exception_exit(prev_state);
1532 }
1533 NOKPROBE_SYMBOL(do_page_fault);
1534