1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7 #include <linux/sched.h> /* test_thread_flag(), ... */ 8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9 #include <linux/kdebug.h> /* oops_begin/end, ... */ 10 #include <linux/extable.h> /* search_exception_tables */ 11 #include <linux/bootmem.h> /* max_low_pfn */ 12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */ 14 #include <linux/perf_event.h> /* perf_sw_event */ 15 #include <linux/hugetlb.h> /* hstate_index_to_shift */ 16 #include <linux/prefetch.h> /* prefetchw */ 17 #include <linux/context_tracking.h> /* exception_enter(), ... */ 18 #include <linux/uaccess.h> /* faulthandler_disabled() */ 19 20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */ 21 #include <asm/traps.h> /* dotraplinkage, ... */ 22 #include <asm/pgalloc.h> /* pgd_*(), ... */ 23 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */ 24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */ 25 #include <asm/vsyscall.h> /* emulate_vsyscall */ 26 #include <asm/vm86.h> /* struct vm86 */ 27 #include <asm/mmu_context.h> /* vma_pkey() */ 28 29 #define CREATE_TRACE_POINTS 30 #include <asm/trace/exceptions.h> 31 32 /* 33 * Page fault error code bits: 34 * 35 * bit 0 == 0: no page found 1: protection fault 36 * bit 1 == 0: read access 1: write access 37 * bit 2 == 0: kernel-mode access 1: user-mode access 38 * bit 3 == 1: use of reserved bit detected 39 * bit 4 == 1: fault was an instruction fetch 40 * bit 5 == 1: protection keys block access 41 */ 42 enum x86_pf_error_code { 43 44 PF_PROT = 1 << 0, 45 PF_WRITE = 1 << 1, 46 PF_USER = 1 << 2, 47 PF_RSVD = 1 << 3, 48 PF_INSTR = 1 << 4, 49 PF_PK = 1 << 5, 50 }; 51 52 /* 53 * Returns 0 if mmiotrace is disabled, or if the fault is not 54 * handled by mmiotrace: 55 */ 56 static nokprobe_inline int 57 kmmio_fault(struct pt_regs *regs, unsigned long addr) 58 { 59 if (unlikely(is_kmmio_active())) 60 if (kmmio_handler(regs, addr) == 1) 61 return -1; 62 return 0; 63 } 64 65 static nokprobe_inline int kprobes_fault(struct pt_regs *regs) 66 { 67 int ret = 0; 68 69 /* kprobe_running() needs smp_processor_id() */ 70 if (kprobes_built_in() && !user_mode(regs)) { 71 preempt_disable(); 72 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 73 ret = 1; 74 preempt_enable(); 75 } 76 77 return ret; 78 } 79 80 /* 81 * Prefetch quirks: 82 * 83 * 32-bit mode: 84 * 85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 86 * Check that here and ignore it. 87 * 88 * 64-bit mode: 89 * 90 * Sometimes the CPU reports invalid exceptions on prefetch. 91 * Check that here and ignore it. 92 * 93 * Opcode checker based on code by Richard Brunner. 94 */ 95 static inline int 96 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 97 unsigned char opcode, int *prefetch) 98 { 99 unsigned char instr_hi = opcode & 0xf0; 100 unsigned char instr_lo = opcode & 0x0f; 101 102 switch (instr_hi) { 103 case 0x20: 104 case 0x30: 105 /* 106 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 107 * In X86_64 long mode, the CPU will signal invalid 108 * opcode if some of these prefixes are present so 109 * X86_64 will never get here anyway 110 */ 111 return ((instr_lo & 7) == 0x6); 112 #ifdef CONFIG_X86_64 113 case 0x40: 114 /* 115 * In AMD64 long mode 0x40..0x4F are valid REX prefixes 116 * Need to figure out under what instruction mode the 117 * instruction was issued. Could check the LDT for lm, 118 * but for now it's good enough to assume that long 119 * mode only uses well known segments or kernel. 120 */ 121 return (!user_mode(regs) || user_64bit_mode(regs)); 122 #endif 123 case 0x60: 124 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 125 return (instr_lo & 0xC) == 0x4; 126 case 0xF0: 127 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 128 return !instr_lo || (instr_lo>>1) == 1; 129 case 0x00: 130 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 131 if (probe_kernel_address(instr, opcode)) 132 return 0; 133 134 *prefetch = (instr_lo == 0xF) && 135 (opcode == 0x0D || opcode == 0x18); 136 return 0; 137 default: 138 return 0; 139 } 140 } 141 142 static int 143 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 144 { 145 unsigned char *max_instr; 146 unsigned char *instr; 147 int prefetch = 0; 148 149 /* 150 * If it was a exec (instruction fetch) fault on NX page, then 151 * do not ignore the fault: 152 */ 153 if (error_code & PF_INSTR) 154 return 0; 155 156 instr = (void *)convert_ip_to_linear(current, regs); 157 max_instr = instr + 15; 158 159 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) 160 return 0; 161 162 while (instr < max_instr) { 163 unsigned char opcode; 164 165 if (probe_kernel_address(instr, opcode)) 166 break; 167 168 instr++; 169 170 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 171 break; 172 } 173 return prefetch; 174 } 175 176 /* 177 * A protection key fault means that the PKRU value did not allow 178 * access to some PTE. Userspace can figure out what PKRU was 179 * from the XSAVE state, and this function fills out a field in 180 * siginfo so userspace can discover which protection key was set 181 * on the PTE. 182 * 183 * If we get here, we know that the hardware signaled a PF_PK 184 * fault and that there was a VMA once we got in the fault 185 * handler. It does *not* guarantee that the VMA we find here 186 * was the one that we faulted on. 187 * 188 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 189 * 2. T1 : set PKRU to deny access to pkey=4, touches page 190 * 3. T1 : faults... 191 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 192 * 5. T1 : enters fault handler, takes mmap_sem, etc... 193 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 194 * faulted on a pte with its pkey=4. 195 */ 196 static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey) 197 { 198 /* This is effectively an #ifdef */ 199 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 200 return; 201 202 /* Fault not from Protection Keys: nothing to do */ 203 if (si_code != SEGV_PKUERR) 204 return; 205 /* 206 * force_sig_info_fault() is called from a number of 207 * contexts, some of which have a VMA and some of which 208 * do not. The PF_PK handing happens after we have a 209 * valid VMA, so we should never reach this without a 210 * valid VMA. 211 */ 212 if (!pkey) { 213 WARN_ONCE(1, "PKU fault with no VMA passed in"); 214 info->si_pkey = 0; 215 return; 216 } 217 /* 218 * si_pkey should be thought of as a strong hint, but not 219 * absolutely guranteed to be 100% accurate because of 220 * the race explained above. 221 */ 222 info->si_pkey = *pkey; 223 } 224 225 static void 226 force_sig_info_fault(int si_signo, int si_code, unsigned long address, 227 struct task_struct *tsk, u32 *pkey, int fault) 228 { 229 unsigned lsb = 0; 230 siginfo_t info; 231 232 info.si_signo = si_signo; 233 info.si_errno = 0; 234 info.si_code = si_code; 235 info.si_addr = (void __user *)address; 236 if (fault & VM_FAULT_HWPOISON_LARGE) 237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 238 if (fault & VM_FAULT_HWPOISON) 239 lsb = PAGE_SHIFT; 240 info.si_addr_lsb = lsb; 241 242 fill_sig_info_pkey(si_code, &info, pkey); 243 244 force_sig_info(si_signo, &info, tsk); 245 } 246 247 DEFINE_SPINLOCK(pgd_lock); 248 LIST_HEAD(pgd_list); 249 250 #ifdef CONFIG_X86_32 251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 252 { 253 unsigned index = pgd_index(address); 254 pgd_t *pgd_k; 255 p4d_t *p4d, *p4d_k; 256 pud_t *pud, *pud_k; 257 pmd_t *pmd, *pmd_k; 258 259 pgd += index; 260 pgd_k = init_mm.pgd + index; 261 262 if (!pgd_present(*pgd_k)) 263 return NULL; 264 265 /* 266 * set_pgd(pgd, *pgd_k); here would be useless on PAE 267 * and redundant with the set_pmd() on non-PAE. As would 268 * set_p4d/set_pud. 269 */ 270 p4d = p4d_offset(pgd, address); 271 p4d_k = p4d_offset(pgd_k, address); 272 if (!p4d_present(*p4d_k)) 273 return NULL; 274 275 pud = pud_offset(p4d, address); 276 pud_k = pud_offset(p4d_k, address); 277 if (!pud_present(*pud_k)) 278 return NULL; 279 280 pmd = pmd_offset(pud, address); 281 pmd_k = pmd_offset(pud_k, address); 282 if (!pmd_present(*pmd_k)) 283 return NULL; 284 285 if (!pmd_present(*pmd)) 286 set_pmd(pmd, *pmd_k); 287 else 288 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); 289 290 return pmd_k; 291 } 292 293 void vmalloc_sync_all(void) 294 { 295 unsigned long address; 296 297 if (SHARED_KERNEL_PMD) 298 return; 299 300 for (address = VMALLOC_START & PMD_MASK; 301 address >= TASK_SIZE_MAX && address < FIXADDR_TOP; 302 address += PMD_SIZE) { 303 struct page *page; 304 305 spin_lock(&pgd_lock); 306 list_for_each_entry(page, &pgd_list, lru) { 307 spinlock_t *pgt_lock; 308 pmd_t *ret; 309 310 /* the pgt_lock only for Xen */ 311 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 312 313 spin_lock(pgt_lock); 314 ret = vmalloc_sync_one(page_address(page), address); 315 spin_unlock(pgt_lock); 316 317 if (!ret) 318 break; 319 } 320 spin_unlock(&pgd_lock); 321 } 322 } 323 324 /* 325 * 32-bit: 326 * 327 * Handle a fault on the vmalloc or module mapping area 328 */ 329 static noinline int vmalloc_fault(unsigned long address) 330 { 331 unsigned long pgd_paddr; 332 pmd_t *pmd_k; 333 pte_t *pte_k; 334 335 /* Make sure we are in vmalloc area: */ 336 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 337 return -1; 338 339 WARN_ON_ONCE(in_nmi()); 340 341 /* 342 * Synchronize this task's top level page-table 343 * with the 'reference' page table. 344 * 345 * Do _not_ use "current" here. We might be inside 346 * an interrupt in the middle of a task switch.. 347 */ 348 pgd_paddr = read_cr3_pa(); 349 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 350 if (!pmd_k) 351 return -1; 352 353 if (pmd_huge(*pmd_k)) 354 return 0; 355 356 pte_k = pte_offset_kernel(pmd_k, address); 357 if (!pte_present(*pte_k)) 358 return -1; 359 360 return 0; 361 } 362 NOKPROBE_SYMBOL(vmalloc_fault); 363 364 /* 365 * Did it hit the DOS screen memory VA from vm86 mode? 366 */ 367 static inline void 368 check_v8086_mode(struct pt_regs *regs, unsigned long address, 369 struct task_struct *tsk) 370 { 371 #ifdef CONFIG_VM86 372 unsigned long bit; 373 374 if (!v8086_mode(regs) || !tsk->thread.vm86) 375 return; 376 377 bit = (address - 0xA0000) >> PAGE_SHIFT; 378 if (bit < 32) 379 tsk->thread.vm86->screen_bitmap |= 1 << bit; 380 #endif 381 } 382 383 static bool low_pfn(unsigned long pfn) 384 { 385 return pfn < max_low_pfn; 386 } 387 388 static void dump_pagetable(unsigned long address) 389 { 390 pgd_t *base = __va(read_cr3_pa()); 391 pgd_t *pgd = &base[pgd_index(address)]; 392 p4d_t *p4d; 393 pud_t *pud; 394 pmd_t *pmd; 395 pte_t *pte; 396 397 #ifdef CONFIG_X86_PAE 398 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 399 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 400 goto out; 401 #define pr_pde pr_cont 402 #else 403 #define pr_pde pr_info 404 #endif 405 p4d = p4d_offset(pgd, address); 406 pud = pud_offset(p4d, address); 407 pmd = pmd_offset(pud, address); 408 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 409 #undef pr_pde 410 411 /* 412 * We must not directly access the pte in the highpte 413 * case if the page table is located in highmem. 414 * And let's rather not kmap-atomic the pte, just in case 415 * it's allocated already: 416 */ 417 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 418 goto out; 419 420 pte = pte_offset_kernel(pmd, address); 421 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 422 out: 423 pr_cont("\n"); 424 } 425 426 #else /* CONFIG_X86_64: */ 427 428 void vmalloc_sync_all(void) 429 { 430 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); 431 } 432 433 /* 434 * 64-bit: 435 * 436 * Handle a fault on the vmalloc area 437 */ 438 static noinline int vmalloc_fault(unsigned long address) 439 { 440 pgd_t *pgd, *pgd_ref; 441 p4d_t *p4d, *p4d_ref; 442 pud_t *pud, *pud_ref; 443 pmd_t *pmd, *pmd_ref; 444 pte_t *pte, *pte_ref; 445 446 /* Make sure we are in vmalloc area: */ 447 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 448 return -1; 449 450 WARN_ON_ONCE(in_nmi()); 451 452 /* 453 * Copy kernel mappings over when needed. This can also 454 * happen within a race in page table update. In the later 455 * case just flush: 456 */ 457 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); 458 pgd_ref = pgd_offset_k(address); 459 if (pgd_none(*pgd_ref)) 460 return -1; 461 462 if (pgd_none(*pgd)) { 463 set_pgd(pgd, *pgd_ref); 464 arch_flush_lazy_mmu_mode(); 465 } else if (CONFIG_PGTABLE_LEVELS > 4) { 466 /* 467 * With folded p4d, pgd_none() is always false, so the pgd may 468 * point to an empty page table entry and pgd_page_vaddr() 469 * will return garbage. 470 * 471 * We will do the correct sanity check on the p4d level. 472 */ 473 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); 474 } 475 476 /* With 4-level paging, copying happens on the p4d level. */ 477 p4d = p4d_offset(pgd, address); 478 p4d_ref = p4d_offset(pgd_ref, address); 479 if (p4d_none(*p4d_ref)) 480 return -1; 481 482 if (p4d_none(*p4d)) { 483 set_p4d(p4d, *p4d_ref); 484 arch_flush_lazy_mmu_mode(); 485 } else { 486 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref)); 487 } 488 489 /* 490 * Below here mismatches are bugs because these lower tables 491 * are shared: 492 */ 493 494 pud = pud_offset(p4d, address); 495 pud_ref = pud_offset(p4d_ref, address); 496 if (pud_none(*pud_ref)) 497 return -1; 498 499 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref)) 500 BUG(); 501 502 if (pud_huge(*pud)) 503 return 0; 504 505 pmd = pmd_offset(pud, address); 506 pmd_ref = pmd_offset(pud_ref, address); 507 if (pmd_none(*pmd_ref)) 508 return -1; 509 510 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref)) 511 BUG(); 512 513 if (pmd_huge(*pmd)) 514 return 0; 515 516 pte_ref = pte_offset_kernel(pmd_ref, address); 517 if (!pte_present(*pte_ref)) 518 return -1; 519 520 pte = pte_offset_kernel(pmd, address); 521 522 /* 523 * Don't use pte_page here, because the mappings can point 524 * outside mem_map, and the NUMA hash lookup cannot handle 525 * that: 526 */ 527 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) 528 BUG(); 529 530 return 0; 531 } 532 NOKPROBE_SYMBOL(vmalloc_fault); 533 534 #ifdef CONFIG_CPU_SUP_AMD 535 static const char errata93_warning[] = 536 KERN_ERR 537 "******* Your BIOS seems to not contain a fix for K8 errata #93\n" 538 "******* Working around it, but it may cause SEGVs or burn power.\n" 539 "******* Please consider a BIOS update.\n" 540 "******* Disabling USB legacy in the BIOS may also help.\n"; 541 #endif 542 543 /* 544 * No vm86 mode in 64-bit mode: 545 */ 546 static inline void 547 check_v8086_mode(struct pt_regs *regs, unsigned long address, 548 struct task_struct *tsk) 549 { 550 } 551 552 static int bad_address(void *p) 553 { 554 unsigned long dummy; 555 556 return probe_kernel_address((unsigned long *)p, dummy); 557 } 558 559 static void dump_pagetable(unsigned long address) 560 { 561 pgd_t *base = __va(read_cr3_pa()); 562 pgd_t *pgd = base + pgd_index(address); 563 p4d_t *p4d; 564 pud_t *pud; 565 pmd_t *pmd; 566 pte_t *pte; 567 568 if (bad_address(pgd)) 569 goto bad; 570 571 pr_info("PGD %lx ", pgd_val(*pgd)); 572 573 if (!pgd_present(*pgd)) 574 goto out; 575 576 p4d = p4d_offset(pgd, address); 577 if (bad_address(p4d)) 578 goto bad; 579 580 pr_cont("P4D %lx ", p4d_val(*p4d)); 581 if (!p4d_present(*p4d) || p4d_large(*p4d)) 582 goto out; 583 584 pud = pud_offset(p4d, address); 585 if (bad_address(pud)) 586 goto bad; 587 588 pr_cont("PUD %lx ", pud_val(*pud)); 589 if (!pud_present(*pud) || pud_large(*pud)) 590 goto out; 591 592 pmd = pmd_offset(pud, address); 593 if (bad_address(pmd)) 594 goto bad; 595 596 pr_cont("PMD %lx ", pmd_val(*pmd)); 597 if (!pmd_present(*pmd) || pmd_large(*pmd)) 598 goto out; 599 600 pte = pte_offset_kernel(pmd, address); 601 if (bad_address(pte)) 602 goto bad; 603 604 pr_cont("PTE %lx", pte_val(*pte)); 605 out: 606 pr_cont("\n"); 607 return; 608 bad: 609 pr_info("BAD\n"); 610 } 611 612 #endif /* CONFIG_X86_64 */ 613 614 /* 615 * Workaround for K8 erratum #93 & buggy BIOS. 616 * 617 * BIOS SMM functions are required to use a specific workaround 618 * to avoid corruption of the 64bit RIP register on C stepping K8. 619 * 620 * A lot of BIOS that didn't get tested properly miss this. 621 * 622 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 623 * Try to work around it here. 624 * 625 * Note we only handle faults in kernel here. 626 * Does nothing on 32-bit. 627 */ 628 static int is_errata93(struct pt_regs *regs, unsigned long address) 629 { 630 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 631 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 632 || boot_cpu_data.x86 != 0xf) 633 return 0; 634 635 if (address != regs->ip) 636 return 0; 637 638 if ((address >> 32) != 0) 639 return 0; 640 641 address |= 0xffffffffUL << 32; 642 if ((address >= (u64)_stext && address <= (u64)_etext) || 643 (address >= MODULES_VADDR && address <= MODULES_END)) { 644 printk_once(errata93_warning); 645 regs->ip = address; 646 return 1; 647 } 648 #endif 649 return 0; 650 } 651 652 /* 653 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 654 * to illegal addresses >4GB. 655 * 656 * We catch this in the page fault handler because these addresses 657 * are not reachable. Just detect this case and return. Any code 658 * segment in LDT is compatibility mode. 659 */ 660 static int is_errata100(struct pt_regs *regs, unsigned long address) 661 { 662 #ifdef CONFIG_X86_64 663 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 664 return 1; 665 #endif 666 return 0; 667 } 668 669 static int is_f00f_bug(struct pt_regs *regs, unsigned long address) 670 { 671 #ifdef CONFIG_X86_F00F_BUG 672 unsigned long nr; 673 674 /* 675 * Pentium F0 0F C7 C8 bug workaround: 676 */ 677 if (boot_cpu_has_bug(X86_BUG_F00F)) { 678 nr = (address - idt_descr.address) >> 3; 679 680 if (nr == 6) { 681 do_invalid_op(regs, 0); 682 return 1; 683 } 684 } 685 #endif 686 return 0; 687 } 688 689 static const char nx_warning[] = KERN_CRIT 690 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n"; 691 static const char smep_warning[] = KERN_CRIT 692 "unable to execute userspace code (SMEP?) (uid: %d)\n"; 693 694 static void 695 show_fault_oops(struct pt_regs *regs, unsigned long error_code, 696 unsigned long address) 697 { 698 if (!oops_may_print()) 699 return; 700 701 if (error_code & PF_INSTR) { 702 unsigned int level; 703 pgd_t *pgd; 704 pte_t *pte; 705 706 pgd = __va(read_cr3_pa()); 707 pgd += pgd_index(address); 708 709 pte = lookup_address_in_pgd(pgd, address, &level); 710 711 if (pte && pte_present(*pte) && !pte_exec(*pte)) 712 printk(nx_warning, from_kuid(&init_user_ns, current_uid())); 713 if (pte && pte_present(*pte) && pte_exec(*pte) && 714 (pgd_flags(*pgd) & _PAGE_USER) && 715 (__read_cr4() & X86_CR4_SMEP)) 716 printk(smep_warning, from_kuid(&init_user_ns, current_uid())); 717 } 718 719 printk(KERN_ALERT "BUG: unable to handle kernel "); 720 if (address < PAGE_SIZE) 721 printk(KERN_CONT "NULL pointer dereference"); 722 else 723 printk(KERN_CONT "paging request"); 724 725 printk(KERN_CONT " at %p\n", (void *) address); 726 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip); 727 728 dump_pagetable(address); 729 } 730 731 static noinline void 732 pgtable_bad(struct pt_regs *regs, unsigned long error_code, 733 unsigned long address) 734 { 735 struct task_struct *tsk; 736 unsigned long flags; 737 int sig; 738 739 flags = oops_begin(); 740 tsk = current; 741 sig = SIGKILL; 742 743 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 744 tsk->comm, address); 745 dump_pagetable(address); 746 747 tsk->thread.cr2 = address; 748 tsk->thread.trap_nr = X86_TRAP_PF; 749 tsk->thread.error_code = error_code; 750 751 if (__die("Bad pagetable", regs, error_code)) 752 sig = 0; 753 754 oops_end(flags, regs, sig); 755 } 756 757 static noinline void 758 no_context(struct pt_regs *regs, unsigned long error_code, 759 unsigned long address, int signal, int si_code) 760 { 761 struct task_struct *tsk = current; 762 unsigned long flags; 763 int sig; 764 765 /* Are we prepared to handle this kernel fault? */ 766 if (fixup_exception(regs, X86_TRAP_PF)) { 767 /* 768 * Any interrupt that takes a fault gets the fixup. This makes 769 * the below recursive fault logic only apply to a faults from 770 * task context. 771 */ 772 if (in_interrupt()) 773 return; 774 775 /* 776 * Per the above we're !in_interrupt(), aka. task context. 777 * 778 * In this case we need to make sure we're not recursively 779 * faulting through the emulate_vsyscall() logic. 780 */ 781 if (current->thread.sig_on_uaccess_err && signal) { 782 tsk->thread.trap_nr = X86_TRAP_PF; 783 tsk->thread.error_code = error_code | PF_USER; 784 tsk->thread.cr2 = address; 785 786 /* XXX: hwpoison faults will set the wrong code. */ 787 force_sig_info_fault(signal, si_code, address, 788 tsk, NULL, 0); 789 } 790 791 /* 792 * Barring that, we can do the fixup and be happy. 793 */ 794 return; 795 } 796 797 #ifdef CONFIG_VMAP_STACK 798 /* 799 * Stack overflow? During boot, we can fault near the initial 800 * stack in the direct map, but that's not an overflow -- check 801 * that we're in vmalloc space to avoid this. 802 */ 803 if (is_vmalloc_addr((void *)address) && 804 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || 805 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { 806 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); 807 /* 808 * We're likely to be running with very little stack space 809 * left. It's plausible that we'd hit this condition but 810 * double-fault even before we get this far, in which case 811 * we're fine: the double-fault handler will deal with it. 812 * 813 * We don't want to make it all the way into the oops code 814 * and then double-fault, though, because we're likely to 815 * break the console driver and lose most of the stack dump. 816 */ 817 asm volatile ("movq %[stack], %%rsp\n\t" 818 "call handle_stack_overflow\n\t" 819 "1: jmp 1b" 820 : ASM_CALL_CONSTRAINT 821 : "D" ("kernel stack overflow (page fault)"), 822 "S" (regs), "d" (address), 823 [stack] "rm" (stack)); 824 unreachable(); 825 } 826 #endif 827 828 /* 829 * 32-bit: 830 * 831 * Valid to do another page fault here, because if this fault 832 * had been triggered by is_prefetch fixup_exception would have 833 * handled it. 834 * 835 * 64-bit: 836 * 837 * Hall of shame of CPU/BIOS bugs. 838 */ 839 if (is_prefetch(regs, error_code, address)) 840 return; 841 842 if (is_errata93(regs, address)) 843 return; 844 845 /* 846 * Oops. The kernel tried to access some bad page. We'll have to 847 * terminate things with extreme prejudice: 848 */ 849 flags = oops_begin(); 850 851 show_fault_oops(regs, error_code, address); 852 853 if (task_stack_end_corrupted(tsk)) 854 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 855 856 tsk->thread.cr2 = address; 857 tsk->thread.trap_nr = X86_TRAP_PF; 858 tsk->thread.error_code = error_code; 859 860 sig = SIGKILL; 861 if (__die("Oops", regs, error_code)) 862 sig = 0; 863 864 /* Executive summary in case the body of the oops scrolled away */ 865 printk(KERN_DEFAULT "CR2: %016lx\n", address); 866 867 oops_end(flags, regs, sig); 868 } 869 870 /* 871 * Print out info about fatal segfaults, if the show_unhandled_signals 872 * sysctl is set: 873 */ 874 static inline void 875 show_signal_msg(struct pt_regs *regs, unsigned long error_code, 876 unsigned long address, struct task_struct *tsk) 877 { 878 if (!unhandled_signal(tsk, SIGSEGV)) 879 return; 880 881 if (!printk_ratelimit()) 882 return; 883 884 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 885 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 886 tsk->comm, task_pid_nr(tsk), address, 887 (void *)regs->ip, (void *)regs->sp, error_code); 888 889 print_vma_addr(KERN_CONT " in ", regs->ip); 890 891 printk(KERN_CONT "\n"); 892 } 893 894 static void 895 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 896 unsigned long address, u32 *pkey, int si_code) 897 { 898 struct task_struct *tsk = current; 899 900 /* User mode accesses just cause a SIGSEGV */ 901 if (error_code & PF_USER) { 902 /* 903 * It's possible to have interrupts off here: 904 */ 905 local_irq_enable(); 906 907 /* 908 * Valid to do another page fault here because this one came 909 * from user space: 910 */ 911 if (is_prefetch(regs, error_code, address)) 912 return; 913 914 if (is_errata100(regs, address)) 915 return; 916 917 #ifdef CONFIG_X86_64 918 /* 919 * Instruction fetch faults in the vsyscall page might need 920 * emulation. 921 */ 922 if (unlikely((error_code & PF_INSTR) && 923 ((address & ~0xfff) == VSYSCALL_ADDR))) { 924 if (emulate_vsyscall(regs, address)) 925 return; 926 } 927 #endif 928 929 /* 930 * To avoid leaking information about the kernel page table 931 * layout, pretend that user-mode accesses to kernel addresses 932 * are always protection faults. 933 */ 934 if (address >= TASK_SIZE_MAX) 935 error_code |= PF_PROT; 936 937 if (likely(show_unhandled_signals)) 938 show_signal_msg(regs, error_code, address, tsk); 939 940 tsk->thread.cr2 = address; 941 tsk->thread.error_code = error_code; 942 tsk->thread.trap_nr = X86_TRAP_PF; 943 944 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0); 945 946 return; 947 } 948 949 if (is_f00f_bug(regs, address)) 950 return; 951 952 no_context(regs, error_code, address, SIGSEGV, si_code); 953 } 954 955 static noinline void 956 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 957 unsigned long address, u32 *pkey) 958 { 959 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR); 960 } 961 962 static void 963 __bad_area(struct pt_regs *regs, unsigned long error_code, 964 unsigned long address, struct vm_area_struct *vma, int si_code) 965 { 966 struct mm_struct *mm = current->mm; 967 u32 pkey; 968 969 if (vma) 970 pkey = vma_pkey(vma); 971 972 /* 973 * Something tried to access memory that isn't in our memory map.. 974 * Fix it, but check if it's kernel or user first.. 975 */ 976 up_read(&mm->mmap_sem); 977 978 __bad_area_nosemaphore(regs, error_code, address, 979 (vma) ? &pkey : NULL, si_code); 980 } 981 982 static noinline void 983 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 984 { 985 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR); 986 } 987 988 static inline bool bad_area_access_from_pkeys(unsigned long error_code, 989 struct vm_area_struct *vma) 990 { 991 /* This code is always called on the current mm */ 992 bool foreign = false; 993 994 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 995 return false; 996 if (error_code & PF_PK) 997 return true; 998 /* this checks permission keys on the VMA: */ 999 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE), 1000 (error_code & PF_INSTR), foreign)) 1001 return true; 1002 return false; 1003 } 1004 1005 static noinline void 1006 bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 1007 unsigned long address, struct vm_area_struct *vma) 1008 { 1009 /* 1010 * This OSPKE check is not strictly necessary at runtime. 1011 * But, doing it this way allows compiler optimizations 1012 * if pkeys are compiled out. 1013 */ 1014 if (bad_area_access_from_pkeys(error_code, vma)) 1015 __bad_area(regs, error_code, address, vma, SEGV_PKUERR); 1016 else 1017 __bad_area(regs, error_code, address, vma, SEGV_ACCERR); 1018 } 1019 1020 static void 1021 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 1022 u32 *pkey, unsigned int fault) 1023 { 1024 struct task_struct *tsk = current; 1025 int code = BUS_ADRERR; 1026 1027 /* Kernel mode? Handle exceptions or die: */ 1028 if (!(error_code & PF_USER)) { 1029 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1030 return; 1031 } 1032 1033 /* User-space => ok to do another page fault: */ 1034 if (is_prefetch(regs, error_code, address)) 1035 return; 1036 1037 tsk->thread.cr2 = address; 1038 tsk->thread.error_code = error_code; 1039 tsk->thread.trap_nr = X86_TRAP_PF; 1040 1041 #ifdef CONFIG_MEMORY_FAILURE 1042 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 1043 printk(KERN_ERR 1044 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 1045 tsk->comm, tsk->pid, address); 1046 code = BUS_MCEERR_AR; 1047 } 1048 #endif 1049 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault); 1050 } 1051 1052 static noinline void 1053 mm_fault_error(struct pt_regs *regs, unsigned long error_code, 1054 unsigned long address, u32 *pkey, unsigned int fault) 1055 { 1056 if (fatal_signal_pending(current) && !(error_code & PF_USER)) { 1057 no_context(regs, error_code, address, 0, 0); 1058 return; 1059 } 1060 1061 if (fault & VM_FAULT_OOM) { 1062 /* Kernel mode? Handle exceptions or die: */ 1063 if (!(error_code & PF_USER)) { 1064 no_context(regs, error_code, address, 1065 SIGSEGV, SEGV_MAPERR); 1066 return; 1067 } 1068 1069 /* 1070 * We ran out of memory, call the OOM killer, and return the 1071 * userspace (which will retry the fault, or kill us if we got 1072 * oom-killed): 1073 */ 1074 pagefault_out_of_memory(); 1075 } else { 1076 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1077 VM_FAULT_HWPOISON_LARGE)) 1078 do_sigbus(regs, error_code, address, pkey, fault); 1079 else if (fault & VM_FAULT_SIGSEGV) 1080 bad_area_nosemaphore(regs, error_code, address, pkey); 1081 else 1082 BUG(); 1083 } 1084 } 1085 1086 static int spurious_fault_check(unsigned long error_code, pte_t *pte) 1087 { 1088 if ((error_code & PF_WRITE) && !pte_write(*pte)) 1089 return 0; 1090 1091 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 1092 return 0; 1093 /* 1094 * Note: We do not do lazy flushing on protection key 1095 * changes, so no spurious fault will ever set PF_PK. 1096 */ 1097 if ((error_code & PF_PK)) 1098 return 1; 1099 1100 return 1; 1101 } 1102 1103 /* 1104 * Handle a spurious fault caused by a stale TLB entry. 1105 * 1106 * This allows us to lazily refresh the TLB when increasing the 1107 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1108 * eagerly is very expensive since that implies doing a full 1109 * cross-processor TLB flush, even if no stale TLB entries exist 1110 * on other processors. 1111 * 1112 * Spurious faults may only occur if the TLB contains an entry with 1113 * fewer permission than the page table entry. Non-present (P = 0) 1114 * and reserved bit (R = 1) faults are never spurious. 1115 * 1116 * There are no security implications to leaving a stale TLB when 1117 * increasing the permissions on a page. 1118 * 1119 * Returns non-zero if a spurious fault was handled, zero otherwise. 1120 * 1121 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1122 * (Optional Invalidation). 1123 */ 1124 static noinline int 1125 spurious_fault(unsigned long error_code, unsigned long address) 1126 { 1127 pgd_t *pgd; 1128 p4d_t *p4d; 1129 pud_t *pud; 1130 pmd_t *pmd; 1131 pte_t *pte; 1132 int ret; 1133 1134 /* 1135 * Only writes to RO or instruction fetches from NX may cause 1136 * spurious faults. 1137 * 1138 * These could be from user or supervisor accesses but the TLB 1139 * is only lazily flushed after a kernel mapping protection 1140 * change, so user accesses are not expected to cause spurious 1141 * faults. 1142 */ 1143 if (error_code != (PF_WRITE | PF_PROT) 1144 && error_code != (PF_INSTR | PF_PROT)) 1145 return 0; 1146 1147 pgd = init_mm.pgd + pgd_index(address); 1148 if (!pgd_present(*pgd)) 1149 return 0; 1150 1151 p4d = p4d_offset(pgd, address); 1152 if (!p4d_present(*p4d)) 1153 return 0; 1154 1155 if (p4d_large(*p4d)) 1156 return spurious_fault_check(error_code, (pte_t *) p4d); 1157 1158 pud = pud_offset(p4d, address); 1159 if (!pud_present(*pud)) 1160 return 0; 1161 1162 if (pud_large(*pud)) 1163 return spurious_fault_check(error_code, (pte_t *) pud); 1164 1165 pmd = pmd_offset(pud, address); 1166 if (!pmd_present(*pmd)) 1167 return 0; 1168 1169 if (pmd_large(*pmd)) 1170 return spurious_fault_check(error_code, (pte_t *) pmd); 1171 1172 pte = pte_offset_kernel(pmd, address); 1173 if (!pte_present(*pte)) 1174 return 0; 1175 1176 ret = spurious_fault_check(error_code, pte); 1177 if (!ret) 1178 return 0; 1179 1180 /* 1181 * Make sure we have permissions in PMD. 1182 * If not, then there's a bug in the page tables: 1183 */ 1184 ret = spurious_fault_check(error_code, (pte_t *) pmd); 1185 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1186 1187 return ret; 1188 } 1189 NOKPROBE_SYMBOL(spurious_fault); 1190 1191 int show_unhandled_signals = 1; 1192 1193 static inline int 1194 access_error(unsigned long error_code, struct vm_area_struct *vma) 1195 { 1196 /* This is only called for the current mm, so: */ 1197 bool foreign = false; 1198 1199 /* 1200 * Read or write was blocked by protection keys. This is 1201 * always an unconditional error and can never result in 1202 * a follow-up action to resolve the fault, like a COW. 1203 */ 1204 if (error_code & PF_PK) 1205 return 1; 1206 1207 /* 1208 * Make sure to check the VMA so that we do not perform 1209 * faults just to hit a PF_PK as soon as we fill in a 1210 * page. 1211 */ 1212 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE), 1213 (error_code & PF_INSTR), foreign)) 1214 return 1; 1215 1216 if (error_code & PF_WRITE) { 1217 /* write, present and write, not present: */ 1218 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1219 return 1; 1220 return 0; 1221 } 1222 1223 /* read, present: */ 1224 if (unlikely(error_code & PF_PROT)) 1225 return 1; 1226 1227 /* read, not present: */ 1228 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 1229 return 1; 1230 1231 return 0; 1232 } 1233 1234 static int fault_in_kernel_space(unsigned long address) 1235 { 1236 return address >= TASK_SIZE_MAX; 1237 } 1238 1239 static inline bool smap_violation(int error_code, struct pt_regs *regs) 1240 { 1241 if (!IS_ENABLED(CONFIG_X86_SMAP)) 1242 return false; 1243 1244 if (!static_cpu_has(X86_FEATURE_SMAP)) 1245 return false; 1246 1247 if (error_code & PF_USER) 1248 return false; 1249 1250 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) 1251 return false; 1252 1253 return true; 1254 } 1255 1256 /* 1257 * This routine handles page faults. It determines the address, 1258 * and the problem, and then passes it off to one of the appropriate 1259 * routines. 1260 */ 1261 static noinline void 1262 __do_page_fault(struct pt_regs *regs, unsigned long error_code, 1263 unsigned long address) 1264 { 1265 struct vm_area_struct *vma; 1266 struct task_struct *tsk; 1267 struct mm_struct *mm; 1268 int fault, major = 0; 1269 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1270 u32 pkey; 1271 1272 tsk = current; 1273 mm = tsk->mm; 1274 1275 /* 1276 * Detect and handle instructions that would cause a page fault for 1277 * both a tracked kernel page and a userspace page. 1278 */ 1279 if (kmemcheck_active(regs)) 1280 kmemcheck_hide(regs); 1281 prefetchw(&mm->mmap_sem); 1282 1283 if (unlikely(kmmio_fault(regs, address))) 1284 return; 1285 1286 /* 1287 * We fault-in kernel-space virtual memory on-demand. The 1288 * 'reference' page table is init_mm.pgd. 1289 * 1290 * NOTE! We MUST NOT take any locks for this case. We may 1291 * be in an interrupt or a critical region, and should 1292 * only copy the information from the master page table, 1293 * nothing more. 1294 * 1295 * This verifies that the fault happens in kernel space 1296 * (error_code & 4) == 0, and that the fault was not a 1297 * protection error (error_code & 9) == 0. 1298 */ 1299 if (unlikely(fault_in_kernel_space(address))) { 1300 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { 1301 if (vmalloc_fault(address) >= 0) 1302 return; 1303 1304 if (kmemcheck_fault(regs, address, error_code)) 1305 return; 1306 } 1307 1308 /* Can handle a stale RO->RW TLB: */ 1309 if (spurious_fault(error_code, address)) 1310 return; 1311 1312 /* kprobes don't want to hook the spurious faults: */ 1313 if (kprobes_fault(regs)) 1314 return; 1315 /* 1316 * Don't take the mm semaphore here. If we fixup a prefetch 1317 * fault we could otherwise deadlock: 1318 */ 1319 bad_area_nosemaphore(regs, error_code, address, NULL); 1320 1321 return; 1322 } 1323 1324 /* kprobes don't want to hook the spurious faults: */ 1325 if (unlikely(kprobes_fault(regs))) 1326 return; 1327 1328 if (unlikely(error_code & PF_RSVD)) 1329 pgtable_bad(regs, error_code, address); 1330 1331 if (unlikely(smap_violation(error_code, regs))) { 1332 bad_area_nosemaphore(regs, error_code, address, NULL); 1333 return; 1334 } 1335 1336 /* 1337 * If we're in an interrupt, have no user context or are running 1338 * in a region with pagefaults disabled then we must not take the fault 1339 */ 1340 if (unlikely(faulthandler_disabled() || !mm)) { 1341 bad_area_nosemaphore(regs, error_code, address, NULL); 1342 return; 1343 } 1344 1345 /* 1346 * It's safe to allow irq's after cr2 has been saved and the 1347 * vmalloc fault has been handled. 1348 * 1349 * User-mode registers count as a user access even for any 1350 * potential system fault or CPU buglet: 1351 */ 1352 if (user_mode(regs)) { 1353 local_irq_enable(); 1354 error_code |= PF_USER; 1355 flags |= FAULT_FLAG_USER; 1356 } else { 1357 if (regs->flags & X86_EFLAGS_IF) 1358 local_irq_enable(); 1359 } 1360 1361 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1362 1363 if (error_code & PF_WRITE) 1364 flags |= FAULT_FLAG_WRITE; 1365 if (error_code & PF_INSTR) 1366 flags |= FAULT_FLAG_INSTRUCTION; 1367 1368 /* 1369 * When running in the kernel we expect faults to occur only to 1370 * addresses in user space. All other faults represent errors in 1371 * the kernel and should generate an OOPS. Unfortunately, in the 1372 * case of an erroneous fault occurring in a code path which already 1373 * holds mmap_sem we will deadlock attempting to validate the fault 1374 * against the address space. Luckily the kernel only validly 1375 * references user space from well defined areas of code, which are 1376 * listed in the exceptions table. 1377 * 1378 * As the vast majority of faults will be valid we will only perform 1379 * the source reference check when there is a possibility of a 1380 * deadlock. Attempt to lock the address space, if we cannot we then 1381 * validate the source. If this is invalid we can skip the address 1382 * space check, thus avoiding the deadlock: 1383 */ 1384 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1385 if ((error_code & PF_USER) == 0 && 1386 !search_exception_tables(regs->ip)) { 1387 bad_area_nosemaphore(regs, error_code, address, NULL); 1388 return; 1389 } 1390 retry: 1391 down_read(&mm->mmap_sem); 1392 } else { 1393 /* 1394 * The above down_read_trylock() might have succeeded in 1395 * which case we'll have missed the might_sleep() from 1396 * down_read(): 1397 */ 1398 might_sleep(); 1399 } 1400 1401 vma = find_vma(mm, address); 1402 if (unlikely(!vma)) { 1403 bad_area(regs, error_code, address); 1404 return; 1405 } 1406 if (likely(vma->vm_start <= address)) 1407 goto good_area; 1408 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1409 bad_area(regs, error_code, address); 1410 return; 1411 } 1412 if (error_code & PF_USER) { 1413 /* 1414 * Accessing the stack below %sp is always a bug. 1415 * The large cushion allows instructions like enter 1416 * and pusha to work. ("enter $65535, $31" pushes 1417 * 32 pointers and then decrements %sp by 65535.) 1418 */ 1419 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1420 bad_area(regs, error_code, address); 1421 return; 1422 } 1423 } 1424 if (unlikely(expand_stack(vma, address))) { 1425 bad_area(regs, error_code, address); 1426 return; 1427 } 1428 1429 /* 1430 * Ok, we have a good vm_area for this memory access, so 1431 * we can handle it.. 1432 */ 1433 good_area: 1434 if (unlikely(access_error(error_code, vma))) { 1435 bad_area_access_error(regs, error_code, address, vma); 1436 return; 1437 } 1438 1439 /* 1440 * If for any reason at all we couldn't handle the fault, 1441 * make sure we exit gracefully rather than endlessly redo 1442 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1443 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. 1444 * 1445 * Note that handle_userfault() may also release and reacquire mmap_sem 1446 * (and not return with VM_FAULT_RETRY), when returning to userland to 1447 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1448 * (potentially after handling any pending signal during the return to 1449 * userland). The return to userland is identified whenever 1450 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1451 * Thus we have to be careful about not touching vma after handling the 1452 * fault, so we read the pkey beforehand. 1453 */ 1454 pkey = vma_pkey(vma); 1455 fault = handle_mm_fault(vma, address, flags); 1456 major |= fault & VM_FAULT_MAJOR; 1457 1458 /* 1459 * If we need to retry the mmap_sem has already been released, 1460 * and if there is a fatal signal pending there is no guarantee 1461 * that we made any progress. Handle this case first. 1462 */ 1463 if (unlikely(fault & VM_FAULT_RETRY)) { 1464 /* Retry at most once */ 1465 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1466 flags &= ~FAULT_FLAG_ALLOW_RETRY; 1467 flags |= FAULT_FLAG_TRIED; 1468 if (!fatal_signal_pending(tsk)) 1469 goto retry; 1470 } 1471 1472 /* User mode? Just return to handle the fatal exception */ 1473 if (flags & FAULT_FLAG_USER) 1474 return; 1475 1476 /* Not returning to user mode? Handle exceptions or die: */ 1477 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); 1478 return; 1479 } 1480 1481 up_read(&mm->mmap_sem); 1482 if (unlikely(fault & VM_FAULT_ERROR)) { 1483 mm_fault_error(regs, error_code, address, &pkey, fault); 1484 return; 1485 } 1486 1487 /* 1488 * Major/minor page fault accounting. If any of the events 1489 * returned VM_FAULT_MAJOR, we account it as a major fault. 1490 */ 1491 if (major) { 1492 tsk->maj_flt++; 1493 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 1494 } else { 1495 tsk->min_flt++; 1496 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 1497 } 1498 1499 check_v8086_mode(regs, address, tsk); 1500 } 1501 NOKPROBE_SYMBOL(__do_page_fault); 1502 1503 static nokprobe_inline void 1504 trace_page_fault_entries(unsigned long address, struct pt_regs *regs, 1505 unsigned long error_code) 1506 { 1507 if (user_mode(regs)) 1508 trace_page_fault_user(address, regs, error_code); 1509 else 1510 trace_page_fault_kernel(address, regs, error_code); 1511 } 1512 1513 /* 1514 * We must have this function blacklisted from kprobes, tagged with notrace 1515 * and call read_cr2() before calling anything else. To avoid calling any 1516 * kind of tracing machinery before we've observed the CR2 value. 1517 * 1518 * exception_{enter,exit}() contains all sorts of tracepoints. 1519 */ 1520 dotraplinkage void notrace 1521 do_page_fault(struct pt_regs *regs, unsigned long error_code) 1522 { 1523 unsigned long address = read_cr2(); /* Get the faulting address */ 1524 enum ctx_state prev_state; 1525 1526 prev_state = exception_enter(); 1527 if (trace_pagefault_enabled()) 1528 trace_page_fault_entries(address, regs, error_code); 1529 1530 __do_page_fault(regs, error_code, address); 1531 exception_exit(prev_state); 1532 } 1533 NOKPROBE_SYMBOL(do_page_fault); 1534