xref: /openbmc/linux/arch/x86/mm/fault.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/extable.h>		/* search_exception_tables	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
15 #include <linux/prefetch.h>		/* prefetchw			*/
16 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
17 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
18 
19 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
20 #include <asm/traps.h>			/* dotraplinkage, ...		*/
21 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
22 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
23 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
24 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
25 #include <asm/vm86.h>			/* struct vm86			*/
26 #include <asm/mmu_context.h>		/* vma_pkey()			*/
27 
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
30 
31 /*
32  * Page fault error code bits:
33  *
34  *   bit 0 ==	 0: no page found	1: protection fault
35  *   bit 1 ==	 0: read access		1: write access
36  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
37  *   bit 3 ==				1: use of reserved bit detected
38  *   bit 4 ==				1: fault was an instruction fetch
39  *   bit 5 ==				1: protection keys block access
40  */
41 enum x86_pf_error_code {
42 
43 	PF_PROT		=		1 << 0,
44 	PF_WRITE	=		1 << 1,
45 	PF_USER		=		1 << 2,
46 	PF_RSVD		=		1 << 3,
47 	PF_INSTR	=		1 << 4,
48 	PF_PK		=		1 << 5,
49 };
50 
51 /*
52  * Returns 0 if mmiotrace is disabled, or if the fault is not
53  * handled by mmiotrace:
54  */
55 static nokprobe_inline int
56 kmmio_fault(struct pt_regs *regs, unsigned long addr)
57 {
58 	if (unlikely(is_kmmio_active()))
59 		if (kmmio_handler(regs, addr) == 1)
60 			return -1;
61 	return 0;
62 }
63 
64 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65 {
66 	int ret = 0;
67 
68 	/* kprobe_running() needs smp_processor_id() */
69 	if (kprobes_built_in() && !user_mode(regs)) {
70 		preempt_disable();
71 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 			ret = 1;
73 		preempt_enable();
74 	}
75 
76 	return ret;
77 }
78 
79 /*
80  * Prefetch quirks:
81  *
82  * 32-bit mode:
83  *
84  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85  *   Check that here and ignore it.
86  *
87  * 64-bit mode:
88  *
89  *   Sometimes the CPU reports invalid exceptions on prefetch.
90  *   Check that here and ignore it.
91  *
92  * Opcode checker based on code by Richard Brunner.
93  */
94 static inline int
95 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 		      unsigned char opcode, int *prefetch)
97 {
98 	unsigned char instr_hi = opcode & 0xf0;
99 	unsigned char instr_lo = opcode & 0x0f;
100 
101 	switch (instr_hi) {
102 	case 0x20:
103 	case 0x30:
104 		/*
105 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 		 * In X86_64 long mode, the CPU will signal invalid
107 		 * opcode if some of these prefixes are present so
108 		 * X86_64 will never get here anyway
109 		 */
110 		return ((instr_lo & 7) == 0x6);
111 #ifdef CONFIG_X86_64
112 	case 0x40:
113 		/*
114 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 		 * Need to figure out under what instruction mode the
116 		 * instruction was issued. Could check the LDT for lm,
117 		 * but for now it's good enough to assume that long
118 		 * mode only uses well known segments or kernel.
119 		 */
120 		return (!user_mode(regs) || user_64bit_mode(regs));
121 #endif
122 	case 0x60:
123 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
124 		return (instr_lo & 0xC) == 0x4;
125 	case 0xF0:
126 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 		return !instr_lo || (instr_lo>>1) == 1;
128 	case 0x00:
129 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
130 		if (probe_kernel_address(instr, opcode))
131 			return 0;
132 
133 		*prefetch = (instr_lo == 0xF) &&
134 			(opcode == 0x0D || opcode == 0x18);
135 		return 0;
136 	default:
137 		return 0;
138 	}
139 }
140 
141 static int
142 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143 {
144 	unsigned char *max_instr;
145 	unsigned char *instr;
146 	int prefetch = 0;
147 
148 	/*
149 	 * If it was a exec (instruction fetch) fault on NX page, then
150 	 * do not ignore the fault:
151 	 */
152 	if (error_code & PF_INSTR)
153 		return 0;
154 
155 	instr = (void *)convert_ip_to_linear(current, regs);
156 	max_instr = instr + 15;
157 
158 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
159 		return 0;
160 
161 	while (instr < max_instr) {
162 		unsigned char opcode;
163 
164 		if (probe_kernel_address(instr, opcode))
165 			break;
166 
167 		instr++;
168 
169 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
170 			break;
171 	}
172 	return prefetch;
173 }
174 
175 /*
176  * A protection key fault means that the PKRU value did not allow
177  * access to some PTE.  Userspace can figure out what PKRU was
178  * from the XSAVE state, and this function fills out a field in
179  * siginfo so userspace can discover which protection key was set
180  * on the PTE.
181  *
182  * If we get here, we know that the hardware signaled a PF_PK
183  * fault and that there was a VMA once we got in the fault
184  * handler.  It does *not* guarantee that the VMA we find here
185  * was the one that we faulted on.
186  *
187  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
188  * 2. T1   : set PKRU to deny access to pkey=4, touches page
189  * 3. T1   : faults...
190  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191  * 5. T1   : enters fault handler, takes mmap_sem, etc...
192  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
193  *	     faulted on a pte with its pkey=4.
194  */
195 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 		struct vm_area_struct *vma)
197 {
198 	/* This is effectively an #ifdef */
199 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 		return;
201 
202 	/* Fault not from Protection Keys: nothing to do */
203 	if (si_code != SEGV_PKUERR)
204 		return;
205 	/*
206 	 * force_sig_info_fault() is called from a number of
207 	 * contexts, some of which have a VMA and some of which
208 	 * do not.  The PF_PK handing happens after we have a
209 	 * valid VMA, so we should never reach this without a
210 	 * valid VMA.
211 	 */
212 	if (!vma) {
213 		WARN_ONCE(1, "PKU fault with no VMA passed in");
214 		info->si_pkey = 0;
215 		return;
216 	}
217 	/*
218 	 * si_pkey should be thought of as a strong hint, but not
219 	 * absolutely guranteed to be 100% accurate because of
220 	 * the race explained above.
221 	 */
222 	info->si_pkey = vma_pkey(vma);
223 }
224 
225 static void
226 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227 		     struct task_struct *tsk, struct vm_area_struct *vma,
228 		     int fault)
229 {
230 	unsigned lsb = 0;
231 	siginfo_t info;
232 
233 	info.si_signo	= si_signo;
234 	info.si_errno	= 0;
235 	info.si_code	= si_code;
236 	info.si_addr	= (void __user *)address;
237 	if (fault & VM_FAULT_HWPOISON_LARGE)
238 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 	if (fault & VM_FAULT_HWPOISON)
240 		lsb = PAGE_SHIFT;
241 	info.si_addr_lsb = lsb;
242 
243 	fill_sig_info_pkey(si_code, &info, vma);
244 
245 	force_sig_info(si_signo, &info, tsk);
246 }
247 
248 DEFINE_SPINLOCK(pgd_lock);
249 LIST_HEAD(pgd_list);
250 
251 #ifdef CONFIG_X86_32
252 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253 {
254 	unsigned index = pgd_index(address);
255 	pgd_t *pgd_k;
256 	p4d_t *p4d, *p4d_k;
257 	pud_t *pud, *pud_k;
258 	pmd_t *pmd, *pmd_k;
259 
260 	pgd += index;
261 	pgd_k = init_mm.pgd + index;
262 
263 	if (!pgd_present(*pgd_k))
264 		return NULL;
265 
266 	/*
267 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
268 	 * and redundant with the set_pmd() on non-PAE. As would
269 	 * set_p4d/set_pud.
270 	 */
271 	p4d = p4d_offset(pgd, address);
272 	p4d_k = p4d_offset(pgd_k, address);
273 	if (!p4d_present(*p4d_k))
274 		return NULL;
275 
276 	pud = pud_offset(p4d, address);
277 	pud_k = pud_offset(p4d_k, address);
278 	if (!pud_present(*pud_k))
279 		return NULL;
280 
281 	pmd = pmd_offset(pud, address);
282 	pmd_k = pmd_offset(pud_k, address);
283 	if (!pmd_present(*pmd_k))
284 		return NULL;
285 
286 	if (!pmd_present(*pmd))
287 		set_pmd(pmd, *pmd_k);
288 	else
289 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
290 
291 	return pmd_k;
292 }
293 
294 void vmalloc_sync_all(void)
295 {
296 	unsigned long address;
297 
298 	if (SHARED_KERNEL_PMD)
299 		return;
300 
301 	for (address = VMALLOC_START & PMD_MASK;
302 	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
303 	     address += PMD_SIZE) {
304 		struct page *page;
305 
306 		spin_lock(&pgd_lock);
307 		list_for_each_entry(page, &pgd_list, lru) {
308 			spinlock_t *pgt_lock;
309 			pmd_t *ret;
310 
311 			/* the pgt_lock only for Xen */
312 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
313 
314 			spin_lock(pgt_lock);
315 			ret = vmalloc_sync_one(page_address(page), address);
316 			spin_unlock(pgt_lock);
317 
318 			if (!ret)
319 				break;
320 		}
321 		spin_unlock(&pgd_lock);
322 	}
323 }
324 
325 /*
326  * 32-bit:
327  *
328  *   Handle a fault on the vmalloc or module mapping area
329  */
330 static noinline int vmalloc_fault(unsigned long address)
331 {
332 	unsigned long pgd_paddr;
333 	pmd_t *pmd_k;
334 	pte_t *pte_k;
335 
336 	/* Make sure we are in vmalloc area: */
337 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
338 		return -1;
339 
340 	WARN_ON_ONCE(in_nmi());
341 
342 	/*
343 	 * Synchronize this task's top level page-table
344 	 * with the 'reference' page table.
345 	 *
346 	 * Do _not_ use "current" here. We might be inside
347 	 * an interrupt in the middle of a task switch..
348 	 */
349 	pgd_paddr = read_cr3_pa();
350 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
351 	if (!pmd_k)
352 		return -1;
353 
354 	if (pmd_huge(*pmd_k))
355 		return 0;
356 
357 	pte_k = pte_offset_kernel(pmd_k, address);
358 	if (!pte_present(*pte_k))
359 		return -1;
360 
361 	return 0;
362 }
363 NOKPROBE_SYMBOL(vmalloc_fault);
364 
365 /*
366  * Did it hit the DOS screen memory VA from vm86 mode?
367  */
368 static inline void
369 check_v8086_mode(struct pt_regs *regs, unsigned long address,
370 		 struct task_struct *tsk)
371 {
372 #ifdef CONFIG_VM86
373 	unsigned long bit;
374 
375 	if (!v8086_mode(regs) || !tsk->thread.vm86)
376 		return;
377 
378 	bit = (address - 0xA0000) >> PAGE_SHIFT;
379 	if (bit < 32)
380 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
381 #endif
382 }
383 
384 static bool low_pfn(unsigned long pfn)
385 {
386 	return pfn < max_low_pfn;
387 }
388 
389 static void dump_pagetable(unsigned long address)
390 {
391 	pgd_t *base = __va(read_cr3_pa());
392 	pgd_t *pgd = &base[pgd_index(address)];
393 	p4d_t *p4d;
394 	pud_t *pud;
395 	pmd_t *pmd;
396 	pte_t *pte;
397 
398 #ifdef CONFIG_X86_PAE
399 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
400 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
401 		goto out;
402 #define pr_pde pr_cont
403 #else
404 #define pr_pde pr_info
405 #endif
406 	p4d = p4d_offset(pgd, address);
407 	pud = pud_offset(p4d, address);
408 	pmd = pmd_offset(pud, address);
409 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
410 #undef pr_pde
411 
412 	/*
413 	 * We must not directly access the pte in the highpte
414 	 * case if the page table is located in highmem.
415 	 * And let's rather not kmap-atomic the pte, just in case
416 	 * it's allocated already:
417 	 */
418 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
419 		goto out;
420 
421 	pte = pte_offset_kernel(pmd, address);
422 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
423 out:
424 	pr_cont("\n");
425 }
426 
427 #else /* CONFIG_X86_64: */
428 
429 void vmalloc_sync_all(void)
430 {
431 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
432 }
433 
434 /*
435  * 64-bit:
436  *
437  *   Handle a fault on the vmalloc area
438  */
439 static noinline int vmalloc_fault(unsigned long address)
440 {
441 	pgd_t *pgd, *pgd_ref;
442 	p4d_t *p4d, *p4d_ref;
443 	pud_t *pud, *pud_ref;
444 	pmd_t *pmd, *pmd_ref;
445 	pte_t *pte, *pte_ref;
446 
447 	/* Make sure we are in vmalloc area: */
448 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
449 		return -1;
450 
451 	WARN_ON_ONCE(in_nmi());
452 
453 	/*
454 	 * Copy kernel mappings over when needed. This can also
455 	 * happen within a race in page table update. In the later
456 	 * case just flush:
457 	 */
458 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
459 	pgd_ref = pgd_offset_k(address);
460 	if (pgd_none(*pgd_ref))
461 		return -1;
462 
463 	if (pgd_none(*pgd)) {
464 		set_pgd(pgd, *pgd_ref);
465 		arch_flush_lazy_mmu_mode();
466 	} else if (CONFIG_PGTABLE_LEVELS > 4) {
467 		/*
468 		 * With folded p4d, pgd_none() is always false, so the pgd may
469 		 * point to an empty page table entry and pgd_page_vaddr()
470 		 * will return garbage.
471 		 *
472 		 * We will do the correct sanity check on the p4d level.
473 		 */
474 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
475 	}
476 
477 	/* With 4-level paging, copying happens on the p4d level. */
478 	p4d = p4d_offset(pgd, address);
479 	p4d_ref = p4d_offset(pgd_ref, address);
480 	if (p4d_none(*p4d_ref))
481 		return -1;
482 
483 	if (p4d_none(*p4d)) {
484 		set_p4d(p4d, *p4d_ref);
485 		arch_flush_lazy_mmu_mode();
486 	} else {
487 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
488 	}
489 
490 	/*
491 	 * Below here mismatches are bugs because these lower tables
492 	 * are shared:
493 	 */
494 
495 	pud = pud_offset(p4d, address);
496 	pud_ref = pud_offset(p4d_ref, address);
497 	if (pud_none(*pud_ref))
498 		return -1;
499 
500 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
501 		BUG();
502 
503 	if (pud_huge(*pud))
504 		return 0;
505 
506 	pmd = pmd_offset(pud, address);
507 	pmd_ref = pmd_offset(pud_ref, address);
508 	if (pmd_none(*pmd_ref))
509 		return -1;
510 
511 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
512 		BUG();
513 
514 	if (pmd_huge(*pmd))
515 		return 0;
516 
517 	pte_ref = pte_offset_kernel(pmd_ref, address);
518 	if (!pte_present(*pte_ref))
519 		return -1;
520 
521 	pte = pte_offset_kernel(pmd, address);
522 
523 	/*
524 	 * Don't use pte_page here, because the mappings can point
525 	 * outside mem_map, and the NUMA hash lookup cannot handle
526 	 * that:
527 	 */
528 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
529 		BUG();
530 
531 	return 0;
532 }
533 NOKPROBE_SYMBOL(vmalloc_fault);
534 
535 #ifdef CONFIG_CPU_SUP_AMD
536 static const char errata93_warning[] =
537 KERN_ERR
538 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
539 "******* Working around it, but it may cause SEGVs or burn power.\n"
540 "******* Please consider a BIOS update.\n"
541 "******* Disabling USB legacy in the BIOS may also help.\n";
542 #endif
543 
544 /*
545  * No vm86 mode in 64-bit mode:
546  */
547 static inline void
548 check_v8086_mode(struct pt_regs *regs, unsigned long address,
549 		 struct task_struct *tsk)
550 {
551 }
552 
553 static int bad_address(void *p)
554 {
555 	unsigned long dummy;
556 
557 	return probe_kernel_address((unsigned long *)p, dummy);
558 }
559 
560 static void dump_pagetable(unsigned long address)
561 {
562 	pgd_t *base = __va(read_cr3_pa());
563 	pgd_t *pgd = base + pgd_index(address);
564 	p4d_t *p4d;
565 	pud_t *pud;
566 	pmd_t *pmd;
567 	pte_t *pte;
568 
569 	if (bad_address(pgd))
570 		goto bad;
571 
572 	pr_info("PGD %lx ", pgd_val(*pgd));
573 
574 	if (!pgd_present(*pgd))
575 		goto out;
576 
577 	p4d = p4d_offset(pgd, address);
578 	if (bad_address(p4d))
579 		goto bad;
580 
581 	pr_cont("P4D %lx ", p4d_val(*p4d));
582 	if (!p4d_present(*p4d) || p4d_large(*p4d))
583 		goto out;
584 
585 	pud = pud_offset(p4d, address);
586 	if (bad_address(pud))
587 		goto bad;
588 
589 	pr_cont("PUD %lx ", pud_val(*pud));
590 	if (!pud_present(*pud) || pud_large(*pud))
591 		goto out;
592 
593 	pmd = pmd_offset(pud, address);
594 	if (bad_address(pmd))
595 		goto bad;
596 
597 	pr_cont("PMD %lx ", pmd_val(*pmd));
598 	if (!pmd_present(*pmd) || pmd_large(*pmd))
599 		goto out;
600 
601 	pte = pte_offset_kernel(pmd, address);
602 	if (bad_address(pte))
603 		goto bad;
604 
605 	pr_cont("PTE %lx", pte_val(*pte));
606 out:
607 	pr_cont("\n");
608 	return;
609 bad:
610 	pr_info("BAD\n");
611 }
612 
613 #endif /* CONFIG_X86_64 */
614 
615 /*
616  * Workaround for K8 erratum #93 & buggy BIOS.
617  *
618  * BIOS SMM functions are required to use a specific workaround
619  * to avoid corruption of the 64bit RIP register on C stepping K8.
620  *
621  * A lot of BIOS that didn't get tested properly miss this.
622  *
623  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
624  * Try to work around it here.
625  *
626  * Note we only handle faults in kernel here.
627  * Does nothing on 32-bit.
628  */
629 static int is_errata93(struct pt_regs *regs, unsigned long address)
630 {
631 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
632 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
633 	    || boot_cpu_data.x86 != 0xf)
634 		return 0;
635 
636 	if (address != regs->ip)
637 		return 0;
638 
639 	if ((address >> 32) != 0)
640 		return 0;
641 
642 	address |= 0xffffffffUL << 32;
643 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
644 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
645 		printk_once(errata93_warning);
646 		regs->ip = address;
647 		return 1;
648 	}
649 #endif
650 	return 0;
651 }
652 
653 /*
654  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
655  * to illegal addresses >4GB.
656  *
657  * We catch this in the page fault handler because these addresses
658  * are not reachable. Just detect this case and return.  Any code
659  * segment in LDT is compatibility mode.
660  */
661 static int is_errata100(struct pt_regs *regs, unsigned long address)
662 {
663 #ifdef CONFIG_X86_64
664 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
665 		return 1;
666 #endif
667 	return 0;
668 }
669 
670 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
671 {
672 #ifdef CONFIG_X86_F00F_BUG
673 	unsigned long nr;
674 
675 	/*
676 	 * Pentium F0 0F C7 C8 bug workaround:
677 	 */
678 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
679 		nr = (address - idt_descr.address) >> 3;
680 
681 		if (nr == 6) {
682 			do_invalid_op(regs, 0);
683 			return 1;
684 		}
685 	}
686 #endif
687 	return 0;
688 }
689 
690 static const char nx_warning[] = KERN_CRIT
691 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
692 static const char smep_warning[] = KERN_CRIT
693 "unable to execute userspace code (SMEP?) (uid: %d)\n";
694 
695 static void
696 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
697 		unsigned long address)
698 {
699 	if (!oops_may_print())
700 		return;
701 
702 	if (error_code & PF_INSTR) {
703 		unsigned int level;
704 		pgd_t *pgd;
705 		pte_t *pte;
706 
707 		pgd = __va(read_cr3_pa());
708 		pgd += pgd_index(address);
709 
710 		pte = lookup_address_in_pgd(pgd, address, &level);
711 
712 		if (pte && pte_present(*pte) && !pte_exec(*pte))
713 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
714 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
715 				(pgd_flags(*pgd) & _PAGE_USER) &&
716 				(__read_cr4() & X86_CR4_SMEP))
717 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
718 	}
719 
720 	printk(KERN_ALERT "BUG: unable to handle kernel ");
721 	if (address < PAGE_SIZE)
722 		printk(KERN_CONT "NULL pointer dereference");
723 	else
724 		printk(KERN_CONT "paging request");
725 
726 	printk(KERN_CONT " at %p\n", (void *) address);
727 	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
728 
729 	dump_pagetable(address);
730 }
731 
732 static noinline void
733 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
734 	    unsigned long address)
735 {
736 	struct task_struct *tsk;
737 	unsigned long flags;
738 	int sig;
739 
740 	flags = oops_begin();
741 	tsk = current;
742 	sig = SIGKILL;
743 
744 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
745 	       tsk->comm, address);
746 	dump_pagetable(address);
747 
748 	tsk->thread.cr2		= address;
749 	tsk->thread.trap_nr	= X86_TRAP_PF;
750 	tsk->thread.error_code	= error_code;
751 
752 	if (__die("Bad pagetable", regs, error_code))
753 		sig = 0;
754 
755 	oops_end(flags, regs, sig);
756 }
757 
758 static noinline void
759 no_context(struct pt_regs *regs, unsigned long error_code,
760 	   unsigned long address, int signal, int si_code)
761 {
762 	struct task_struct *tsk = current;
763 	unsigned long flags;
764 	int sig;
765 	/* No context means no VMA to pass down */
766 	struct vm_area_struct *vma = NULL;
767 
768 	/* Are we prepared to handle this kernel fault? */
769 	if (fixup_exception(regs, X86_TRAP_PF)) {
770 		/*
771 		 * Any interrupt that takes a fault gets the fixup. This makes
772 		 * the below recursive fault logic only apply to a faults from
773 		 * task context.
774 		 */
775 		if (in_interrupt())
776 			return;
777 
778 		/*
779 		 * Per the above we're !in_interrupt(), aka. task context.
780 		 *
781 		 * In this case we need to make sure we're not recursively
782 		 * faulting through the emulate_vsyscall() logic.
783 		 */
784 		if (current->thread.sig_on_uaccess_err && signal) {
785 			tsk->thread.trap_nr = X86_TRAP_PF;
786 			tsk->thread.error_code = error_code | PF_USER;
787 			tsk->thread.cr2 = address;
788 
789 			/* XXX: hwpoison faults will set the wrong code. */
790 			force_sig_info_fault(signal, si_code, address,
791 					     tsk, vma, 0);
792 		}
793 
794 		/*
795 		 * Barring that, we can do the fixup and be happy.
796 		 */
797 		return;
798 	}
799 
800 #ifdef CONFIG_VMAP_STACK
801 	/*
802 	 * Stack overflow?  During boot, we can fault near the initial
803 	 * stack in the direct map, but that's not an overflow -- check
804 	 * that we're in vmalloc space to avoid this.
805 	 */
806 	if (is_vmalloc_addr((void *)address) &&
807 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
808 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
809 		register void *__sp asm("rsp");
810 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
811 		/*
812 		 * We're likely to be running with very little stack space
813 		 * left.  It's plausible that we'd hit this condition but
814 		 * double-fault even before we get this far, in which case
815 		 * we're fine: the double-fault handler will deal with it.
816 		 *
817 		 * We don't want to make it all the way into the oops code
818 		 * and then double-fault, though, because we're likely to
819 		 * break the console driver and lose most of the stack dump.
820 		 */
821 		asm volatile ("movq %[stack], %%rsp\n\t"
822 			      "call handle_stack_overflow\n\t"
823 			      "1: jmp 1b"
824 			      : "+r" (__sp)
825 			      : "D" ("kernel stack overflow (page fault)"),
826 				"S" (regs), "d" (address),
827 				[stack] "rm" (stack));
828 		unreachable();
829 	}
830 #endif
831 
832 	/*
833 	 * 32-bit:
834 	 *
835 	 *   Valid to do another page fault here, because if this fault
836 	 *   had been triggered by is_prefetch fixup_exception would have
837 	 *   handled it.
838 	 *
839 	 * 64-bit:
840 	 *
841 	 *   Hall of shame of CPU/BIOS bugs.
842 	 */
843 	if (is_prefetch(regs, error_code, address))
844 		return;
845 
846 	if (is_errata93(regs, address))
847 		return;
848 
849 	/*
850 	 * Oops. The kernel tried to access some bad page. We'll have to
851 	 * terminate things with extreme prejudice:
852 	 */
853 	flags = oops_begin();
854 
855 	show_fault_oops(regs, error_code, address);
856 
857 	if (task_stack_end_corrupted(tsk))
858 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
859 
860 	tsk->thread.cr2		= address;
861 	tsk->thread.trap_nr	= X86_TRAP_PF;
862 	tsk->thread.error_code	= error_code;
863 
864 	sig = SIGKILL;
865 	if (__die("Oops", regs, error_code))
866 		sig = 0;
867 
868 	/* Executive summary in case the body of the oops scrolled away */
869 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
870 
871 	oops_end(flags, regs, sig);
872 }
873 
874 /*
875  * Print out info about fatal segfaults, if the show_unhandled_signals
876  * sysctl is set:
877  */
878 static inline void
879 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
880 		unsigned long address, struct task_struct *tsk)
881 {
882 	if (!unhandled_signal(tsk, SIGSEGV))
883 		return;
884 
885 	if (!printk_ratelimit())
886 		return;
887 
888 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
889 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
890 		tsk->comm, task_pid_nr(tsk), address,
891 		(void *)regs->ip, (void *)regs->sp, error_code);
892 
893 	print_vma_addr(KERN_CONT " in ", regs->ip);
894 
895 	printk(KERN_CONT "\n");
896 }
897 
898 static void
899 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
900 		       unsigned long address, struct vm_area_struct *vma,
901 		       int si_code)
902 {
903 	struct task_struct *tsk = current;
904 
905 	/* User mode accesses just cause a SIGSEGV */
906 	if (error_code & PF_USER) {
907 		/*
908 		 * It's possible to have interrupts off here:
909 		 */
910 		local_irq_enable();
911 
912 		/*
913 		 * Valid to do another page fault here because this one came
914 		 * from user space:
915 		 */
916 		if (is_prefetch(regs, error_code, address))
917 			return;
918 
919 		if (is_errata100(regs, address))
920 			return;
921 
922 #ifdef CONFIG_X86_64
923 		/*
924 		 * Instruction fetch faults in the vsyscall page might need
925 		 * emulation.
926 		 */
927 		if (unlikely((error_code & PF_INSTR) &&
928 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
929 			if (emulate_vsyscall(regs, address))
930 				return;
931 		}
932 #endif
933 
934 		/*
935 		 * To avoid leaking information about the kernel page table
936 		 * layout, pretend that user-mode accesses to kernel addresses
937 		 * are always protection faults.
938 		 */
939 		if (address >= TASK_SIZE_MAX)
940 			error_code |= PF_PROT;
941 
942 		if (likely(show_unhandled_signals))
943 			show_signal_msg(regs, error_code, address, tsk);
944 
945 		tsk->thread.cr2		= address;
946 		tsk->thread.error_code	= error_code;
947 		tsk->thread.trap_nr	= X86_TRAP_PF;
948 
949 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
950 
951 		return;
952 	}
953 
954 	if (is_f00f_bug(regs, address))
955 		return;
956 
957 	no_context(regs, error_code, address, SIGSEGV, si_code);
958 }
959 
960 static noinline void
961 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
962 		     unsigned long address, struct vm_area_struct *vma)
963 {
964 	__bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
965 }
966 
967 static void
968 __bad_area(struct pt_regs *regs, unsigned long error_code,
969 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
970 {
971 	struct mm_struct *mm = current->mm;
972 
973 	/*
974 	 * Something tried to access memory that isn't in our memory map..
975 	 * Fix it, but check if it's kernel or user first..
976 	 */
977 	up_read(&mm->mmap_sem);
978 
979 	__bad_area_nosemaphore(regs, error_code, address, vma, si_code);
980 }
981 
982 static noinline void
983 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
984 {
985 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
986 }
987 
988 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
989 		struct vm_area_struct *vma)
990 {
991 	/* This code is always called on the current mm */
992 	bool foreign = false;
993 
994 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
995 		return false;
996 	if (error_code & PF_PK)
997 		return true;
998 	/* this checks permission keys on the VMA: */
999 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1000 				(error_code & PF_INSTR), foreign))
1001 		return true;
1002 	return false;
1003 }
1004 
1005 static noinline void
1006 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1007 		      unsigned long address, struct vm_area_struct *vma)
1008 {
1009 	/*
1010 	 * This OSPKE check is not strictly necessary at runtime.
1011 	 * But, doing it this way allows compiler optimizations
1012 	 * if pkeys are compiled out.
1013 	 */
1014 	if (bad_area_access_from_pkeys(error_code, vma))
1015 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1016 	else
1017 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1018 }
1019 
1020 static void
1021 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022 	  struct vm_area_struct *vma, unsigned int fault)
1023 {
1024 	struct task_struct *tsk = current;
1025 	int code = BUS_ADRERR;
1026 
1027 	/* Kernel mode? Handle exceptions or die: */
1028 	if (!(error_code & PF_USER)) {
1029 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1030 		return;
1031 	}
1032 
1033 	/* User-space => ok to do another page fault: */
1034 	if (is_prefetch(regs, error_code, address))
1035 		return;
1036 
1037 	tsk->thread.cr2		= address;
1038 	tsk->thread.error_code	= error_code;
1039 	tsk->thread.trap_nr	= X86_TRAP_PF;
1040 
1041 #ifdef CONFIG_MEMORY_FAILURE
1042 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1043 		printk(KERN_ERR
1044 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1045 			tsk->comm, tsk->pid, address);
1046 		code = BUS_MCEERR_AR;
1047 	}
1048 #endif
1049 	force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
1050 }
1051 
1052 static noinline void
1053 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1054 	       unsigned long address, struct vm_area_struct *vma,
1055 	       unsigned int fault)
1056 {
1057 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
1058 		no_context(regs, error_code, address, 0, 0);
1059 		return;
1060 	}
1061 
1062 	if (fault & VM_FAULT_OOM) {
1063 		/* Kernel mode? Handle exceptions or die: */
1064 		if (!(error_code & PF_USER)) {
1065 			no_context(regs, error_code, address,
1066 				   SIGSEGV, SEGV_MAPERR);
1067 			return;
1068 		}
1069 
1070 		/*
1071 		 * We ran out of memory, call the OOM killer, and return the
1072 		 * userspace (which will retry the fault, or kill us if we got
1073 		 * oom-killed):
1074 		 */
1075 		pagefault_out_of_memory();
1076 	} else {
1077 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1078 			     VM_FAULT_HWPOISON_LARGE))
1079 			do_sigbus(regs, error_code, address, vma, fault);
1080 		else if (fault & VM_FAULT_SIGSEGV)
1081 			bad_area_nosemaphore(regs, error_code, address, vma);
1082 		else
1083 			BUG();
1084 	}
1085 }
1086 
1087 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1088 {
1089 	if ((error_code & PF_WRITE) && !pte_write(*pte))
1090 		return 0;
1091 
1092 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
1093 		return 0;
1094 	/*
1095 	 * Note: We do not do lazy flushing on protection key
1096 	 * changes, so no spurious fault will ever set PF_PK.
1097 	 */
1098 	if ((error_code & PF_PK))
1099 		return 1;
1100 
1101 	return 1;
1102 }
1103 
1104 /*
1105  * Handle a spurious fault caused by a stale TLB entry.
1106  *
1107  * This allows us to lazily refresh the TLB when increasing the
1108  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1109  * eagerly is very expensive since that implies doing a full
1110  * cross-processor TLB flush, even if no stale TLB entries exist
1111  * on other processors.
1112  *
1113  * Spurious faults may only occur if the TLB contains an entry with
1114  * fewer permission than the page table entry.  Non-present (P = 0)
1115  * and reserved bit (R = 1) faults are never spurious.
1116  *
1117  * There are no security implications to leaving a stale TLB when
1118  * increasing the permissions on a page.
1119  *
1120  * Returns non-zero if a spurious fault was handled, zero otherwise.
1121  *
1122  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1123  * (Optional Invalidation).
1124  */
1125 static noinline int
1126 spurious_fault(unsigned long error_code, unsigned long address)
1127 {
1128 	pgd_t *pgd;
1129 	p4d_t *p4d;
1130 	pud_t *pud;
1131 	pmd_t *pmd;
1132 	pte_t *pte;
1133 	int ret;
1134 
1135 	/*
1136 	 * Only writes to RO or instruction fetches from NX may cause
1137 	 * spurious faults.
1138 	 *
1139 	 * These could be from user or supervisor accesses but the TLB
1140 	 * is only lazily flushed after a kernel mapping protection
1141 	 * change, so user accesses are not expected to cause spurious
1142 	 * faults.
1143 	 */
1144 	if (error_code != (PF_WRITE | PF_PROT)
1145 	    && error_code != (PF_INSTR | PF_PROT))
1146 		return 0;
1147 
1148 	pgd = init_mm.pgd + pgd_index(address);
1149 	if (!pgd_present(*pgd))
1150 		return 0;
1151 
1152 	p4d = p4d_offset(pgd, address);
1153 	if (!p4d_present(*p4d))
1154 		return 0;
1155 
1156 	if (p4d_large(*p4d))
1157 		return spurious_fault_check(error_code, (pte_t *) p4d);
1158 
1159 	pud = pud_offset(p4d, address);
1160 	if (!pud_present(*pud))
1161 		return 0;
1162 
1163 	if (pud_large(*pud))
1164 		return spurious_fault_check(error_code, (pte_t *) pud);
1165 
1166 	pmd = pmd_offset(pud, address);
1167 	if (!pmd_present(*pmd))
1168 		return 0;
1169 
1170 	if (pmd_large(*pmd))
1171 		return spurious_fault_check(error_code, (pte_t *) pmd);
1172 
1173 	pte = pte_offset_kernel(pmd, address);
1174 	if (!pte_present(*pte))
1175 		return 0;
1176 
1177 	ret = spurious_fault_check(error_code, pte);
1178 	if (!ret)
1179 		return 0;
1180 
1181 	/*
1182 	 * Make sure we have permissions in PMD.
1183 	 * If not, then there's a bug in the page tables:
1184 	 */
1185 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1186 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1187 
1188 	return ret;
1189 }
1190 NOKPROBE_SYMBOL(spurious_fault);
1191 
1192 int show_unhandled_signals = 1;
1193 
1194 static inline int
1195 access_error(unsigned long error_code, struct vm_area_struct *vma)
1196 {
1197 	/* This is only called for the current mm, so: */
1198 	bool foreign = false;
1199 
1200 	/*
1201 	 * Read or write was blocked by protection keys.  This is
1202 	 * always an unconditional error and can never result in
1203 	 * a follow-up action to resolve the fault, like a COW.
1204 	 */
1205 	if (error_code & PF_PK)
1206 		return 1;
1207 
1208 	/*
1209 	 * Make sure to check the VMA so that we do not perform
1210 	 * faults just to hit a PF_PK as soon as we fill in a
1211 	 * page.
1212 	 */
1213 	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1214 				(error_code & PF_INSTR), foreign))
1215 		return 1;
1216 
1217 	if (error_code & PF_WRITE) {
1218 		/* write, present and write, not present: */
1219 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1220 			return 1;
1221 		return 0;
1222 	}
1223 
1224 	/* read, present: */
1225 	if (unlikely(error_code & PF_PROT))
1226 		return 1;
1227 
1228 	/* read, not present: */
1229 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1230 		return 1;
1231 
1232 	return 0;
1233 }
1234 
1235 static int fault_in_kernel_space(unsigned long address)
1236 {
1237 	return address >= TASK_SIZE_MAX;
1238 }
1239 
1240 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1241 {
1242 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1243 		return false;
1244 
1245 	if (!static_cpu_has(X86_FEATURE_SMAP))
1246 		return false;
1247 
1248 	if (error_code & PF_USER)
1249 		return false;
1250 
1251 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 /*
1258  * This routine handles page faults.  It determines the address,
1259  * and the problem, and then passes it off to one of the appropriate
1260  * routines.
1261  */
1262 static noinline void
1263 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1264 		unsigned long address)
1265 {
1266 	struct vm_area_struct *vma;
1267 	struct task_struct *tsk;
1268 	struct mm_struct *mm;
1269 	int fault, major = 0;
1270 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1271 
1272 	tsk = current;
1273 	mm = tsk->mm;
1274 
1275 	/*
1276 	 * Detect and handle instructions that would cause a page fault for
1277 	 * both a tracked kernel page and a userspace page.
1278 	 */
1279 	if (kmemcheck_active(regs))
1280 		kmemcheck_hide(regs);
1281 	prefetchw(&mm->mmap_sem);
1282 
1283 	if (unlikely(kmmio_fault(regs, address)))
1284 		return;
1285 
1286 	/*
1287 	 * We fault-in kernel-space virtual memory on-demand. The
1288 	 * 'reference' page table is init_mm.pgd.
1289 	 *
1290 	 * NOTE! We MUST NOT take any locks for this case. We may
1291 	 * be in an interrupt or a critical region, and should
1292 	 * only copy the information from the master page table,
1293 	 * nothing more.
1294 	 *
1295 	 * This verifies that the fault happens in kernel space
1296 	 * (error_code & 4) == 0, and that the fault was not a
1297 	 * protection error (error_code & 9) == 0.
1298 	 */
1299 	if (unlikely(fault_in_kernel_space(address))) {
1300 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1301 			if (vmalloc_fault(address) >= 0)
1302 				return;
1303 
1304 			if (kmemcheck_fault(regs, address, error_code))
1305 				return;
1306 		}
1307 
1308 		/* Can handle a stale RO->RW TLB: */
1309 		if (spurious_fault(error_code, address))
1310 			return;
1311 
1312 		/* kprobes don't want to hook the spurious faults: */
1313 		if (kprobes_fault(regs))
1314 			return;
1315 		/*
1316 		 * Don't take the mm semaphore here. If we fixup a prefetch
1317 		 * fault we could otherwise deadlock:
1318 		 */
1319 		bad_area_nosemaphore(regs, error_code, address, NULL);
1320 
1321 		return;
1322 	}
1323 
1324 	/* kprobes don't want to hook the spurious faults: */
1325 	if (unlikely(kprobes_fault(regs)))
1326 		return;
1327 
1328 	if (unlikely(error_code & PF_RSVD))
1329 		pgtable_bad(regs, error_code, address);
1330 
1331 	if (unlikely(smap_violation(error_code, regs))) {
1332 		bad_area_nosemaphore(regs, error_code, address, NULL);
1333 		return;
1334 	}
1335 
1336 	/*
1337 	 * If we're in an interrupt, have no user context or are running
1338 	 * in a region with pagefaults disabled then we must not take the fault
1339 	 */
1340 	if (unlikely(faulthandler_disabled() || !mm)) {
1341 		bad_area_nosemaphore(regs, error_code, address, NULL);
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * It's safe to allow irq's after cr2 has been saved and the
1347 	 * vmalloc fault has been handled.
1348 	 *
1349 	 * User-mode registers count as a user access even for any
1350 	 * potential system fault or CPU buglet:
1351 	 */
1352 	if (user_mode(regs)) {
1353 		local_irq_enable();
1354 		error_code |= PF_USER;
1355 		flags |= FAULT_FLAG_USER;
1356 	} else {
1357 		if (regs->flags & X86_EFLAGS_IF)
1358 			local_irq_enable();
1359 	}
1360 
1361 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1362 
1363 	if (error_code & PF_WRITE)
1364 		flags |= FAULT_FLAG_WRITE;
1365 	if (error_code & PF_INSTR)
1366 		flags |= FAULT_FLAG_INSTRUCTION;
1367 
1368 	/*
1369 	 * When running in the kernel we expect faults to occur only to
1370 	 * addresses in user space.  All other faults represent errors in
1371 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1372 	 * case of an erroneous fault occurring in a code path which already
1373 	 * holds mmap_sem we will deadlock attempting to validate the fault
1374 	 * against the address space.  Luckily the kernel only validly
1375 	 * references user space from well defined areas of code, which are
1376 	 * listed in the exceptions table.
1377 	 *
1378 	 * As the vast majority of faults will be valid we will only perform
1379 	 * the source reference check when there is a possibility of a
1380 	 * deadlock. Attempt to lock the address space, if we cannot we then
1381 	 * validate the source. If this is invalid we can skip the address
1382 	 * space check, thus avoiding the deadlock:
1383 	 */
1384 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385 		if ((error_code & PF_USER) == 0 &&
1386 		    !search_exception_tables(regs->ip)) {
1387 			bad_area_nosemaphore(regs, error_code, address, NULL);
1388 			return;
1389 		}
1390 retry:
1391 		down_read(&mm->mmap_sem);
1392 	} else {
1393 		/*
1394 		 * The above down_read_trylock() might have succeeded in
1395 		 * which case we'll have missed the might_sleep() from
1396 		 * down_read():
1397 		 */
1398 		might_sleep();
1399 	}
1400 
1401 	vma = find_vma(mm, address);
1402 	if (unlikely(!vma)) {
1403 		bad_area(regs, error_code, address);
1404 		return;
1405 	}
1406 	if (likely(vma->vm_start <= address))
1407 		goto good_area;
1408 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409 		bad_area(regs, error_code, address);
1410 		return;
1411 	}
1412 	if (error_code & PF_USER) {
1413 		/*
1414 		 * Accessing the stack below %sp is always a bug.
1415 		 * The large cushion allows instructions like enter
1416 		 * and pusha to work. ("enter $65535, $31" pushes
1417 		 * 32 pointers and then decrements %sp by 65535.)
1418 		 */
1419 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1420 			bad_area(regs, error_code, address);
1421 			return;
1422 		}
1423 	}
1424 	if (unlikely(expand_stack(vma, address))) {
1425 		bad_area(regs, error_code, address);
1426 		return;
1427 	}
1428 
1429 	/*
1430 	 * Ok, we have a good vm_area for this memory access, so
1431 	 * we can handle it..
1432 	 */
1433 good_area:
1434 	if (unlikely(access_error(error_code, vma))) {
1435 		bad_area_access_error(regs, error_code, address, vma);
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * If for any reason at all we couldn't handle the fault,
1441 	 * make sure we exit gracefully rather than endlessly redo
1442 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1444 	 */
1445 	fault = handle_mm_fault(vma, address, flags);
1446 	major |= fault & VM_FAULT_MAJOR;
1447 
1448 	/*
1449 	 * If we need to retry the mmap_sem has already been released,
1450 	 * and if there is a fatal signal pending there is no guarantee
1451 	 * that we made any progress. Handle this case first.
1452 	 */
1453 	if (unlikely(fault & VM_FAULT_RETRY)) {
1454 		/* Retry at most once */
1455 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1456 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1457 			flags |= FAULT_FLAG_TRIED;
1458 			if (!fatal_signal_pending(tsk))
1459 				goto retry;
1460 		}
1461 
1462 		/* User mode? Just return to handle the fatal exception */
1463 		if (flags & FAULT_FLAG_USER)
1464 			return;
1465 
1466 		/* Not returning to user mode? Handle exceptions or die: */
1467 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1468 		return;
1469 	}
1470 
1471 	up_read(&mm->mmap_sem);
1472 	if (unlikely(fault & VM_FAULT_ERROR)) {
1473 		mm_fault_error(regs, error_code, address, vma, fault);
1474 		return;
1475 	}
1476 
1477 	/*
1478 	 * Major/minor page fault accounting. If any of the events
1479 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1480 	 */
1481 	if (major) {
1482 		tsk->maj_flt++;
1483 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1484 	} else {
1485 		tsk->min_flt++;
1486 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1487 	}
1488 
1489 	check_v8086_mode(regs, address, tsk);
1490 }
1491 NOKPROBE_SYMBOL(__do_page_fault);
1492 
1493 static nokprobe_inline void
1494 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1495 			 unsigned long error_code)
1496 {
1497 	if (user_mode(regs))
1498 		trace_page_fault_user(address, regs, error_code);
1499 	else
1500 		trace_page_fault_kernel(address, regs, error_code);
1501 }
1502 
1503 /*
1504  * We must have this function blacklisted from kprobes, tagged with notrace
1505  * and call read_cr2() before calling anything else. To avoid calling any
1506  * kind of tracing machinery before we've observed the CR2 value.
1507  *
1508  * exception_{enter,exit}() contains all sorts of tracepoints.
1509  */
1510 dotraplinkage void notrace
1511 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1512 {
1513 	unsigned long address = read_cr2(); /* Get the faulting address */
1514 	enum ctx_state prev_state;
1515 
1516 	prev_state = exception_enter();
1517 	if (trace_pagefault_enabled())
1518 		trace_page_fault_entries(address, regs, error_code);
1519 
1520 	__do_page_fault(regs, error_code, address);
1521 	exception_exit(prev_state);
1522 }
1523 NOKPROBE_SYMBOL(do_page_fault);
1524