xref: /openbmc/linux/arch/x86/mm/fault.c (revision 1fa6ac37)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/magic.h>		/* STACK_END_MAGIC		*/
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9 #include <linux/module.h>		/* search_exception_table	*/
10 #include <linux/bootmem.h>		/* max_low_pfn			*/
11 #include <linux/kprobes.h>		/* __kprobes, ...		*/
12 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13 #include <linux/perf_event.h>		/* perf_sw_event		*/
14 
15 #include <asm/traps.h>			/* dotraplinkage, ...		*/
16 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
17 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
18 
19 /*
20  * Page fault error code bits:
21  *
22  *   bit 0 ==	 0: no page found	1: protection fault
23  *   bit 1 ==	 0: read access		1: write access
24  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
25  *   bit 3 ==				1: use of reserved bit detected
26  *   bit 4 ==				1: fault was an instruction fetch
27  */
28 enum x86_pf_error_code {
29 
30 	PF_PROT		=		1 << 0,
31 	PF_WRITE	=		1 << 1,
32 	PF_USER		=		1 << 2,
33 	PF_RSVD		=		1 << 3,
34 	PF_INSTR	=		1 << 4,
35 };
36 
37 /*
38  * Returns 0 if mmiotrace is disabled, or if the fault is not
39  * handled by mmiotrace:
40  */
41 static inline int __kprobes
42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 {
44 	if (unlikely(is_kmmio_active()))
45 		if (kmmio_handler(regs, addr) == 1)
46 			return -1;
47 	return 0;
48 }
49 
50 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
51 {
52 	int ret = 0;
53 
54 	/* kprobe_running() needs smp_processor_id() */
55 	if (kprobes_built_in() && !user_mode_vm(regs)) {
56 		preempt_disable();
57 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
58 			ret = 1;
59 		preempt_enable();
60 	}
61 
62 	return ret;
63 }
64 
65 /*
66  * Prefetch quirks:
67  *
68  * 32-bit mode:
69  *
70  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
71  *   Check that here and ignore it.
72  *
73  * 64-bit mode:
74  *
75  *   Sometimes the CPU reports invalid exceptions on prefetch.
76  *   Check that here and ignore it.
77  *
78  * Opcode checker based on code by Richard Brunner.
79  */
80 static inline int
81 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
82 		      unsigned char opcode, int *prefetch)
83 {
84 	unsigned char instr_hi = opcode & 0xf0;
85 	unsigned char instr_lo = opcode & 0x0f;
86 
87 	switch (instr_hi) {
88 	case 0x20:
89 	case 0x30:
90 		/*
91 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
92 		 * In X86_64 long mode, the CPU will signal invalid
93 		 * opcode if some of these prefixes are present so
94 		 * X86_64 will never get here anyway
95 		 */
96 		return ((instr_lo & 7) == 0x6);
97 #ifdef CONFIG_X86_64
98 	case 0x40:
99 		/*
100 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
101 		 * Need to figure out under what instruction mode the
102 		 * instruction was issued. Could check the LDT for lm,
103 		 * but for now it's good enough to assume that long
104 		 * mode only uses well known segments or kernel.
105 		 */
106 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
107 #endif
108 	case 0x60:
109 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
110 		return (instr_lo & 0xC) == 0x4;
111 	case 0xF0:
112 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
113 		return !instr_lo || (instr_lo>>1) == 1;
114 	case 0x00:
115 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
116 		if (probe_kernel_address(instr, opcode))
117 			return 0;
118 
119 		*prefetch = (instr_lo == 0xF) &&
120 			(opcode == 0x0D || opcode == 0x18);
121 		return 0;
122 	default:
123 		return 0;
124 	}
125 }
126 
127 static int
128 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
129 {
130 	unsigned char *max_instr;
131 	unsigned char *instr;
132 	int prefetch = 0;
133 
134 	/*
135 	 * If it was a exec (instruction fetch) fault on NX page, then
136 	 * do not ignore the fault:
137 	 */
138 	if (error_code & PF_INSTR)
139 		return 0;
140 
141 	instr = (void *)convert_ip_to_linear(current, regs);
142 	max_instr = instr + 15;
143 
144 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
145 		return 0;
146 
147 	while (instr < max_instr) {
148 		unsigned char opcode;
149 
150 		if (probe_kernel_address(instr, opcode))
151 			break;
152 
153 		instr++;
154 
155 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
156 			break;
157 	}
158 	return prefetch;
159 }
160 
161 static void
162 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
163 		     struct task_struct *tsk)
164 {
165 	siginfo_t info;
166 
167 	info.si_signo	= si_signo;
168 	info.si_errno	= 0;
169 	info.si_code	= si_code;
170 	info.si_addr	= (void __user *)address;
171 	info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
172 
173 	force_sig_info(si_signo, &info, tsk);
174 }
175 
176 DEFINE_SPINLOCK(pgd_lock);
177 LIST_HEAD(pgd_list);
178 
179 #ifdef CONFIG_X86_32
180 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
181 {
182 	unsigned index = pgd_index(address);
183 	pgd_t *pgd_k;
184 	pud_t *pud, *pud_k;
185 	pmd_t *pmd, *pmd_k;
186 
187 	pgd += index;
188 	pgd_k = init_mm.pgd + index;
189 
190 	if (!pgd_present(*pgd_k))
191 		return NULL;
192 
193 	/*
194 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
195 	 * and redundant with the set_pmd() on non-PAE. As would
196 	 * set_pud.
197 	 */
198 	pud = pud_offset(pgd, address);
199 	pud_k = pud_offset(pgd_k, address);
200 	if (!pud_present(*pud_k))
201 		return NULL;
202 
203 	pmd = pmd_offset(pud, address);
204 	pmd_k = pmd_offset(pud_k, address);
205 	if (!pmd_present(*pmd_k))
206 		return NULL;
207 
208 	if (!pmd_present(*pmd))
209 		set_pmd(pmd, *pmd_k);
210 	else
211 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
212 
213 	return pmd_k;
214 }
215 
216 void vmalloc_sync_all(void)
217 {
218 	unsigned long address;
219 
220 	if (SHARED_KERNEL_PMD)
221 		return;
222 
223 	for (address = VMALLOC_START & PMD_MASK;
224 	     address >= TASK_SIZE && address < FIXADDR_TOP;
225 	     address += PMD_SIZE) {
226 
227 		unsigned long flags;
228 		struct page *page;
229 
230 		spin_lock_irqsave(&pgd_lock, flags);
231 		list_for_each_entry(page, &pgd_list, lru) {
232 			if (!vmalloc_sync_one(page_address(page), address))
233 				break;
234 		}
235 		spin_unlock_irqrestore(&pgd_lock, flags);
236 	}
237 }
238 
239 /*
240  * 32-bit:
241  *
242  *   Handle a fault on the vmalloc or module mapping area
243  */
244 static noinline __kprobes int vmalloc_fault(unsigned long address)
245 {
246 	unsigned long pgd_paddr;
247 	pmd_t *pmd_k;
248 	pte_t *pte_k;
249 
250 	/* Make sure we are in vmalloc area: */
251 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
252 		return -1;
253 
254 	/*
255 	 * Synchronize this task's top level page-table
256 	 * with the 'reference' page table.
257 	 *
258 	 * Do _not_ use "current" here. We might be inside
259 	 * an interrupt in the middle of a task switch..
260 	 */
261 	pgd_paddr = read_cr3();
262 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
263 	if (!pmd_k)
264 		return -1;
265 
266 	pte_k = pte_offset_kernel(pmd_k, address);
267 	if (!pte_present(*pte_k))
268 		return -1;
269 
270 	return 0;
271 }
272 
273 /*
274  * Did it hit the DOS screen memory VA from vm86 mode?
275  */
276 static inline void
277 check_v8086_mode(struct pt_regs *regs, unsigned long address,
278 		 struct task_struct *tsk)
279 {
280 	unsigned long bit;
281 
282 	if (!v8086_mode(regs))
283 		return;
284 
285 	bit = (address - 0xA0000) >> PAGE_SHIFT;
286 	if (bit < 32)
287 		tsk->thread.screen_bitmap |= 1 << bit;
288 }
289 
290 static bool low_pfn(unsigned long pfn)
291 {
292 	return pfn < max_low_pfn;
293 }
294 
295 static void dump_pagetable(unsigned long address)
296 {
297 	pgd_t *base = __va(read_cr3());
298 	pgd_t *pgd = &base[pgd_index(address)];
299 	pmd_t *pmd;
300 	pte_t *pte;
301 
302 #ifdef CONFIG_X86_PAE
303 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
304 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305 		goto out;
306 #endif
307 	pmd = pmd_offset(pud_offset(pgd, address), address);
308 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
309 
310 	/*
311 	 * We must not directly access the pte in the highpte
312 	 * case if the page table is located in highmem.
313 	 * And let's rather not kmap-atomic the pte, just in case
314 	 * it's allocated already:
315 	 */
316 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
317 		goto out;
318 
319 	pte = pte_offset_kernel(pmd, address);
320 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
321 out:
322 	printk("\n");
323 }
324 
325 #else /* CONFIG_X86_64: */
326 
327 void vmalloc_sync_all(void)
328 {
329 	unsigned long address;
330 
331 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
332 	     address += PGDIR_SIZE) {
333 
334 		const pgd_t *pgd_ref = pgd_offset_k(address);
335 		unsigned long flags;
336 		struct page *page;
337 
338 		if (pgd_none(*pgd_ref))
339 			continue;
340 
341 		spin_lock_irqsave(&pgd_lock, flags);
342 		list_for_each_entry(page, &pgd_list, lru) {
343 			pgd_t *pgd;
344 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
345 			if (pgd_none(*pgd))
346 				set_pgd(pgd, *pgd_ref);
347 			else
348 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
349 		}
350 		spin_unlock_irqrestore(&pgd_lock, flags);
351 	}
352 }
353 
354 /*
355  * 64-bit:
356  *
357  *   Handle a fault on the vmalloc area
358  *
359  * This assumes no large pages in there.
360  */
361 static noinline __kprobes int vmalloc_fault(unsigned long address)
362 {
363 	pgd_t *pgd, *pgd_ref;
364 	pud_t *pud, *pud_ref;
365 	pmd_t *pmd, *pmd_ref;
366 	pte_t *pte, *pte_ref;
367 
368 	/* Make sure we are in vmalloc area: */
369 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 		return -1;
371 
372 	/*
373 	 * Copy kernel mappings over when needed. This can also
374 	 * happen within a race in page table update. In the later
375 	 * case just flush:
376 	 */
377 	pgd = pgd_offset(current->active_mm, address);
378 	pgd_ref = pgd_offset_k(address);
379 	if (pgd_none(*pgd_ref))
380 		return -1;
381 
382 	if (pgd_none(*pgd))
383 		set_pgd(pgd, *pgd_ref);
384 	else
385 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
386 
387 	/*
388 	 * Below here mismatches are bugs because these lower tables
389 	 * are shared:
390 	 */
391 
392 	pud = pud_offset(pgd, address);
393 	pud_ref = pud_offset(pgd_ref, address);
394 	if (pud_none(*pud_ref))
395 		return -1;
396 
397 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
398 		BUG();
399 
400 	pmd = pmd_offset(pud, address);
401 	pmd_ref = pmd_offset(pud_ref, address);
402 	if (pmd_none(*pmd_ref))
403 		return -1;
404 
405 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
406 		BUG();
407 
408 	pte_ref = pte_offset_kernel(pmd_ref, address);
409 	if (!pte_present(*pte_ref))
410 		return -1;
411 
412 	pte = pte_offset_kernel(pmd, address);
413 
414 	/*
415 	 * Don't use pte_page here, because the mappings can point
416 	 * outside mem_map, and the NUMA hash lookup cannot handle
417 	 * that:
418 	 */
419 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
420 		BUG();
421 
422 	return 0;
423 }
424 
425 static const char errata93_warning[] =
426 KERN_ERR
427 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
428 "******* Working around it, but it may cause SEGVs or burn power.\n"
429 "******* Please consider a BIOS update.\n"
430 "******* Disabling USB legacy in the BIOS may also help.\n";
431 
432 /*
433  * No vm86 mode in 64-bit mode:
434  */
435 static inline void
436 check_v8086_mode(struct pt_regs *regs, unsigned long address,
437 		 struct task_struct *tsk)
438 {
439 }
440 
441 static int bad_address(void *p)
442 {
443 	unsigned long dummy;
444 
445 	return probe_kernel_address((unsigned long *)p, dummy);
446 }
447 
448 static void dump_pagetable(unsigned long address)
449 {
450 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
451 	pgd_t *pgd = base + pgd_index(address);
452 	pud_t *pud;
453 	pmd_t *pmd;
454 	pte_t *pte;
455 
456 	if (bad_address(pgd))
457 		goto bad;
458 
459 	printk("PGD %lx ", pgd_val(*pgd));
460 
461 	if (!pgd_present(*pgd))
462 		goto out;
463 
464 	pud = pud_offset(pgd, address);
465 	if (bad_address(pud))
466 		goto bad;
467 
468 	printk("PUD %lx ", pud_val(*pud));
469 	if (!pud_present(*pud) || pud_large(*pud))
470 		goto out;
471 
472 	pmd = pmd_offset(pud, address);
473 	if (bad_address(pmd))
474 		goto bad;
475 
476 	printk("PMD %lx ", pmd_val(*pmd));
477 	if (!pmd_present(*pmd) || pmd_large(*pmd))
478 		goto out;
479 
480 	pte = pte_offset_kernel(pmd, address);
481 	if (bad_address(pte))
482 		goto bad;
483 
484 	printk("PTE %lx", pte_val(*pte));
485 out:
486 	printk("\n");
487 	return;
488 bad:
489 	printk("BAD\n");
490 }
491 
492 #endif /* CONFIG_X86_64 */
493 
494 /*
495  * Workaround for K8 erratum #93 & buggy BIOS.
496  *
497  * BIOS SMM functions are required to use a specific workaround
498  * to avoid corruption of the 64bit RIP register on C stepping K8.
499  *
500  * A lot of BIOS that didn't get tested properly miss this.
501  *
502  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
503  * Try to work around it here.
504  *
505  * Note we only handle faults in kernel here.
506  * Does nothing on 32-bit.
507  */
508 static int is_errata93(struct pt_regs *regs, unsigned long address)
509 {
510 #ifdef CONFIG_X86_64
511 	if (address != regs->ip)
512 		return 0;
513 
514 	if ((address >> 32) != 0)
515 		return 0;
516 
517 	address |= 0xffffffffUL << 32;
518 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
519 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
520 		printk_once(errata93_warning);
521 		regs->ip = address;
522 		return 1;
523 	}
524 #endif
525 	return 0;
526 }
527 
528 /*
529  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
530  * to illegal addresses >4GB.
531  *
532  * We catch this in the page fault handler because these addresses
533  * are not reachable. Just detect this case and return.  Any code
534  * segment in LDT is compatibility mode.
535  */
536 static int is_errata100(struct pt_regs *regs, unsigned long address)
537 {
538 #ifdef CONFIG_X86_64
539 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
540 		return 1;
541 #endif
542 	return 0;
543 }
544 
545 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
546 {
547 #ifdef CONFIG_X86_F00F_BUG
548 	unsigned long nr;
549 
550 	/*
551 	 * Pentium F0 0F C7 C8 bug workaround:
552 	 */
553 	if (boot_cpu_data.f00f_bug) {
554 		nr = (address - idt_descr.address) >> 3;
555 
556 		if (nr == 6) {
557 			do_invalid_op(regs, 0);
558 			return 1;
559 		}
560 	}
561 #endif
562 	return 0;
563 }
564 
565 static const char nx_warning[] = KERN_CRIT
566 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
567 
568 static void
569 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
570 		unsigned long address)
571 {
572 	if (!oops_may_print())
573 		return;
574 
575 	if (error_code & PF_INSTR) {
576 		unsigned int level;
577 
578 		pte_t *pte = lookup_address(address, &level);
579 
580 		if (pte && pte_present(*pte) && !pte_exec(*pte))
581 			printk(nx_warning, current_uid());
582 	}
583 
584 	printk(KERN_ALERT "BUG: unable to handle kernel ");
585 	if (address < PAGE_SIZE)
586 		printk(KERN_CONT "NULL pointer dereference");
587 	else
588 		printk(KERN_CONT "paging request");
589 
590 	printk(KERN_CONT " at %p\n", (void *) address);
591 	printk(KERN_ALERT "IP:");
592 	printk_address(regs->ip, 1);
593 
594 	dump_pagetable(address);
595 }
596 
597 static noinline void
598 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
599 	    unsigned long address)
600 {
601 	struct task_struct *tsk;
602 	unsigned long flags;
603 	int sig;
604 
605 	flags = oops_begin();
606 	tsk = current;
607 	sig = SIGKILL;
608 
609 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
610 	       tsk->comm, address);
611 	dump_pagetable(address);
612 
613 	tsk->thread.cr2		= address;
614 	tsk->thread.trap_no	= 14;
615 	tsk->thread.error_code	= error_code;
616 
617 	if (__die("Bad pagetable", regs, error_code))
618 		sig = 0;
619 
620 	oops_end(flags, regs, sig);
621 }
622 
623 static noinline void
624 no_context(struct pt_regs *regs, unsigned long error_code,
625 	   unsigned long address)
626 {
627 	struct task_struct *tsk = current;
628 	unsigned long *stackend;
629 	unsigned long flags;
630 	int sig;
631 
632 	/* Are we prepared to handle this kernel fault? */
633 	if (fixup_exception(regs))
634 		return;
635 
636 	/*
637 	 * 32-bit:
638 	 *
639 	 *   Valid to do another page fault here, because if this fault
640 	 *   had been triggered by is_prefetch fixup_exception would have
641 	 *   handled it.
642 	 *
643 	 * 64-bit:
644 	 *
645 	 *   Hall of shame of CPU/BIOS bugs.
646 	 */
647 	if (is_prefetch(regs, error_code, address))
648 		return;
649 
650 	if (is_errata93(regs, address))
651 		return;
652 
653 	/*
654 	 * Oops. The kernel tried to access some bad page. We'll have to
655 	 * terminate things with extreme prejudice:
656 	 */
657 	flags = oops_begin();
658 
659 	show_fault_oops(regs, error_code, address);
660 
661 	stackend = end_of_stack(tsk);
662 	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
663 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
664 
665 	tsk->thread.cr2		= address;
666 	tsk->thread.trap_no	= 14;
667 	tsk->thread.error_code	= error_code;
668 
669 	sig = SIGKILL;
670 	if (__die("Oops", regs, error_code))
671 		sig = 0;
672 
673 	/* Executive summary in case the body of the oops scrolled away */
674 	printk(KERN_EMERG "CR2: %016lx\n", address);
675 
676 	oops_end(flags, regs, sig);
677 }
678 
679 /*
680  * Print out info about fatal segfaults, if the show_unhandled_signals
681  * sysctl is set:
682  */
683 static inline void
684 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
685 		unsigned long address, struct task_struct *tsk)
686 {
687 	if (!unhandled_signal(tsk, SIGSEGV))
688 		return;
689 
690 	if (!printk_ratelimit())
691 		return;
692 
693 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
694 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
695 		tsk->comm, task_pid_nr(tsk), address,
696 		(void *)regs->ip, (void *)regs->sp, error_code);
697 
698 	print_vma_addr(KERN_CONT " in ", regs->ip);
699 
700 	printk(KERN_CONT "\n");
701 }
702 
703 static void
704 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
705 		       unsigned long address, int si_code)
706 {
707 	struct task_struct *tsk = current;
708 
709 	/* User mode accesses just cause a SIGSEGV */
710 	if (error_code & PF_USER) {
711 		/*
712 		 * It's possible to have interrupts off here:
713 		 */
714 		local_irq_enable();
715 
716 		/*
717 		 * Valid to do another page fault here because this one came
718 		 * from user space:
719 		 */
720 		if (is_prefetch(regs, error_code, address))
721 			return;
722 
723 		if (is_errata100(regs, address))
724 			return;
725 
726 		if (unlikely(show_unhandled_signals))
727 			show_signal_msg(regs, error_code, address, tsk);
728 
729 		/* Kernel addresses are always protection faults: */
730 		tsk->thread.cr2		= address;
731 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
732 		tsk->thread.trap_no	= 14;
733 
734 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
735 
736 		return;
737 	}
738 
739 	if (is_f00f_bug(regs, address))
740 		return;
741 
742 	no_context(regs, error_code, address);
743 }
744 
745 static noinline void
746 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
747 		     unsigned long address)
748 {
749 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
750 }
751 
752 static void
753 __bad_area(struct pt_regs *regs, unsigned long error_code,
754 	   unsigned long address, int si_code)
755 {
756 	struct mm_struct *mm = current->mm;
757 
758 	/*
759 	 * Something tried to access memory that isn't in our memory map..
760 	 * Fix it, but check if it's kernel or user first..
761 	 */
762 	up_read(&mm->mmap_sem);
763 
764 	__bad_area_nosemaphore(regs, error_code, address, si_code);
765 }
766 
767 static noinline void
768 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
769 {
770 	__bad_area(regs, error_code, address, SEGV_MAPERR);
771 }
772 
773 static noinline void
774 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
775 		      unsigned long address)
776 {
777 	__bad_area(regs, error_code, address, SEGV_ACCERR);
778 }
779 
780 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
781 static void
782 out_of_memory(struct pt_regs *regs, unsigned long error_code,
783 	      unsigned long address)
784 {
785 	/*
786 	 * We ran out of memory, call the OOM killer, and return the userspace
787 	 * (which will retry the fault, or kill us if we got oom-killed):
788 	 */
789 	up_read(&current->mm->mmap_sem);
790 
791 	pagefault_out_of_memory();
792 }
793 
794 static void
795 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
796 	  unsigned int fault)
797 {
798 	struct task_struct *tsk = current;
799 	struct mm_struct *mm = tsk->mm;
800 	int code = BUS_ADRERR;
801 
802 	up_read(&mm->mmap_sem);
803 
804 	/* Kernel mode? Handle exceptions or die: */
805 	if (!(error_code & PF_USER))
806 		no_context(regs, error_code, address);
807 
808 	/* User-space => ok to do another page fault: */
809 	if (is_prefetch(regs, error_code, address))
810 		return;
811 
812 	tsk->thread.cr2		= address;
813 	tsk->thread.error_code	= error_code;
814 	tsk->thread.trap_no	= 14;
815 
816 #ifdef CONFIG_MEMORY_FAILURE
817 	if (fault & VM_FAULT_HWPOISON) {
818 		printk(KERN_ERR
819 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
820 			tsk->comm, tsk->pid, address);
821 		code = BUS_MCEERR_AR;
822 	}
823 #endif
824 	force_sig_info_fault(SIGBUS, code, address, tsk);
825 }
826 
827 static noinline void
828 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
829 	       unsigned long address, unsigned int fault)
830 {
831 	if (fault & VM_FAULT_OOM) {
832 		out_of_memory(regs, error_code, address);
833 	} else {
834 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
835 			do_sigbus(regs, error_code, address, fault);
836 		else
837 			BUG();
838 	}
839 }
840 
841 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
842 {
843 	if ((error_code & PF_WRITE) && !pte_write(*pte))
844 		return 0;
845 
846 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
847 		return 0;
848 
849 	return 1;
850 }
851 
852 /*
853  * Handle a spurious fault caused by a stale TLB entry.
854  *
855  * This allows us to lazily refresh the TLB when increasing the
856  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
857  * eagerly is very expensive since that implies doing a full
858  * cross-processor TLB flush, even if no stale TLB entries exist
859  * on other processors.
860  *
861  * There are no security implications to leaving a stale TLB when
862  * increasing the permissions on a page.
863  */
864 static noinline __kprobes int
865 spurious_fault(unsigned long error_code, unsigned long address)
866 {
867 	pgd_t *pgd;
868 	pud_t *pud;
869 	pmd_t *pmd;
870 	pte_t *pte;
871 	int ret;
872 
873 	/* Reserved-bit violation or user access to kernel space? */
874 	if (error_code & (PF_USER | PF_RSVD))
875 		return 0;
876 
877 	pgd = init_mm.pgd + pgd_index(address);
878 	if (!pgd_present(*pgd))
879 		return 0;
880 
881 	pud = pud_offset(pgd, address);
882 	if (!pud_present(*pud))
883 		return 0;
884 
885 	if (pud_large(*pud))
886 		return spurious_fault_check(error_code, (pte_t *) pud);
887 
888 	pmd = pmd_offset(pud, address);
889 	if (!pmd_present(*pmd))
890 		return 0;
891 
892 	if (pmd_large(*pmd))
893 		return spurious_fault_check(error_code, (pte_t *) pmd);
894 
895 	pte = pte_offset_kernel(pmd, address);
896 	if (!pte_present(*pte))
897 		return 0;
898 
899 	ret = spurious_fault_check(error_code, pte);
900 	if (!ret)
901 		return 0;
902 
903 	/*
904 	 * Make sure we have permissions in PMD.
905 	 * If not, then there's a bug in the page tables:
906 	 */
907 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
908 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
909 
910 	return ret;
911 }
912 
913 int show_unhandled_signals = 1;
914 
915 static inline int
916 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
917 {
918 	if (write) {
919 		/* write, present and write, not present: */
920 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
921 			return 1;
922 		return 0;
923 	}
924 
925 	/* read, present: */
926 	if (unlikely(error_code & PF_PROT))
927 		return 1;
928 
929 	/* read, not present: */
930 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
931 		return 1;
932 
933 	return 0;
934 }
935 
936 static int fault_in_kernel_space(unsigned long address)
937 {
938 	return address >= TASK_SIZE_MAX;
939 }
940 
941 /*
942  * This routine handles page faults.  It determines the address,
943  * and the problem, and then passes it off to one of the appropriate
944  * routines.
945  */
946 dotraplinkage void __kprobes
947 do_page_fault(struct pt_regs *regs, unsigned long error_code)
948 {
949 	struct vm_area_struct *vma;
950 	struct task_struct *tsk;
951 	unsigned long address;
952 	struct mm_struct *mm;
953 	int write;
954 	int fault;
955 
956 	tsk = current;
957 	mm = tsk->mm;
958 
959 	/* Get the faulting address: */
960 	address = read_cr2();
961 
962 	/*
963 	 * Detect and handle instructions that would cause a page fault for
964 	 * both a tracked kernel page and a userspace page.
965 	 */
966 	if (kmemcheck_active(regs))
967 		kmemcheck_hide(regs);
968 	prefetchw(&mm->mmap_sem);
969 
970 	if (unlikely(kmmio_fault(regs, address)))
971 		return;
972 
973 	/*
974 	 * We fault-in kernel-space virtual memory on-demand. The
975 	 * 'reference' page table is init_mm.pgd.
976 	 *
977 	 * NOTE! We MUST NOT take any locks for this case. We may
978 	 * be in an interrupt or a critical region, and should
979 	 * only copy the information from the master page table,
980 	 * nothing more.
981 	 *
982 	 * This verifies that the fault happens in kernel space
983 	 * (error_code & 4) == 0, and that the fault was not a
984 	 * protection error (error_code & 9) == 0.
985 	 */
986 	if (unlikely(fault_in_kernel_space(address))) {
987 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
988 			if (vmalloc_fault(address) >= 0)
989 				return;
990 
991 			if (kmemcheck_fault(regs, address, error_code))
992 				return;
993 		}
994 
995 		/* Can handle a stale RO->RW TLB: */
996 		if (spurious_fault(error_code, address))
997 			return;
998 
999 		/* kprobes don't want to hook the spurious faults: */
1000 		if (notify_page_fault(regs))
1001 			return;
1002 		/*
1003 		 * Don't take the mm semaphore here. If we fixup a prefetch
1004 		 * fault we could otherwise deadlock:
1005 		 */
1006 		bad_area_nosemaphore(regs, error_code, address);
1007 
1008 		return;
1009 	}
1010 
1011 	/* kprobes don't want to hook the spurious faults: */
1012 	if (unlikely(notify_page_fault(regs)))
1013 		return;
1014 	/*
1015 	 * It's safe to allow irq's after cr2 has been saved and the
1016 	 * vmalloc fault has been handled.
1017 	 *
1018 	 * User-mode registers count as a user access even for any
1019 	 * potential system fault or CPU buglet:
1020 	 */
1021 	if (user_mode_vm(regs)) {
1022 		local_irq_enable();
1023 		error_code |= PF_USER;
1024 	} else {
1025 		if (regs->flags & X86_EFLAGS_IF)
1026 			local_irq_enable();
1027 	}
1028 
1029 	if (unlikely(error_code & PF_RSVD))
1030 		pgtable_bad(regs, error_code, address);
1031 
1032 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1033 
1034 	/*
1035 	 * If we're in an interrupt, have no user context or are running
1036 	 * in an atomic region then we must not take the fault:
1037 	 */
1038 	if (unlikely(in_atomic() || !mm)) {
1039 		bad_area_nosemaphore(regs, error_code, address);
1040 		return;
1041 	}
1042 
1043 	/*
1044 	 * When running in the kernel we expect faults to occur only to
1045 	 * addresses in user space.  All other faults represent errors in
1046 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1047 	 * case of an erroneous fault occurring in a code path which already
1048 	 * holds mmap_sem we will deadlock attempting to validate the fault
1049 	 * against the address space.  Luckily the kernel only validly
1050 	 * references user space from well defined areas of code, which are
1051 	 * listed in the exceptions table.
1052 	 *
1053 	 * As the vast majority of faults will be valid we will only perform
1054 	 * the source reference check when there is a possibility of a
1055 	 * deadlock. Attempt to lock the address space, if we cannot we then
1056 	 * validate the source. If this is invalid we can skip the address
1057 	 * space check, thus avoiding the deadlock:
1058 	 */
1059 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1060 		if ((error_code & PF_USER) == 0 &&
1061 		    !search_exception_tables(regs->ip)) {
1062 			bad_area_nosemaphore(regs, error_code, address);
1063 			return;
1064 		}
1065 		down_read(&mm->mmap_sem);
1066 	} else {
1067 		/*
1068 		 * The above down_read_trylock() might have succeeded in
1069 		 * which case we'll have missed the might_sleep() from
1070 		 * down_read():
1071 		 */
1072 		might_sleep();
1073 	}
1074 
1075 	vma = find_vma(mm, address);
1076 	if (unlikely(!vma)) {
1077 		bad_area(regs, error_code, address);
1078 		return;
1079 	}
1080 	if (likely(vma->vm_start <= address))
1081 		goto good_area;
1082 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1083 		bad_area(regs, error_code, address);
1084 		return;
1085 	}
1086 	if (error_code & PF_USER) {
1087 		/*
1088 		 * Accessing the stack below %sp is always a bug.
1089 		 * The large cushion allows instructions like enter
1090 		 * and pusha to work. ("enter $65535, $31" pushes
1091 		 * 32 pointers and then decrements %sp by 65535.)
1092 		 */
1093 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1094 			bad_area(regs, error_code, address);
1095 			return;
1096 		}
1097 	}
1098 	if (unlikely(expand_stack(vma, address))) {
1099 		bad_area(regs, error_code, address);
1100 		return;
1101 	}
1102 
1103 	/*
1104 	 * Ok, we have a good vm_area for this memory access, so
1105 	 * we can handle it..
1106 	 */
1107 good_area:
1108 	write = error_code & PF_WRITE;
1109 
1110 	if (unlikely(access_error(error_code, write, vma))) {
1111 		bad_area_access_error(regs, error_code, address);
1112 		return;
1113 	}
1114 
1115 	/*
1116 	 * If for any reason at all we couldn't handle the fault,
1117 	 * make sure we exit gracefully rather than endlessly redo
1118 	 * the fault:
1119 	 */
1120 	fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1121 
1122 	if (unlikely(fault & VM_FAULT_ERROR)) {
1123 		mm_fault_error(regs, error_code, address, fault);
1124 		return;
1125 	}
1126 
1127 	if (fault & VM_FAULT_MAJOR) {
1128 		tsk->maj_flt++;
1129 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1130 				     regs, address);
1131 	} else {
1132 		tsk->min_flt++;
1133 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1134 				     regs, address);
1135 	}
1136 
1137 	check_v8086_mode(regs, address, tsk);
1138 
1139 	up_read(&mm->mmap_sem);
1140 }
1141