1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kfence.h> /* kfence_handle_page_fault */
13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 #include <linux/perf_event.h> /* perf_sw_event */
16 #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 #include <linux/prefetch.h> /* prefetchw */
18 #include <linux/context_tracking.h> /* exception_enter(), ... */
19 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h> /* find_and_lock_vma() */
23
24 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
25 #include <asm/traps.h> /* dotraplinkage, ... */
26 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
27 #include <asm/vsyscall.h> /* emulate_vsyscall */
28 #include <asm/vm86.h> /* struct vm86 */
29 #include <asm/mmu_context.h> /* vma_pkey() */
30 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
31 #include <asm/desc.h> /* store_idt(), ... */
32 #include <asm/cpu_entry_area.h> /* exception stack */
33 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
34 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
35 #include <asm/vdso.h> /* fixup_vdso_exception() */
36 #include <asm/irq_stack.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <asm/trace/exceptions.h>
40
41 /*
42 * Returns 0 if mmiotrace is disabled, or if the fault is not
43 * handled by mmiotrace:
44 */
45 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)46 kmmio_fault(struct pt_regs *regs, unsigned long addr)
47 {
48 if (unlikely(is_kmmio_active()))
49 if (kmmio_handler(regs, addr) == 1)
50 return -1;
51 return 0;
52 }
53
54 /*
55 * Prefetch quirks:
56 *
57 * 32-bit mode:
58 *
59 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
60 * Check that here and ignore it. This is AMD erratum #91.
61 *
62 * 64-bit mode:
63 *
64 * Sometimes the CPU reports invalid exceptions on prefetch.
65 * Check that here and ignore it.
66 *
67 * Opcode checker based on code by Richard Brunner.
68 */
69 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)70 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
71 unsigned char opcode, int *prefetch)
72 {
73 unsigned char instr_hi = opcode & 0xf0;
74 unsigned char instr_lo = opcode & 0x0f;
75
76 switch (instr_hi) {
77 case 0x20:
78 case 0x30:
79 /*
80 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
81 * In X86_64 long mode, the CPU will signal invalid
82 * opcode if some of these prefixes are present so
83 * X86_64 will never get here anyway
84 */
85 return ((instr_lo & 7) == 0x6);
86 #ifdef CONFIG_X86_64
87 case 0x40:
88 /*
89 * In 64-bit mode 0x40..0x4F are valid REX prefixes
90 */
91 return (!user_mode(regs) || user_64bit_mode(regs));
92 #endif
93 case 0x60:
94 /* 0x64 thru 0x67 are valid prefixes in all modes. */
95 return (instr_lo & 0xC) == 0x4;
96 case 0xF0:
97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 return !instr_lo || (instr_lo>>1) == 1;
99 case 0x00:
100 /* Prefetch instruction is 0x0F0D or 0x0F18 */
101 if (get_kernel_nofault(opcode, instr))
102 return 0;
103
104 *prefetch = (instr_lo == 0xF) &&
105 (opcode == 0x0D || opcode == 0x18);
106 return 0;
107 default:
108 return 0;
109 }
110 }
111
is_amd_k8_pre_npt(void)112 static bool is_amd_k8_pre_npt(void)
113 {
114 struct cpuinfo_x86 *c = &boot_cpu_data;
115
116 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
117 c->x86_vendor == X86_VENDOR_AMD &&
118 c->x86 == 0xf && c->x86_model < 0x40);
119 }
120
121 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123 {
124 unsigned char *max_instr;
125 unsigned char *instr;
126 int prefetch = 0;
127
128 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
129 if (!is_amd_k8_pre_npt())
130 return 0;
131
132 /*
133 * If it was a exec (instruction fetch) fault on NX page, then
134 * do not ignore the fault:
135 */
136 if (error_code & X86_PF_INSTR)
137 return 0;
138
139 instr = (void *)convert_ip_to_linear(current, regs);
140 max_instr = instr + 15;
141
142 /*
143 * This code has historically always bailed out if IP points to a
144 * not-present page (e.g. due to a race). No one has ever
145 * complained about this.
146 */
147 pagefault_disable();
148
149 while (instr < max_instr) {
150 unsigned char opcode;
151
152 if (user_mode(regs)) {
153 if (get_user(opcode, (unsigned char __user *) instr))
154 break;
155 } else {
156 if (get_kernel_nofault(opcode, instr))
157 break;
158 }
159
160 instr++;
161
162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 break;
164 }
165
166 pagefault_enable();
167 return prefetch;
168 }
169
170 DEFINE_SPINLOCK(pgd_lock);
171 LIST_HEAD(pgd_list);
172
173 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)174 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
175 {
176 unsigned index = pgd_index(address);
177 pgd_t *pgd_k;
178 p4d_t *p4d, *p4d_k;
179 pud_t *pud, *pud_k;
180 pmd_t *pmd, *pmd_k;
181
182 pgd += index;
183 pgd_k = init_mm.pgd + index;
184
185 if (!pgd_present(*pgd_k))
186 return NULL;
187
188 /*
189 * set_pgd(pgd, *pgd_k); here would be useless on PAE
190 * and redundant with the set_pmd() on non-PAE. As would
191 * set_p4d/set_pud.
192 */
193 p4d = p4d_offset(pgd, address);
194 p4d_k = p4d_offset(pgd_k, address);
195 if (!p4d_present(*p4d_k))
196 return NULL;
197
198 pud = pud_offset(p4d, address);
199 pud_k = pud_offset(p4d_k, address);
200 if (!pud_present(*pud_k))
201 return NULL;
202
203 pmd = pmd_offset(pud, address);
204 pmd_k = pmd_offset(pud_k, address);
205
206 if (pmd_present(*pmd) != pmd_present(*pmd_k))
207 set_pmd(pmd, *pmd_k);
208
209 if (!pmd_present(*pmd_k))
210 return NULL;
211 else
212 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
213
214 return pmd_k;
215 }
216
217 /*
218 * Handle a fault on the vmalloc or module mapping area
219 *
220 * This is needed because there is a race condition between the time
221 * when the vmalloc mapping code updates the PMD to the point in time
222 * where it synchronizes this update with the other page-tables in the
223 * system.
224 *
225 * In this race window another thread/CPU can map an area on the same
226 * PMD, finds it already present and does not synchronize it with the
227 * rest of the system yet. As a result v[mz]alloc might return areas
228 * which are not mapped in every page-table in the system, causing an
229 * unhandled page-fault when they are accessed.
230 */
vmalloc_fault(unsigned long address)231 static noinline int vmalloc_fault(unsigned long address)
232 {
233 unsigned long pgd_paddr;
234 pmd_t *pmd_k;
235 pte_t *pte_k;
236
237 /* Make sure we are in vmalloc area: */
238 if (!(address >= VMALLOC_START && address < VMALLOC_END))
239 return -1;
240
241 /*
242 * Synchronize this task's top level page-table
243 * with the 'reference' page table.
244 *
245 * Do _not_ use "current" here. We might be inside
246 * an interrupt in the middle of a task switch..
247 */
248 pgd_paddr = read_cr3_pa();
249 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
250 if (!pmd_k)
251 return -1;
252
253 if (pmd_large(*pmd_k))
254 return 0;
255
256 pte_k = pte_offset_kernel(pmd_k, address);
257 if (!pte_present(*pte_k))
258 return -1;
259
260 return 0;
261 }
262 NOKPROBE_SYMBOL(vmalloc_fault);
263
arch_sync_kernel_mappings(unsigned long start,unsigned long end)264 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
265 {
266 unsigned long addr;
267
268 for (addr = start & PMD_MASK;
269 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
270 addr += PMD_SIZE) {
271 struct page *page;
272
273 spin_lock(&pgd_lock);
274 list_for_each_entry(page, &pgd_list, lru) {
275 spinlock_t *pgt_lock;
276
277 /* the pgt_lock only for Xen */
278 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
279
280 spin_lock(pgt_lock);
281 vmalloc_sync_one(page_address(page), addr);
282 spin_unlock(pgt_lock);
283 }
284 spin_unlock(&pgd_lock);
285 }
286 }
287
low_pfn(unsigned long pfn)288 static bool low_pfn(unsigned long pfn)
289 {
290 return pfn < max_low_pfn;
291 }
292
dump_pagetable(unsigned long address)293 static void dump_pagetable(unsigned long address)
294 {
295 pgd_t *base = __va(read_cr3_pa());
296 pgd_t *pgd = &base[pgd_index(address)];
297 p4d_t *p4d;
298 pud_t *pud;
299 pmd_t *pmd;
300 pte_t *pte;
301
302 #ifdef CONFIG_X86_PAE
303 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
304 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305 goto out;
306 #define pr_pde pr_cont
307 #else
308 #define pr_pde pr_info
309 #endif
310 p4d = p4d_offset(pgd, address);
311 pud = pud_offset(p4d, address);
312 pmd = pmd_offset(pud, address);
313 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
314 #undef pr_pde
315
316 /*
317 * We must not directly access the pte in the highpte
318 * case if the page table is located in highmem.
319 * And let's rather not kmap-atomic the pte, just in case
320 * it's allocated already:
321 */
322 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
323 goto out;
324
325 pte = pte_offset_kernel(pmd, address);
326 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
327 out:
328 pr_cont("\n");
329 }
330
331 #else /* CONFIG_X86_64: */
332
333 #ifdef CONFIG_CPU_SUP_AMD
334 static const char errata93_warning[] =
335 KERN_ERR
336 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
337 "******* Working around it, but it may cause SEGVs or burn power.\n"
338 "******* Please consider a BIOS update.\n"
339 "******* Disabling USB legacy in the BIOS may also help.\n";
340 #endif
341
bad_address(void * p)342 static int bad_address(void *p)
343 {
344 unsigned long dummy;
345
346 return get_kernel_nofault(dummy, (unsigned long *)p);
347 }
348
dump_pagetable(unsigned long address)349 static void dump_pagetable(unsigned long address)
350 {
351 pgd_t *base = __va(read_cr3_pa());
352 pgd_t *pgd = base + pgd_index(address);
353 p4d_t *p4d;
354 pud_t *pud;
355 pmd_t *pmd;
356 pte_t *pte;
357
358 if (bad_address(pgd))
359 goto bad;
360
361 pr_info("PGD %lx ", pgd_val(*pgd));
362
363 if (!pgd_present(*pgd))
364 goto out;
365
366 p4d = p4d_offset(pgd, address);
367 if (bad_address(p4d))
368 goto bad;
369
370 pr_cont("P4D %lx ", p4d_val(*p4d));
371 if (!p4d_present(*p4d) || p4d_large(*p4d))
372 goto out;
373
374 pud = pud_offset(p4d, address);
375 if (bad_address(pud))
376 goto bad;
377
378 pr_cont("PUD %lx ", pud_val(*pud));
379 if (!pud_present(*pud) || pud_leaf(*pud))
380 goto out;
381
382 pmd = pmd_offset(pud, address);
383 if (bad_address(pmd))
384 goto bad;
385
386 pr_cont("PMD %lx ", pmd_val(*pmd));
387 if (!pmd_present(*pmd) || pmd_large(*pmd))
388 goto out;
389
390 pte = pte_offset_kernel(pmd, address);
391 if (bad_address(pte))
392 goto bad;
393
394 pr_cont("PTE %lx", pte_val(*pte));
395 out:
396 pr_cont("\n");
397 return;
398 bad:
399 pr_info("BAD\n");
400 }
401
402 #endif /* CONFIG_X86_64 */
403
404 /*
405 * Workaround for K8 erratum #93 & buggy BIOS.
406 *
407 * BIOS SMM functions are required to use a specific workaround
408 * to avoid corruption of the 64bit RIP register on C stepping K8.
409 *
410 * A lot of BIOS that didn't get tested properly miss this.
411 *
412 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
413 * Try to work around it here.
414 *
415 * Note we only handle faults in kernel here.
416 * Does nothing on 32-bit.
417 */
is_errata93(struct pt_regs * regs,unsigned long address)418 static int is_errata93(struct pt_regs *regs, unsigned long address)
419 {
420 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
421 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
422 || boot_cpu_data.x86 != 0xf)
423 return 0;
424
425 if (user_mode(regs))
426 return 0;
427
428 if (address != regs->ip)
429 return 0;
430
431 if ((address >> 32) != 0)
432 return 0;
433
434 address |= 0xffffffffUL << 32;
435 if ((address >= (u64)_stext && address <= (u64)_etext) ||
436 (address >= MODULES_VADDR && address <= MODULES_END)) {
437 printk_once(errata93_warning);
438 regs->ip = address;
439 return 1;
440 }
441 #endif
442 return 0;
443 }
444
445 /*
446 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
447 * to illegal addresses >4GB.
448 *
449 * We catch this in the page fault handler because these addresses
450 * are not reachable. Just detect this case and return. Any code
451 * segment in LDT is compatibility mode.
452 */
is_errata100(struct pt_regs * regs,unsigned long address)453 static int is_errata100(struct pt_regs *regs, unsigned long address)
454 {
455 #ifdef CONFIG_X86_64
456 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
457 return 1;
458 #endif
459 return 0;
460 }
461
462 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)463 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
464 unsigned long address)
465 {
466 #ifdef CONFIG_X86_F00F_BUG
467 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
468 idt_is_f00f_address(address)) {
469 handle_invalid_op(regs);
470 return 1;
471 }
472 #endif
473 return 0;
474 }
475
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)476 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
477 {
478 u32 offset = (index >> 3) * sizeof(struct desc_struct);
479 unsigned long addr;
480 struct ldttss_desc desc;
481
482 if (index == 0) {
483 pr_alert("%s: NULL\n", name);
484 return;
485 }
486
487 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
488 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
489 return;
490 }
491
492 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
493 sizeof(struct ldttss_desc))) {
494 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
495 name, index);
496 return;
497 }
498
499 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
500 #ifdef CONFIG_X86_64
501 addr |= ((u64)desc.base3 << 32);
502 #endif
503 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
504 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
505 }
506
507 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)508 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
509 {
510 if (!oops_may_print())
511 return;
512
513 if (error_code & X86_PF_INSTR) {
514 unsigned int level;
515 pgd_t *pgd;
516 pte_t *pte;
517
518 pgd = __va(read_cr3_pa());
519 pgd += pgd_index(address);
520
521 pte = lookup_address_in_pgd(pgd, address, &level);
522
523 if (pte && pte_present(*pte) && !pte_exec(*pte))
524 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
525 from_kuid(&init_user_ns, current_uid()));
526 if (pte && pte_present(*pte) && pte_exec(*pte) &&
527 (pgd_flags(*pgd) & _PAGE_USER) &&
528 (__read_cr4() & X86_CR4_SMEP))
529 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
530 from_kuid(&init_user_ns, current_uid()));
531 }
532
533 if (address < PAGE_SIZE && !user_mode(regs))
534 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
535 (void *)address);
536 else
537 pr_alert("BUG: unable to handle page fault for address: %px\n",
538 (void *)address);
539
540 pr_alert("#PF: %s %s in %s mode\n",
541 (error_code & X86_PF_USER) ? "user" : "supervisor",
542 (error_code & X86_PF_INSTR) ? "instruction fetch" :
543 (error_code & X86_PF_WRITE) ? "write access" :
544 "read access",
545 user_mode(regs) ? "user" : "kernel");
546 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
547 !(error_code & X86_PF_PROT) ? "not-present page" :
548 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
549 (error_code & X86_PF_PK) ? "protection keys violation" :
550 "permissions violation");
551
552 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
553 struct desc_ptr idt, gdt;
554 u16 ldtr, tr;
555
556 /*
557 * This can happen for quite a few reasons. The more obvious
558 * ones are faults accessing the GDT, or LDT. Perhaps
559 * surprisingly, if the CPU tries to deliver a benign or
560 * contributory exception from user code and gets a page fault
561 * during delivery, the page fault can be delivered as though
562 * it originated directly from user code. This could happen
563 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
564 * kernel or IST stack.
565 */
566 store_idt(&idt);
567
568 /* Usable even on Xen PV -- it's just slow. */
569 native_store_gdt(&gdt);
570
571 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
572 idt.address, idt.size, gdt.address, gdt.size);
573
574 store_ldt(ldtr);
575 show_ldttss(&gdt, "LDTR", ldtr);
576
577 store_tr(tr);
578 show_ldttss(&gdt, "TR", tr);
579 }
580
581 dump_pagetable(address);
582 }
583
584 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)585 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
586 unsigned long address)
587 {
588 struct task_struct *tsk;
589 unsigned long flags;
590 int sig;
591
592 flags = oops_begin();
593 tsk = current;
594 sig = SIGKILL;
595
596 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
597 tsk->comm, address);
598 dump_pagetable(address);
599
600 if (__die("Bad pagetable", regs, error_code))
601 sig = 0;
602
603 oops_end(flags, regs, sig);
604 }
605
sanitize_error_code(unsigned long address,unsigned long * error_code)606 static void sanitize_error_code(unsigned long address,
607 unsigned long *error_code)
608 {
609 /*
610 * To avoid leaking information about the kernel page
611 * table layout, pretend that user-mode accesses to
612 * kernel addresses are always protection faults.
613 *
614 * NB: This means that failed vsyscalls with vsyscall=none
615 * will have the PROT bit. This doesn't leak any
616 * information and does not appear to cause any problems.
617 */
618 if (address >= TASK_SIZE_MAX)
619 *error_code |= X86_PF_PROT;
620 }
621
set_signal_archinfo(unsigned long address,unsigned long error_code)622 static void set_signal_archinfo(unsigned long address,
623 unsigned long error_code)
624 {
625 struct task_struct *tsk = current;
626
627 tsk->thread.trap_nr = X86_TRAP_PF;
628 tsk->thread.error_code = error_code | X86_PF_USER;
629 tsk->thread.cr2 = address;
630 }
631
632 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)633 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
634 unsigned long address)
635 {
636 #ifdef CONFIG_VMAP_STACK
637 struct stack_info info;
638 #endif
639 unsigned long flags;
640 int sig;
641
642 if (user_mode(regs)) {
643 /*
644 * Implicit kernel access from user mode? Skip the stack
645 * overflow and EFI special cases.
646 */
647 goto oops;
648 }
649
650 #ifdef CONFIG_VMAP_STACK
651 /*
652 * Stack overflow? During boot, we can fault near the initial
653 * stack in the direct map, but that's not an overflow -- check
654 * that we're in vmalloc space to avoid this.
655 */
656 if (is_vmalloc_addr((void *)address) &&
657 get_stack_guard_info((void *)address, &info)) {
658 /*
659 * We're likely to be running with very little stack space
660 * left. It's plausible that we'd hit this condition but
661 * double-fault even before we get this far, in which case
662 * we're fine: the double-fault handler will deal with it.
663 *
664 * We don't want to make it all the way into the oops code
665 * and then double-fault, though, because we're likely to
666 * break the console driver and lose most of the stack dump.
667 */
668 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
669 handle_stack_overflow,
670 ASM_CALL_ARG3,
671 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
672
673 unreachable();
674 }
675 #endif
676
677 /*
678 * Buggy firmware could access regions which might page fault. If
679 * this happens, EFI has a special OOPS path that will try to
680 * avoid hanging the system.
681 */
682 if (IS_ENABLED(CONFIG_EFI))
683 efi_crash_gracefully_on_page_fault(address);
684
685 /* Only not-present faults should be handled by KFENCE. */
686 if (!(error_code & X86_PF_PROT) &&
687 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
688 return;
689
690 oops:
691 /*
692 * Oops. The kernel tried to access some bad page. We'll have to
693 * terminate things with extreme prejudice:
694 */
695 flags = oops_begin();
696
697 show_fault_oops(regs, error_code, address);
698
699 if (task_stack_end_corrupted(current))
700 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
701
702 sig = SIGKILL;
703 if (__die("Oops", regs, error_code))
704 sig = 0;
705
706 /* Executive summary in case the body of the oops scrolled away */
707 printk(KERN_DEFAULT "CR2: %016lx\n", address);
708
709 oops_end(flags, regs, sig);
710 }
711
712 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)713 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
714 unsigned long address, int signal, int si_code,
715 u32 pkey)
716 {
717 WARN_ON_ONCE(user_mode(regs));
718
719 /* Are we prepared to handle this kernel fault? */
720 if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
721 return;
722
723 /*
724 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
725 * instruction.
726 */
727 if (is_prefetch(regs, error_code, address))
728 return;
729
730 page_fault_oops(regs, error_code, address);
731 }
732
733 /*
734 * Print out info about fatal segfaults, if the show_unhandled_signals
735 * sysctl is set:
736 */
737 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)738 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
739 unsigned long address, struct task_struct *tsk)
740 {
741 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
742 /* This is a racy snapshot, but it's better than nothing. */
743 int cpu = raw_smp_processor_id();
744
745 if (!unhandled_signal(tsk, SIGSEGV))
746 return;
747
748 if (!printk_ratelimit())
749 return;
750
751 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
752 loglvl, tsk->comm, task_pid_nr(tsk), address,
753 (void *)regs->ip, (void *)regs->sp, error_code);
754
755 print_vma_addr(KERN_CONT " in ", regs->ip);
756
757 /*
758 * Dump the likely CPU where the fatal segfault happened.
759 * This can help identify faulty hardware.
760 */
761 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
762 topology_core_id(cpu), topology_physical_package_id(cpu));
763
764
765 printk(KERN_CONT "\n");
766
767 show_opcodes(regs, loglvl);
768 }
769
770 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)771 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
772 unsigned long address, u32 pkey, int si_code)
773 {
774 struct task_struct *tsk = current;
775
776 if (!user_mode(regs)) {
777 kernelmode_fixup_or_oops(regs, error_code, address,
778 SIGSEGV, si_code, pkey);
779 return;
780 }
781
782 if (!(error_code & X86_PF_USER)) {
783 /* Implicit user access to kernel memory -- just oops */
784 page_fault_oops(regs, error_code, address);
785 return;
786 }
787
788 /*
789 * User mode accesses just cause a SIGSEGV.
790 * It's possible to have interrupts off here:
791 */
792 local_irq_enable();
793
794 /*
795 * Valid to do another page fault here because this one came
796 * from user space:
797 */
798 if (is_prefetch(regs, error_code, address))
799 return;
800
801 if (is_errata100(regs, address))
802 return;
803
804 sanitize_error_code(address, &error_code);
805
806 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
807 return;
808
809 if (likely(show_unhandled_signals))
810 show_signal_msg(regs, error_code, address, tsk);
811
812 set_signal_archinfo(address, error_code);
813
814 if (si_code == SEGV_PKUERR)
815 force_sig_pkuerr((void __user *)address, pkey);
816 else
817 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
818
819 local_irq_disable();
820 }
821
822 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)823 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
824 unsigned long address)
825 {
826 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
827 }
828
829 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)830 __bad_area(struct pt_regs *regs, unsigned long error_code,
831 unsigned long address, u32 pkey, int si_code)
832 {
833 struct mm_struct *mm = current->mm;
834 /*
835 * Something tried to access memory that isn't in our memory map..
836 * Fix it, but check if it's kernel or user first..
837 */
838 mmap_read_unlock(mm);
839
840 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
841 }
842
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)843 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
844 struct vm_area_struct *vma)
845 {
846 /* This code is always called on the current mm */
847 bool foreign = false;
848
849 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
850 return false;
851 if (error_code & X86_PF_PK)
852 return true;
853 /* this checks permission keys on the VMA: */
854 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
855 (error_code & X86_PF_INSTR), foreign))
856 return true;
857 return false;
858 }
859
860 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)861 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
862 unsigned long address, struct vm_area_struct *vma)
863 {
864 /*
865 * This OSPKE check is not strictly necessary at runtime.
866 * But, doing it this way allows compiler optimizations
867 * if pkeys are compiled out.
868 */
869 if (bad_area_access_from_pkeys(error_code, vma)) {
870 /*
871 * A protection key fault means that the PKRU value did not allow
872 * access to some PTE. Userspace can figure out what PKRU was
873 * from the XSAVE state. This function captures the pkey from
874 * the vma and passes it to userspace so userspace can discover
875 * which protection key was set on the PTE.
876 *
877 * If we get here, we know that the hardware signaled a X86_PF_PK
878 * fault and that there was a VMA once we got in the fault
879 * handler. It does *not* guarantee that the VMA we find here
880 * was the one that we faulted on.
881 *
882 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
883 * 2. T1 : set PKRU to deny access to pkey=4, touches page
884 * 3. T1 : faults...
885 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
886 * 5. T1 : enters fault handler, takes mmap_lock, etc...
887 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
888 * faulted on a pte with its pkey=4.
889 */
890 u32 pkey = vma_pkey(vma);
891
892 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
893 } else {
894 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
895 }
896 }
897
898 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)899 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
900 vm_fault_t fault)
901 {
902 /* Kernel mode? Handle exceptions or die: */
903 if (!user_mode(regs)) {
904 kernelmode_fixup_or_oops(regs, error_code, address,
905 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
906 return;
907 }
908
909 /* User-space => ok to do another page fault: */
910 if (is_prefetch(regs, error_code, address))
911 return;
912
913 sanitize_error_code(address, &error_code);
914
915 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
916 return;
917
918 set_signal_archinfo(address, error_code);
919
920 #ifdef CONFIG_MEMORY_FAILURE
921 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
922 struct task_struct *tsk = current;
923 unsigned lsb = 0;
924
925 pr_err(
926 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
927 tsk->comm, tsk->pid, address);
928 if (fault & VM_FAULT_HWPOISON_LARGE)
929 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
930 if (fault & VM_FAULT_HWPOISON)
931 lsb = PAGE_SHIFT;
932 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
933 return;
934 }
935 #endif
936 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
937 }
938
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)939 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
940 {
941 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
942 return 0;
943
944 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
945 return 0;
946
947 return 1;
948 }
949
950 /*
951 * Handle a spurious fault caused by a stale TLB entry.
952 *
953 * This allows us to lazily refresh the TLB when increasing the
954 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
955 * eagerly is very expensive since that implies doing a full
956 * cross-processor TLB flush, even if no stale TLB entries exist
957 * on other processors.
958 *
959 * Spurious faults may only occur if the TLB contains an entry with
960 * fewer permission than the page table entry. Non-present (P = 0)
961 * and reserved bit (R = 1) faults are never spurious.
962 *
963 * There are no security implications to leaving a stale TLB when
964 * increasing the permissions on a page.
965 *
966 * Returns non-zero if a spurious fault was handled, zero otherwise.
967 *
968 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
969 * (Optional Invalidation).
970 */
971 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)972 spurious_kernel_fault(unsigned long error_code, unsigned long address)
973 {
974 pgd_t *pgd;
975 p4d_t *p4d;
976 pud_t *pud;
977 pmd_t *pmd;
978 pte_t *pte;
979 int ret;
980
981 /*
982 * Only writes to RO or instruction fetches from NX may cause
983 * spurious faults.
984 *
985 * These could be from user or supervisor accesses but the TLB
986 * is only lazily flushed after a kernel mapping protection
987 * change, so user accesses are not expected to cause spurious
988 * faults.
989 */
990 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
991 error_code != (X86_PF_INSTR | X86_PF_PROT))
992 return 0;
993
994 pgd = init_mm.pgd + pgd_index(address);
995 if (!pgd_present(*pgd))
996 return 0;
997
998 p4d = p4d_offset(pgd, address);
999 if (!p4d_present(*p4d))
1000 return 0;
1001
1002 if (p4d_large(*p4d))
1003 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1004
1005 pud = pud_offset(p4d, address);
1006 if (!pud_present(*pud))
1007 return 0;
1008
1009 if (pud_leaf(*pud))
1010 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1011
1012 pmd = pmd_offset(pud, address);
1013 if (!pmd_present(*pmd))
1014 return 0;
1015
1016 if (pmd_large(*pmd))
1017 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1018
1019 pte = pte_offset_kernel(pmd, address);
1020 if (!pte_present(*pte))
1021 return 0;
1022
1023 ret = spurious_kernel_fault_check(error_code, pte);
1024 if (!ret)
1025 return 0;
1026
1027 /*
1028 * Make sure we have permissions in PMD.
1029 * If not, then there's a bug in the page tables:
1030 */
1031 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1032 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1033
1034 return ret;
1035 }
1036 NOKPROBE_SYMBOL(spurious_kernel_fault);
1037
1038 int show_unhandled_signals = 1;
1039
1040 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1041 access_error(unsigned long error_code, struct vm_area_struct *vma)
1042 {
1043 /* This is only called for the current mm, so: */
1044 bool foreign = false;
1045
1046 /*
1047 * Read or write was blocked by protection keys. This is
1048 * always an unconditional error and can never result in
1049 * a follow-up action to resolve the fault, like a COW.
1050 */
1051 if (error_code & X86_PF_PK)
1052 return 1;
1053
1054 /*
1055 * SGX hardware blocked the access. This usually happens
1056 * when the enclave memory contents have been destroyed, like
1057 * after a suspend/resume cycle. In any case, the kernel can't
1058 * fix the cause of the fault. Handle the fault as an access
1059 * error even in cases where no actual access violation
1060 * occurred. This allows userspace to rebuild the enclave in
1061 * response to the signal.
1062 */
1063 if (unlikely(error_code & X86_PF_SGX))
1064 return 1;
1065
1066 /*
1067 * Make sure to check the VMA so that we do not perform
1068 * faults just to hit a X86_PF_PK as soon as we fill in a
1069 * page.
1070 */
1071 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1072 (error_code & X86_PF_INSTR), foreign))
1073 return 1;
1074
1075 /*
1076 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1077 * shadow stack VMAs. All other accesses result in an error.
1078 */
1079 if (error_code & X86_PF_SHSTK) {
1080 if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1081 return 1;
1082 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1083 return 1;
1084 return 0;
1085 }
1086
1087 if (error_code & X86_PF_WRITE) {
1088 /* write, present and write, not present: */
1089 if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1090 return 1;
1091 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1092 return 1;
1093 return 0;
1094 }
1095
1096 /* read, present: */
1097 if (unlikely(error_code & X86_PF_PROT))
1098 return 1;
1099
1100 /* read, not present: */
1101 if (unlikely(!vma_is_accessible(vma)))
1102 return 1;
1103
1104 return 0;
1105 }
1106
fault_in_kernel_space(unsigned long address)1107 bool fault_in_kernel_space(unsigned long address)
1108 {
1109 /*
1110 * On 64-bit systems, the vsyscall page is at an address above
1111 * TASK_SIZE_MAX, but is not considered part of the kernel
1112 * address space.
1113 */
1114 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1115 return false;
1116
1117 return address >= TASK_SIZE_MAX;
1118 }
1119
1120 /*
1121 * Called for all faults where 'address' is part of the kernel address
1122 * space. Might get called for faults that originate from *code* that
1123 * ran in userspace or the kernel.
1124 */
1125 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1126 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1127 unsigned long address)
1128 {
1129 /*
1130 * Protection keys exceptions only happen on user pages. We
1131 * have no user pages in the kernel portion of the address
1132 * space, so do not expect them here.
1133 */
1134 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1135
1136 #ifdef CONFIG_X86_32
1137 /*
1138 * We can fault-in kernel-space virtual memory on-demand. The
1139 * 'reference' page table is init_mm.pgd.
1140 *
1141 * NOTE! We MUST NOT take any locks for this case. We may
1142 * be in an interrupt or a critical region, and should
1143 * only copy the information from the master page table,
1144 * nothing more.
1145 *
1146 * Before doing this on-demand faulting, ensure that the
1147 * fault is not any of the following:
1148 * 1. A fault on a PTE with a reserved bit set.
1149 * 2. A fault caused by a user-mode access. (Do not demand-
1150 * fault kernel memory due to user-mode accesses).
1151 * 3. A fault caused by a page-level protection violation.
1152 * (A demand fault would be on a non-present page which
1153 * would have X86_PF_PROT==0).
1154 *
1155 * This is only needed to close a race condition on x86-32 in
1156 * the vmalloc mapping/unmapping code. See the comment above
1157 * vmalloc_fault() for details. On x86-64 the race does not
1158 * exist as the vmalloc mappings don't need to be synchronized
1159 * there.
1160 */
1161 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1162 if (vmalloc_fault(address) >= 0)
1163 return;
1164 }
1165 #endif
1166
1167 if (is_f00f_bug(regs, hw_error_code, address))
1168 return;
1169
1170 /* Was the fault spurious, caused by lazy TLB invalidation? */
1171 if (spurious_kernel_fault(hw_error_code, address))
1172 return;
1173
1174 /* kprobes don't want to hook the spurious faults: */
1175 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1176 return;
1177
1178 /*
1179 * Note, despite being a "bad area", there are quite a few
1180 * acceptable reasons to get here, such as erratum fixups
1181 * and handling kernel code that can fault, like get_user().
1182 *
1183 * Don't take the mm semaphore here. If we fixup a prefetch
1184 * fault we could otherwise deadlock:
1185 */
1186 bad_area_nosemaphore(regs, hw_error_code, address);
1187 }
1188 NOKPROBE_SYMBOL(do_kern_addr_fault);
1189
1190 /*
1191 * Handle faults in the user portion of the address space. Nothing in here
1192 * should check X86_PF_USER without a specific justification: for almost
1193 * all purposes, we should treat a normal kernel access to user memory
1194 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1195 * The one exception is AC flag handling, which is, per the x86
1196 * architecture, special for WRUSS.
1197 */
1198 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1199 void do_user_addr_fault(struct pt_regs *regs,
1200 unsigned long error_code,
1201 unsigned long address)
1202 {
1203 struct vm_area_struct *vma;
1204 struct task_struct *tsk;
1205 struct mm_struct *mm;
1206 vm_fault_t fault;
1207 unsigned int flags = FAULT_FLAG_DEFAULT;
1208
1209 tsk = current;
1210 mm = tsk->mm;
1211
1212 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1213 /*
1214 * Whoops, this is kernel mode code trying to execute from
1215 * user memory. Unless this is AMD erratum #93, which
1216 * corrupts RIP such that it looks like a user address,
1217 * this is unrecoverable. Don't even try to look up the
1218 * VMA or look for extable entries.
1219 */
1220 if (is_errata93(regs, address))
1221 return;
1222
1223 page_fault_oops(regs, error_code, address);
1224 return;
1225 }
1226
1227 /* kprobes don't want to hook the spurious faults: */
1228 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1229 return;
1230
1231 /*
1232 * Reserved bits are never expected to be set on
1233 * entries in the user portion of the page tables.
1234 */
1235 if (unlikely(error_code & X86_PF_RSVD))
1236 pgtable_bad(regs, error_code, address);
1237
1238 /*
1239 * If SMAP is on, check for invalid kernel (supervisor) access to user
1240 * pages in the user address space. The odd case here is WRUSS,
1241 * which, according to the preliminary documentation, does not respect
1242 * SMAP and will have the USER bit set so, in all cases, SMAP
1243 * enforcement appears to be consistent with the USER bit.
1244 */
1245 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1246 !(error_code & X86_PF_USER) &&
1247 !(regs->flags & X86_EFLAGS_AC))) {
1248 /*
1249 * No extable entry here. This was a kernel access to an
1250 * invalid pointer. get_kernel_nofault() will not get here.
1251 */
1252 page_fault_oops(regs, error_code, address);
1253 return;
1254 }
1255
1256 /*
1257 * If we're in an interrupt, have no user context or are running
1258 * in a region with pagefaults disabled then we must not take the fault
1259 */
1260 if (unlikely(faulthandler_disabled() || !mm)) {
1261 bad_area_nosemaphore(regs, error_code, address);
1262 return;
1263 }
1264
1265 /*
1266 * It's safe to allow irq's after cr2 has been saved and the
1267 * vmalloc fault has been handled.
1268 *
1269 * User-mode registers count as a user access even for any
1270 * potential system fault or CPU buglet:
1271 */
1272 if (user_mode(regs)) {
1273 local_irq_enable();
1274 flags |= FAULT_FLAG_USER;
1275 } else {
1276 if (regs->flags & X86_EFLAGS_IF)
1277 local_irq_enable();
1278 }
1279
1280 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1281
1282 /*
1283 * Read-only permissions can not be expressed in shadow stack PTEs.
1284 * Treat all shadow stack accesses as WRITE faults. This ensures
1285 * that the MM will prepare everything (e.g., break COW) such that
1286 * maybe_mkwrite() can create a proper shadow stack PTE.
1287 */
1288 if (error_code & X86_PF_SHSTK)
1289 flags |= FAULT_FLAG_WRITE;
1290 if (error_code & X86_PF_WRITE)
1291 flags |= FAULT_FLAG_WRITE;
1292 if (error_code & X86_PF_INSTR)
1293 flags |= FAULT_FLAG_INSTRUCTION;
1294
1295 #ifdef CONFIG_X86_64
1296 /*
1297 * Faults in the vsyscall page might need emulation. The
1298 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1299 * considered to be part of the user address space.
1300 *
1301 * The vsyscall page does not have a "real" VMA, so do this
1302 * emulation before we go searching for VMAs.
1303 *
1304 * PKRU never rejects instruction fetches, so we don't need
1305 * to consider the PF_PK bit.
1306 */
1307 if (is_vsyscall_vaddr(address)) {
1308 if (emulate_vsyscall(error_code, regs, address))
1309 return;
1310 }
1311 #endif
1312
1313 if (!(flags & FAULT_FLAG_USER))
1314 goto lock_mmap;
1315
1316 vma = lock_vma_under_rcu(mm, address);
1317 if (!vma)
1318 goto lock_mmap;
1319
1320 if (unlikely(access_error(error_code, vma))) {
1321 vma_end_read(vma);
1322 goto lock_mmap;
1323 }
1324 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1325 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1326 vma_end_read(vma);
1327
1328 if (!(fault & VM_FAULT_RETRY)) {
1329 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1330 goto done;
1331 }
1332 count_vm_vma_lock_event(VMA_LOCK_RETRY);
1333
1334 /* Quick path to respond to signals */
1335 if (fault_signal_pending(fault, regs)) {
1336 if (!user_mode(regs))
1337 kernelmode_fixup_or_oops(regs, error_code, address,
1338 SIGBUS, BUS_ADRERR,
1339 ARCH_DEFAULT_PKEY);
1340 return;
1341 }
1342 lock_mmap:
1343
1344 retry:
1345 vma = lock_mm_and_find_vma(mm, address, regs);
1346 if (unlikely(!vma)) {
1347 bad_area_nosemaphore(regs, error_code, address);
1348 return;
1349 }
1350
1351 /*
1352 * Ok, we have a good vm_area for this memory access, so
1353 * we can handle it..
1354 */
1355 if (unlikely(access_error(error_code, vma))) {
1356 bad_area_access_error(regs, error_code, address, vma);
1357 return;
1358 }
1359
1360 /*
1361 * If for any reason at all we couldn't handle the fault,
1362 * make sure we exit gracefully rather than endlessly redo
1363 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1364 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1365 *
1366 * Note that handle_userfault() may also release and reacquire mmap_lock
1367 * (and not return with VM_FAULT_RETRY), when returning to userland to
1368 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1369 * (potentially after handling any pending signal during the return to
1370 * userland). The return to userland is identified whenever
1371 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1372 */
1373 fault = handle_mm_fault(vma, address, flags, regs);
1374
1375 if (fault_signal_pending(fault, regs)) {
1376 /*
1377 * Quick path to respond to signals. The core mm code
1378 * has unlocked the mm for us if we get here.
1379 */
1380 if (!user_mode(regs))
1381 kernelmode_fixup_or_oops(regs, error_code, address,
1382 SIGBUS, BUS_ADRERR,
1383 ARCH_DEFAULT_PKEY);
1384 return;
1385 }
1386
1387 /* The fault is fully completed (including releasing mmap lock) */
1388 if (fault & VM_FAULT_COMPLETED)
1389 return;
1390
1391 /*
1392 * If we need to retry the mmap_lock has already been released,
1393 * and if there is a fatal signal pending there is no guarantee
1394 * that we made any progress. Handle this case first.
1395 */
1396 if (unlikely(fault & VM_FAULT_RETRY)) {
1397 flags |= FAULT_FLAG_TRIED;
1398 goto retry;
1399 }
1400
1401 mmap_read_unlock(mm);
1402 done:
1403 if (likely(!(fault & VM_FAULT_ERROR)))
1404 return;
1405
1406 if (fatal_signal_pending(current) && !user_mode(regs)) {
1407 kernelmode_fixup_or_oops(regs, error_code, address,
1408 0, 0, ARCH_DEFAULT_PKEY);
1409 return;
1410 }
1411
1412 if (fault & VM_FAULT_OOM) {
1413 /* Kernel mode? Handle exceptions or die: */
1414 if (!user_mode(regs)) {
1415 kernelmode_fixup_or_oops(regs, error_code, address,
1416 SIGSEGV, SEGV_MAPERR,
1417 ARCH_DEFAULT_PKEY);
1418 return;
1419 }
1420
1421 /*
1422 * We ran out of memory, call the OOM killer, and return the
1423 * userspace (which will retry the fault, or kill us if we got
1424 * oom-killed):
1425 */
1426 pagefault_out_of_memory();
1427 } else {
1428 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1429 VM_FAULT_HWPOISON_LARGE))
1430 do_sigbus(regs, error_code, address, fault);
1431 else if (fault & VM_FAULT_SIGSEGV)
1432 bad_area_nosemaphore(regs, error_code, address);
1433 else
1434 BUG();
1435 }
1436 }
1437 NOKPROBE_SYMBOL(do_user_addr_fault);
1438
1439 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1440 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1441 unsigned long address)
1442 {
1443 if (!trace_pagefault_enabled())
1444 return;
1445
1446 if (user_mode(regs))
1447 trace_page_fault_user(address, regs, error_code);
1448 else
1449 trace_page_fault_kernel(address, regs, error_code);
1450 }
1451
1452 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1453 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1454 unsigned long address)
1455 {
1456 trace_page_fault_entries(regs, error_code, address);
1457
1458 if (unlikely(kmmio_fault(regs, address)))
1459 return;
1460
1461 /* Was the fault on kernel-controlled part of the address space? */
1462 if (unlikely(fault_in_kernel_space(address))) {
1463 do_kern_addr_fault(regs, error_code, address);
1464 } else {
1465 do_user_addr_fault(regs, error_code, address);
1466 /*
1467 * User address page fault handling might have reenabled
1468 * interrupts. Fixing up all potential exit points of
1469 * do_user_addr_fault() and its leaf functions is just not
1470 * doable w/o creating an unholy mess or turning the code
1471 * upside down.
1472 */
1473 local_irq_disable();
1474 }
1475 }
1476
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1477 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1478 {
1479 unsigned long address = read_cr2();
1480 irqentry_state_t state;
1481
1482 prefetchw(¤t->mm->mmap_lock);
1483
1484 /*
1485 * KVM uses #PF vector to deliver 'page not present' events to guests
1486 * (asynchronous page fault mechanism). The event happens when a
1487 * userspace task is trying to access some valid (from guest's point of
1488 * view) memory which is not currently mapped by the host (e.g. the
1489 * memory is swapped out). Note, the corresponding "page ready" event
1490 * which is injected when the memory becomes available, is delivered via
1491 * an interrupt mechanism and not a #PF exception
1492 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1493 *
1494 * We are relying on the interrupted context being sane (valid RSP,
1495 * relevant locks not held, etc.), which is fine as long as the
1496 * interrupted context had IF=1. We are also relying on the KVM
1497 * async pf type field and CR2 being read consistently instead of
1498 * getting values from real and async page faults mixed up.
1499 *
1500 * Fingers crossed.
1501 *
1502 * The async #PF handling code takes care of idtentry handling
1503 * itself.
1504 */
1505 if (kvm_handle_async_pf(regs, (u32)address))
1506 return;
1507
1508 /*
1509 * Entry handling for valid #PF from kernel mode is slightly
1510 * different: RCU is already watching and ct_irq_enter() must not
1511 * be invoked because a kernel fault on a user space address might
1512 * sleep.
1513 *
1514 * In case the fault hit a RCU idle region the conditional entry
1515 * code reenabled RCU to avoid subsequent wreckage which helps
1516 * debuggability.
1517 */
1518 state = irqentry_enter(regs);
1519
1520 instrumentation_begin();
1521 handle_page_fault(regs, error_code, address);
1522 instrumentation_end();
1523
1524 irqentry_exit(regs, state);
1525 }
1526