xref: /openbmc/linux/arch/x86/mm/extable.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/extable.h>
3 #include <linux/uaccess.h>
4 #include <linux/sched/debug.h>
5 #include <xen/xen.h>
6 
7 #include <asm/fpu/internal.h>
8 #include <asm/traps.h>
9 #include <asm/kdebug.h>
10 
11 typedef bool (*ex_handler_t)(const struct exception_table_entry *,
12 			    struct pt_regs *, int, unsigned long,
13 			    unsigned long);
14 
15 static inline unsigned long
16 ex_fixup_addr(const struct exception_table_entry *x)
17 {
18 	return (unsigned long)&x->fixup + x->fixup;
19 }
20 static inline ex_handler_t
21 ex_fixup_handler(const struct exception_table_entry *x)
22 {
23 	return (ex_handler_t)((unsigned long)&x->handler + x->handler);
24 }
25 
26 __visible bool ex_handler_default(const struct exception_table_entry *fixup,
27 				  struct pt_regs *regs, int trapnr,
28 				  unsigned long error_code,
29 				  unsigned long fault_addr)
30 {
31 	regs->ip = ex_fixup_addr(fixup);
32 	return true;
33 }
34 EXPORT_SYMBOL(ex_handler_default);
35 
36 __visible bool ex_handler_fault(const struct exception_table_entry *fixup,
37 				struct pt_regs *regs, int trapnr,
38 				unsigned long error_code,
39 				unsigned long fault_addr)
40 {
41 	regs->ip = ex_fixup_addr(fixup);
42 	regs->ax = trapnr;
43 	return true;
44 }
45 EXPORT_SYMBOL_GPL(ex_handler_fault);
46 
47 /*
48  * Handler for UD0 exception following a failed test against the
49  * result of a refcount inc/dec/add/sub.
50  */
51 __visible bool ex_handler_refcount(const struct exception_table_entry *fixup,
52 				   struct pt_regs *regs, int trapnr,
53 				   unsigned long error_code,
54 				   unsigned long fault_addr)
55 {
56 	/* First unconditionally saturate the refcount. */
57 	*(int *)regs->cx = INT_MIN / 2;
58 
59 	/*
60 	 * Strictly speaking, this reports the fixup destination, not
61 	 * the fault location, and not the actually overflowing
62 	 * instruction, which is the instruction before the "js", but
63 	 * since that instruction could be a variety of lengths, just
64 	 * report the location after the overflow, which should be close
65 	 * enough for finding the overflow, as it's at least back in
66 	 * the function, having returned from .text.unlikely.
67 	 */
68 	regs->ip = ex_fixup_addr(fixup);
69 
70 	/*
71 	 * This function has been called because either a negative refcount
72 	 * value was seen by any of the refcount functions, or a zero
73 	 * refcount value was seen by refcount_dec().
74 	 *
75 	 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
76 	 * wrapped around) will be set. Additionally, seeing the refcount
77 	 * reach 0 will set ZF (Zero Flag: result was zero). In each of
78 	 * these cases we want a report, since it's a boundary condition.
79 	 * The SF case is not reported since it indicates post-boundary
80 	 * manipulations below zero or above INT_MAX. And if none of the
81 	 * flags are set, something has gone very wrong, so report it.
82 	 */
83 	if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
84 		bool zero = regs->flags & X86_EFLAGS_ZF;
85 
86 		refcount_error_report(regs, zero ? "hit zero" : "overflow");
87 	} else if ((regs->flags & X86_EFLAGS_SF) == 0) {
88 		/* Report if none of OF, ZF, nor SF are set. */
89 		refcount_error_report(regs, "unexpected saturation");
90 	}
91 
92 	return true;
93 }
94 EXPORT_SYMBOL(ex_handler_refcount);
95 
96 /*
97  * Handler for when we fail to restore a task's FPU state.  We should never get
98  * here because the FPU state of a task using the FPU (task->thread.fpu.state)
99  * should always be valid.  However, past bugs have allowed userspace to set
100  * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
101  * These caused XRSTOR to fail when switching to the task, leaking the FPU
102  * registers of the task previously executing on the CPU.  Mitigate this class
103  * of vulnerability by restoring from the initial state (essentially, zeroing
104  * out all the FPU registers) if we can't restore from the task's FPU state.
105  */
106 __visible bool ex_handler_fprestore(const struct exception_table_entry *fixup,
107 				    struct pt_regs *regs, int trapnr,
108 				    unsigned long error_code,
109 				    unsigned long fault_addr)
110 {
111 	regs->ip = ex_fixup_addr(fixup);
112 
113 	WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
114 		  (void *)instruction_pointer(regs));
115 
116 	__copy_kernel_to_fpregs(&init_fpstate, -1);
117 	return true;
118 }
119 EXPORT_SYMBOL_GPL(ex_handler_fprestore);
120 
121 __visible bool ex_handler_uaccess(const struct exception_table_entry *fixup,
122 				  struct pt_regs *regs, int trapnr,
123 				  unsigned long error_code,
124 				  unsigned long fault_addr)
125 {
126 	WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
127 	regs->ip = ex_fixup_addr(fixup);
128 	return true;
129 }
130 EXPORT_SYMBOL(ex_handler_uaccess);
131 
132 __visible bool ex_handler_ext(const struct exception_table_entry *fixup,
133 			      struct pt_regs *regs, int trapnr,
134 			      unsigned long error_code,
135 			      unsigned long fault_addr)
136 {
137 	/* Special hack for uaccess_err */
138 	current->thread.uaccess_err = 1;
139 	regs->ip = ex_fixup_addr(fixup);
140 	return true;
141 }
142 EXPORT_SYMBOL(ex_handler_ext);
143 
144 __visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
145 				       struct pt_regs *regs, int trapnr,
146 				       unsigned long error_code,
147 				       unsigned long fault_addr)
148 {
149 	if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
150 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
151 		show_stack_regs(regs);
152 
153 	/* Pretend that the read succeeded and returned 0. */
154 	regs->ip = ex_fixup_addr(fixup);
155 	regs->ax = 0;
156 	regs->dx = 0;
157 	return true;
158 }
159 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
160 
161 __visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
162 				       struct pt_regs *regs, int trapnr,
163 				       unsigned long error_code,
164 				       unsigned long fault_addr)
165 {
166 	if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
167 			 (unsigned int)regs->cx, (unsigned int)regs->dx,
168 			 (unsigned int)regs->ax,  regs->ip, (void *)regs->ip))
169 		show_stack_regs(regs);
170 
171 	/* Pretend that the write succeeded. */
172 	regs->ip = ex_fixup_addr(fixup);
173 	return true;
174 }
175 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
176 
177 __visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
178 				   struct pt_regs *regs, int trapnr,
179 				   unsigned long error_code,
180 				   unsigned long fault_addr)
181 {
182 	if (static_cpu_has(X86_BUG_NULL_SEG))
183 		asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
184 	asm volatile ("mov %0, %%fs" : : "rm" (0));
185 	return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr);
186 }
187 EXPORT_SYMBOL(ex_handler_clear_fs);
188 
189 __visible bool ex_has_fault_handler(unsigned long ip)
190 {
191 	const struct exception_table_entry *e;
192 	ex_handler_t handler;
193 
194 	e = search_exception_tables(ip);
195 	if (!e)
196 		return false;
197 	handler = ex_fixup_handler(e);
198 
199 	return handler == ex_handler_fault;
200 }
201 
202 int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
203 		    unsigned long fault_addr)
204 {
205 	const struct exception_table_entry *e;
206 	ex_handler_t handler;
207 
208 #ifdef CONFIG_PNPBIOS
209 	if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
210 		extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
211 		extern u32 pnp_bios_is_utter_crap;
212 		pnp_bios_is_utter_crap = 1;
213 		printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
214 		__asm__ volatile(
215 			"movl %0, %%esp\n\t"
216 			"jmp *%1\n\t"
217 			: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
218 		panic("do_trap: can't hit this");
219 	}
220 #endif
221 
222 	e = search_exception_tables(regs->ip);
223 	if (!e)
224 		return 0;
225 
226 	handler = ex_fixup_handler(e);
227 	return handler(e, regs, trapnr, error_code, fault_addr);
228 }
229 
230 extern unsigned int early_recursion_flag;
231 
232 /* Restricted version used during very early boot */
233 void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
234 {
235 	/* Ignore early NMIs. */
236 	if (trapnr == X86_TRAP_NMI)
237 		return;
238 
239 	if (early_recursion_flag > 2)
240 		goto halt_loop;
241 
242 	/*
243 	 * Old CPUs leave the high bits of CS on the stack
244 	 * undefined.  I'm not sure which CPUs do this, but at least
245 	 * the 486 DX works this way.
246 	 * Xen pv domains are not using the default __KERNEL_CS.
247 	 */
248 	if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
249 		goto fail;
250 
251 	/*
252 	 * The full exception fixup machinery is available as soon as
253 	 * the early IDT is loaded.  This means that it is the
254 	 * responsibility of extable users to either function correctly
255 	 * when handlers are invoked early or to simply avoid causing
256 	 * exceptions before they're ready to handle them.
257 	 *
258 	 * This is better than filtering which handlers can be used,
259 	 * because refusing to call a handler here is guaranteed to
260 	 * result in a hard-to-debug panic.
261 	 *
262 	 * Keep in mind that not all vectors actually get here.  Early
263 	 * page faults, for example, are special.
264 	 */
265 	if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
266 		return;
267 
268 	if (fixup_bug(regs, trapnr))
269 		return;
270 
271 fail:
272 	early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
273 		     (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
274 		     regs->orig_ax, read_cr2());
275 
276 	show_regs(regs);
277 
278 halt_loop:
279 	while (true)
280 		halt();
281 }
282