xref: /openbmc/linux/arch/x86/mm/extable.c (revision ddc141e5)
1 #include <linux/extable.h>
2 #include <linux/uaccess.h>
3 #include <linux/sched/debug.h>
4 #include <xen/xen.h>
5 
6 #include <asm/fpu/internal.h>
7 #include <asm/traps.h>
8 #include <asm/kdebug.h>
9 
10 typedef bool (*ex_handler_t)(const struct exception_table_entry *,
11 			    struct pt_regs *, int);
12 
13 static inline unsigned long
14 ex_fixup_addr(const struct exception_table_entry *x)
15 {
16 	return (unsigned long)&x->fixup + x->fixup;
17 }
18 static inline ex_handler_t
19 ex_fixup_handler(const struct exception_table_entry *x)
20 {
21 	return (ex_handler_t)((unsigned long)&x->handler + x->handler);
22 }
23 
24 __visible bool ex_handler_default(const struct exception_table_entry *fixup,
25 				  struct pt_regs *regs, int trapnr)
26 {
27 	regs->ip = ex_fixup_addr(fixup);
28 	return true;
29 }
30 EXPORT_SYMBOL(ex_handler_default);
31 
32 __visible bool ex_handler_fault(const struct exception_table_entry *fixup,
33 				struct pt_regs *regs, int trapnr)
34 {
35 	regs->ip = ex_fixup_addr(fixup);
36 	regs->ax = trapnr;
37 	return true;
38 }
39 EXPORT_SYMBOL_GPL(ex_handler_fault);
40 
41 /*
42  * Handler for UD0 exception following a failed test against the
43  * result of a refcount inc/dec/add/sub.
44  */
45 __visible bool ex_handler_refcount(const struct exception_table_entry *fixup,
46 				   struct pt_regs *regs, int trapnr)
47 {
48 	/* First unconditionally saturate the refcount. */
49 	*(int *)regs->cx = INT_MIN / 2;
50 
51 	/*
52 	 * Strictly speaking, this reports the fixup destination, not
53 	 * the fault location, and not the actually overflowing
54 	 * instruction, which is the instruction before the "js", but
55 	 * since that instruction could be a variety of lengths, just
56 	 * report the location after the overflow, which should be close
57 	 * enough for finding the overflow, as it's at least back in
58 	 * the function, having returned from .text.unlikely.
59 	 */
60 	regs->ip = ex_fixup_addr(fixup);
61 
62 	/*
63 	 * This function has been called because either a negative refcount
64 	 * value was seen by any of the refcount functions, or a zero
65 	 * refcount value was seen by refcount_dec().
66 	 *
67 	 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
68 	 * wrapped around) will be set. Additionally, seeing the refcount
69 	 * reach 0 will set ZF (Zero Flag: result was zero). In each of
70 	 * these cases we want a report, since it's a boundary condition.
71 	 * The SF case is not reported since it indicates post-boundary
72 	 * manipulations below zero or above INT_MAX. And if none of the
73 	 * flags are set, something has gone very wrong, so report it.
74 	 */
75 	if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
76 		bool zero = regs->flags & X86_EFLAGS_ZF;
77 
78 		refcount_error_report(regs, zero ? "hit zero" : "overflow");
79 	} else if ((regs->flags & X86_EFLAGS_SF) == 0) {
80 		/* Report if none of OF, ZF, nor SF are set. */
81 		refcount_error_report(regs, "unexpected saturation");
82 	}
83 
84 	return true;
85 }
86 EXPORT_SYMBOL(ex_handler_refcount);
87 
88 /*
89  * Handler for when we fail to restore a task's FPU state.  We should never get
90  * here because the FPU state of a task using the FPU (task->thread.fpu.state)
91  * should always be valid.  However, past bugs have allowed userspace to set
92  * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
93  * These caused XRSTOR to fail when switching to the task, leaking the FPU
94  * registers of the task previously executing on the CPU.  Mitigate this class
95  * of vulnerability by restoring from the initial state (essentially, zeroing
96  * out all the FPU registers) if we can't restore from the task's FPU state.
97  */
98 __visible bool ex_handler_fprestore(const struct exception_table_entry *fixup,
99 				    struct pt_regs *regs, int trapnr)
100 {
101 	regs->ip = ex_fixup_addr(fixup);
102 
103 	WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
104 		  (void *)instruction_pointer(regs));
105 
106 	__copy_kernel_to_fpregs(&init_fpstate, -1);
107 	return true;
108 }
109 EXPORT_SYMBOL_GPL(ex_handler_fprestore);
110 
111 __visible bool ex_handler_ext(const struct exception_table_entry *fixup,
112 			      struct pt_regs *regs, int trapnr)
113 {
114 	/* Special hack for uaccess_err */
115 	current->thread.uaccess_err = 1;
116 	regs->ip = ex_fixup_addr(fixup);
117 	return true;
118 }
119 EXPORT_SYMBOL(ex_handler_ext);
120 
121 __visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
122 				       struct pt_regs *regs, int trapnr)
123 {
124 	if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n",
125 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
126 		show_stack_regs(regs);
127 
128 	/* Pretend that the read succeeded and returned 0. */
129 	regs->ip = ex_fixup_addr(fixup);
130 	regs->ax = 0;
131 	regs->dx = 0;
132 	return true;
133 }
134 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
135 
136 __visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
137 				       struct pt_regs *regs, int trapnr)
138 {
139 	if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n",
140 			 (unsigned int)regs->cx, (unsigned int)regs->dx,
141 			 (unsigned int)regs->ax,  regs->ip, (void *)regs->ip))
142 		show_stack_regs(regs);
143 
144 	/* Pretend that the write succeeded. */
145 	regs->ip = ex_fixup_addr(fixup);
146 	return true;
147 }
148 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
149 
150 __visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
151 				   struct pt_regs *regs, int trapnr)
152 {
153 	if (static_cpu_has(X86_BUG_NULL_SEG))
154 		asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
155 	asm volatile ("mov %0, %%fs" : : "rm" (0));
156 	return ex_handler_default(fixup, regs, trapnr);
157 }
158 EXPORT_SYMBOL(ex_handler_clear_fs);
159 
160 __visible bool ex_has_fault_handler(unsigned long ip)
161 {
162 	const struct exception_table_entry *e;
163 	ex_handler_t handler;
164 
165 	e = search_exception_tables(ip);
166 	if (!e)
167 		return false;
168 	handler = ex_fixup_handler(e);
169 
170 	return handler == ex_handler_fault;
171 }
172 
173 int fixup_exception(struct pt_regs *regs, int trapnr)
174 {
175 	const struct exception_table_entry *e;
176 	ex_handler_t handler;
177 
178 #ifdef CONFIG_PNPBIOS
179 	if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
180 		extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
181 		extern u32 pnp_bios_is_utter_crap;
182 		pnp_bios_is_utter_crap = 1;
183 		printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
184 		__asm__ volatile(
185 			"movl %0, %%esp\n\t"
186 			"jmp *%1\n\t"
187 			: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
188 		panic("do_trap: can't hit this");
189 	}
190 #endif
191 
192 	e = search_exception_tables(regs->ip);
193 	if (!e)
194 		return 0;
195 
196 	handler = ex_fixup_handler(e);
197 	return handler(e, regs, trapnr);
198 }
199 
200 extern unsigned int early_recursion_flag;
201 
202 /* Restricted version used during very early boot */
203 void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
204 {
205 	/* Ignore early NMIs. */
206 	if (trapnr == X86_TRAP_NMI)
207 		return;
208 
209 	if (early_recursion_flag > 2)
210 		goto halt_loop;
211 
212 	/*
213 	 * Old CPUs leave the high bits of CS on the stack
214 	 * undefined.  I'm not sure which CPUs do this, but at least
215 	 * the 486 DX works this way.
216 	 * Xen pv domains are not using the default __KERNEL_CS.
217 	 */
218 	if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
219 		goto fail;
220 
221 	/*
222 	 * The full exception fixup machinery is available as soon as
223 	 * the early IDT is loaded.  This means that it is the
224 	 * responsibility of extable users to either function correctly
225 	 * when handlers are invoked early or to simply avoid causing
226 	 * exceptions before they're ready to handle them.
227 	 *
228 	 * This is better than filtering which handlers can be used,
229 	 * because refusing to call a handler here is guaranteed to
230 	 * result in a hard-to-debug panic.
231 	 *
232 	 * Keep in mind that not all vectors actually get here.  Early
233 	 * fage faults, for example, are special.
234 	 */
235 	if (fixup_exception(regs, trapnr))
236 		return;
237 
238 	if (fixup_bug(regs, trapnr))
239 		return;
240 
241 fail:
242 	early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
243 		     (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
244 		     regs->orig_ax, read_cr2());
245 
246 	show_regs(regs);
247 
248 halt_loop:
249 	while (true)
250 		halt();
251 }
252