1 #include <linux/extable.h> 2 #include <linux/uaccess.h> 3 #include <linux/sched/debug.h> 4 #include <xen/xen.h> 5 6 #include <asm/fpu/internal.h> 7 #include <asm/traps.h> 8 #include <asm/kdebug.h> 9 10 typedef bool (*ex_handler_t)(const struct exception_table_entry *, 11 struct pt_regs *, int, unsigned long, 12 unsigned long); 13 14 static inline unsigned long 15 ex_fixup_addr(const struct exception_table_entry *x) 16 { 17 return (unsigned long)&x->fixup + x->fixup; 18 } 19 static inline ex_handler_t 20 ex_fixup_handler(const struct exception_table_entry *x) 21 { 22 return (ex_handler_t)((unsigned long)&x->handler + x->handler); 23 } 24 25 __visible bool ex_handler_default(const struct exception_table_entry *fixup, 26 struct pt_regs *regs, int trapnr, 27 unsigned long error_code, 28 unsigned long fault_addr) 29 { 30 regs->ip = ex_fixup_addr(fixup); 31 return true; 32 } 33 EXPORT_SYMBOL(ex_handler_default); 34 35 __visible bool ex_handler_fault(const struct exception_table_entry *fixup, 36 struct pt_regs *regs, int trapnr, 37 unsigned long error_code, 38 unsigned long fault_addr) 39 { 40 regs->ip = ex_fixup_addr(fixup); 41 regs->ax = trapnr; 42 return true; 43 } 44 EXPORT_SYMBOL_GPL(ex_handler_fault); 45 46 /* 47 * Handler for UD0 exception following a failed test against the 48 * result of a refcount inc/dec/add/sub. 49 */ 50 __visible bool ex_handler_refcount(const struct exception_table_entry *fixup, 51 struct pt_regs *regs, int trapnr, 52 unsigned long error_code, 53 unsigned long fault_addr) 54 { 55 /* First unconditionally saturate the refcount. */ 56 *(int *)regs->cx = INT_MIN / 2; 57 58 /* 59 * Strictly speaking, this reports the fixup destination, not 60 * the fault location, and not the actually overflowing 61 * instruction, which is the instruction before the "js", but 62 * since that instruction could be a variety of lengths, just 63 * report the location after the overflow, which should be close 64 * enough for finding the overflow, as it's at least back in 65 * the function, having returned from .text.unlikely. 66 */ 67 regs->ip = ex_fixup_addr(fixup); 68 69 /* 70 * This function has been called because either a negative refcount 71 * value was seen by any of the refcount functions, or a zero 72 * refcount value was seen by refcount_dec(). 73 * 74 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result 75 * wrapped around) will be set. Additionally, seeing the refcount 76 * reach 0 will set ZF (Zero Flag: result was zero). In each of 77 * these cases we want a report, since it's a boundary condition. 78 * The SF case is not reported since it indicates post-boundary 79 * manipulations below zero or above INT_MAX. And if none of the 80 * flags are set, something has gone very wrong, so report it. 81 */ 82 if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) { 83 bool zero = regs->flags & X86_EFLAGS_ZF; 84 85 refcount_error_report(regs, zero ? "hit zero" : "overflow"); 86 } else if ((regs->flags & X86_EFLAGS_SF) == 0) { 87 /* Report if none of OF, ZF, nor SF are set. */ 88 refcount_error_report(regs, "unexpected saturation"); 89 } 90 91 return true; 92 } 93 EXPORT_SYMBOL(ex_handler_refcount); 94 95 /* 96 * Handler for when we fail to restore a task's FPU state. We should never get 97 * here because the FPU state of a task using the FPU (task->thread.fpu.state) 98 * should always be valid. However, past bugs have allowed userspace to set 99 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn(). 100 * These caused XRSTOR to fail when switching to the task, leaking the FPU 101 * registers of the task previously executing on the CPU. Mitigate this class 102 * of vulnerability by restoring from the initial state (essentially, zeroing 103 * out all the FPU registers) if we can't restore from the task's FPU state. 104 */ 105 __visible bool ex_handler_fprestore(const struct exception_table_entry *fixup, 106 struct pt_regs *regs, int trapnr, 107 unsigned long error_code, 108 unsigned long fault_addr) 109 { 110 regs->ip = ex_fixup_addr(fixup); 111 112 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.", 113 (void *)instruction_pointer(regs)); 114 115 __copy_kernel_to_fpregs(&init_fpstate, -1); 116 return true; 117 } 118 EXPORT_SYMBOL_GPL(ex_handler_fprestore); 119 120 __visible bool ex_handler_uaccess(const struct exception_table_entry *fixup, 121 struct pt_regs *regs, int trapnr, 122 unsigned long error_code, 123 unsigned long fault_addr) 124 { 125 WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?"); 126 regs->ip = ex_fixup_addr(fixup); 127 return true; 128 } 129 EXPORT_SYMBOL(ex_handler_uaccess); 130 131 __visible bool ex_handler_ext(const struct exception_table_entry *fixup, 132 struct pt_regs *regs, int trapnr, 133 unsigned long error_code, 134 unsigned long fault_addr) 135 { 136 /* Special hack for uaccess_err */ 137 current->thread.uaccess_err = 1; 138 regs->ip = ex_fixup_addr(fixup); 139 return true; 140 } 141 EXPORT_SYMBOL(ex_handler_ext); 142 143 __visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup, 144 struct pt_regs *regs, int trapnr, 145 unsigned long error_code, 146 unsigned long fault_addr) 147 { 148 if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n", 149 (unsigned int)regs->cx, regs->ip, (void *)regs->ip)) 150 show_stack_regs(regs); 151 152 /* Pretend that the read succeeded and returned 0. */ 153 regs->ip = ex_fixup_addr(fixup); 154 regs->ax = 0; 155 regs->dx = 0; 156 return true; 157 } 158 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe); 159 160 __visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup, 161 struct pt_regs *regs, int trapnr, 162 unsigned long error_code, 163 unsigned long fault_addr) 164 { 165 if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n", 166 (unsigned int)regs->cx, (unsigned int)regs->dx, 167 (unsigned int)regs->ax, regs->ip, (void *)regs->ip)) 168 show_stack_regs(regs); 169 170 /* Pretend that the write succeeded. */ 171 regs->ip = ex_fixup_addr(fixup); 172 return true; 173 } 174 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe); 175 176 __visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup, 177 struct pt_regs *regs, int trapnr, 178 unsigned long error_code, 179 unsigned long fault_addr) 180 { 181 if (static_cpu_has(X86_BUG_NULL_SEG)) 182 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS)); 183 asm volatile ("mov %0, %%fs" : : "rm" (0)); 184 return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr); 185 } 186 EXPORT_SYMBOL(ex_handler_clear_fs); 187 188 __visible bool ex_has_fault_handler(unsigned long ip) 189 { 190 const struct exception_table_entry *e; 191 ex_handler_t handler; 192 193 e = search_exception_tables(ip); 194 if (!e) 195 return false; 196 handler = ex_fixup_handler(e); 197 198 return handler == ex_handler_fault; 199 } 200 201 int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, 202 unsigned long fault_addr) 203 { 204 const struct exception_table_entry *e; 205 ex_handler_t handler; 206 207 #ifdef CONFIG_PNPBIOS 208 if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) { 209 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; 210 extern u32 pnp_bios_is_utter_crap; 211 pnp_bios_is_utter_crap = 1; 212 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); 213 __asm__ volatile( 214 "movl %0, %%esp\n\t" 215 "jmp *%1\n\t" 216 : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); 217 panic("do_trap: can't hit this"); 218 } 219 #endif 220 221 e = search_exception_tables(regs->ip); 222 if (!e) 223 return 0; 224 225 handler = ex_fixup_handler(e); 226 return handler(e, regs, trapnr, error_code, fault_addr); 227 } 228 229 extern unsigned int early_recursion_flag; 230 231 /* Restricted version used during very early boot */ 232 void __init early_fixup_exception(struct pt_regs *regs, int trapnr) 233 { 234 /* Ignore early NMIs. */ 235 if (trapnr == X86_TRAP_NMI) 236 return; 237 238 if (early_recursion_flag > 2) 239 goto halt_loop; 240 241 /* 242 * Old CPUs leave the high bits of CS on the stack 243 * undefined. I'm not sure which CPUs do this, but at least 244 * the 486 DX works this way. 245 * Xen pv domains are not using the default __KERNEL_CS. 246 */ 247 if (!xen_pv_domain() && regs->cs != __KERNEL_CS) 248 goto fail; 249 250 /* 251 * The full exception fixup machinery is available as soon as 252 * the early IDT is loaded. This means that it is the 253 * responsibility of extable users to either function correctly 254 * when handlers are invoked early or to simply avoid causing 255 * exceptions before they're ready to handle them. 256 * 257 * This is better than filtering which handlers can be used, 258 * because refusing to call a handler here is guaranteed to 259 * result in a hard-to-debug panic. 260 * 261 * Keep in mind that not all vectors actually get here. Early 262 * page faults, for example, are special. 263 */ 264 if (fixup_exception(regs, trapnr, regs->orig_ax, 0)) 265 return; 266 267 if (fixup_bug(regs, trapnr)) 268 return; 269 270 fail: 271 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n", 272 (unsigned)trapnr, (unsigned long)regs->cs, regs->ip, 273 regs->orig_ax, read_cr2()); 274 275 show_regs(regs); 276 277 halt_loop: 278 while (true) 279 halt(); 280 } 281