xref: /openbmc/linux/arch/x86/lib/insn.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * x86 instruction analysis
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004, 2009
19  */
20 
21 #include <linux/string.h>
22 #include <asm/inat.h>
23 #include <asm/insn.h>
24 
25 #define get_next(t, insn)	\
26 	({t r; r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
27 
28 #define peek_next(t, insn)	\
29 	({t r; r = *(t*)insn->next_byte; r; })
30 
31 #define peek_nbyte_next(t, insn, n)	\
32 	({t r; r = *(t*)((insn)->next_byte + n); r; })
33 
34 /**
35  * insn_init() - initialize struct insn
36  * @insn:	&struct insn to be initialized
37  * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
38  * @x86_64:	!0 for 64-bit kernel or 64-bit app
39  */
40 void insn_init(struct insn *insn, const void *kaddr, int x86_64)
41 {
42 	memset(insn, 0, sizeof(*insn));
43 	insn->kaddr = kaddr;
44 	insn->next_byte = kaddr;
45 	insn->x86_64 = x86_64 ? 1 : 0;
46 	insn->opnd_bytes = 4;
47 	if (x86_64)
48 		insn->addr_bytes = 8;
49 	else
50 		insn->addr_bytes = 4;
51 }
52 
53 /**
54  * insn_get_prefixes - scan x86 instruction prefix bytes
55  * @insn:	&struct insn containing instruction
56  *
57  * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
58  * to point to the (first) opcode.  No effect if @insn->prefixes.got
59  * is already set.
60  */
61 void insn_get_prefixes(struct insn *insn)
62 {
63 	struct insn_field *prefixes = &insn->prefixes;
64 	insn_attr_t attr;
65 	insn_byte_t b, lb;
66 	int i, nb;
67 
68 	if (prefixes->got)
69 		return;
70 
71 	nb = 0;
72 	lb = 0;
73 	b = peek_next(insn_byte_t, insn);
74 	attr = inat_get_opcode_attribute(b);
75 	while (inat_is_legacy_prefix(attr)) {
76 		/* Skip if same prefix */
77 		for (i = 0; i < nb; i++)
78 			if (prefixes->bytes[i] == b)
79 				goto found;
80 		if (nb == 4)
81 			/* Invalid instruction */
82 			break;
83 		prefixes->bytes[nb++] = b;
84 		if (inat_is_address_size_prefix(attr)) {
85 			/* address size switches 2/4 or 4/8 */
86 			if (insn->x86_64)
87 				insn->addr_bytes ^= 12;
88 			else
89 				insn->addr_bytes ^= 6;
90 		} else if (inat_is_operand_size_prefix(attr)) {
91 			/* oprand size switches 2/4 */
92 			insn->opnd_bytes ^= 6;
93 		}
94 found:
95 		prefixes->nbytes++;
96 		insn->next_byte++;
97 		lb = b;
98 		b = peek_next(insn_byte_t, insn);
99 		attr = inat_get_opcode_attribute(b);
100 	}
101 	/* Set the last prefix */
102 	if (lb && lb != insn->prefixes.bytes[3]) {
103 		if (unlikely(insn->prefixes.bytes[3])) {
104 			/* Swap the last prefix */
105 			b = insn->prefixes.bytes[3];
106 			for (i = 0; i < nb; i++)
107 				if (prefixes->bytes[i] == lb)
108 					prefixes->bytes[i] = b;
109 		}
110 		insn->prefixes.bytes[3] = lb;
111 	}
112 
113 	/* Decode REX prefix */
114 	if (insn->x86_64) {
115 		b = peek_next(insn_byte_t, insn);
116 		attr = inat_get_opcode_attribute(b);
117 		if (inat_is_rex_prefix(attr)) {
118 			insn->rex_prefix.value = b;
119 			insn->rex_prefix.nbytes = 1;
120 			insn->next_byte++;
121 			if (X86_REX_W(b))
122 				/* REX.W overrides opnd_size */
123 				insn->opnd_bytes = 8;
124 		}
125 	}
126 	insn->rex_prefix.got = 1;
127 
128 	/* Decode VEX prefix */
129 	b = peek_next(insn_byte_t, insn);
130 	attr = inat_get_opcode_attribute(b);
131 	if (inat_is_vex_prefix(attr)) {
132 		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
133 		if (!insn->x86_64) {
134 			/*
135 			 * In 32-bits mode, if the [7:6] bits (mod bits of
136 			 * ModRM) on the second byte are not 11b, it is
137 			 * LDS or LES.
138 			 */
139 			if (X86_MODRM_MOD(b2) != 3)
140 				goto vex_end;
141 		}
142 		insn->vex_prefix.bytes[0] = b;
143 		insn->vex_prefix.bytes[1] = b2;
144 		if (inat_is_vex3_prefix(attr)) {
145 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
146 			insn->vex_prefix.bytes[2] = b2;
147 			insn->vex_prefix.nbytes = 3;
148 			insn->next_byte += 3;
149 			if (insn->x86_64 && X86_VEX_W(b2))
150 				/* VEX.W overrides opnd_size */
151 				insn->opnd_bytes = 8;
152 		} else {
153 			insn->vex_prefix.nbytes = 2;
154 			insn->next_byte += 2;
155 		}
156 	}
157 vex_end:
158 	insn->vex_prefix.got = 1;
159 
160 	prefixes->got = 1;
161 	return;
162 }
163 
164 /**
165  * insn_get_opcode - collect opcode(s)
166  * @insn:	&struct insn containing instruction
167  *
168  * Populates @insn->opcode, updates @insn->next_byte to point past the
169  * opcode byte(s), and set @insn->attr (except for groups).
170  * If necessary, first collects any preceding (prefix) bytes.
171  * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
172  * is already 1.
173  */
174 void insn_get_opcode(struct insn *insn)
175 {
176 	struct insn_field *opcode = &insn->opcode;
177 	insn_byte_t op, pfx;
178 	if (opcode->got)
179 		return;
180 	if (!insn->prefixes.got)
181 		insn_get_prefixes(insn);
182 
183 	/* Get first opcode */
184 	op = get_next(insn_byte_t, insn);
185 	opcode->bytes[0] = op;
186 	opcode->nbytes = 1;
187 
188 	/* Check if there is VEX prefix or not */
189 	if (insn_is_avx(insn)) {
190 		insn_byte_t m, p;
191 		m = insn_vex_m_bits(insn);
192 		p = insn_vex_p_bits(insn);
193 		insn->attr = inat_get_avx_attribute(op, m, p);
194 		if (!inat_accept_vex(insn->attr))
195 			insn->attr = 0;	/* This instruction is bad */
196 		goto end;	/* VEX has only 1 byte for opcode */
197 	}
198 
199 	insn->attr = inat_get_opcode_attribute(op);
200 	while (inat_is_escape(insn->attr)) {
201 		/* Get escaped opcode */
202 		op = get_next(insn_byte_t, insn);
203 		opcode->bytes[opcode->nbytes++] = op;
204 		pfx = insn_last_prefix(insn);
205 		insn->attr = inat_get_escape_attribute(op, pfx, insn->attr);
206 	}
207 	if (inat_must_vex(insn->attr))
208 		insn->attr = 0;	/* This instruction is bad */
209 end:
210 	opcode->got = 1;
211 }
212 
213 /**
214  * insn_get_modrm - collect ModRM byte, if any
215  * @insn:	&struct insn containing instruction
216  *
217  * Populates @insn->modrm and updates @insn->next_byte to point past the
218  * ModRM byte, if any.  If necessary, first collects the preceding bytes
219  * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
220  */
221 void insn_get_modrm(struct insn *insn)
222 {
223 	struct insn_field *modrm = &insn->modrm;
224 	insn_byte_t pfx, mod;
225 	if (modrm->got)
226 		return;
227 	if (!insn->opcode.got)
228 		insn_get_opcode(insn);
229 
230 	if (inat_has_modrm(insn->attr)) {
231 		mod = get_next(insn_byte_t, insn);
232 		modrm->value = mod;
233 		modrm->nbytes = 1;
234 		if (inat_is_group(insn->attr)) {
235 			pfx = insn_last_prefix(insn);
236 			insn->attr = inat_get_group_attribute(mod, pfx,
237 							      insn->attr);
238 		}
239 	}
240 
241 	if (insn->x86_64 && inat_is_force64(insn->attr))
242 		insn->opnd_bytes = 8;
243 	modrm->got = 1;
244 }
245 
246 
247 /**
248  * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
249  * @insn:	&struct insn containing instruction
250  *
251  * If necessary, first collects the instruction up to and including the
252  * ModRM byte.  No effect if @insn->x86_64 is 0.
253  */
254 int insn_rip_relative(struct insn *insn)
255 {
256 	struct insn_field *modrm = &insn->modrm;
257 
258 	if (!insn->x86_64)
259 		return 0;
260 	if (!modrm->got)
261 		insn_get_modrm(insn);
262 	/*
263 	 * For rip-relative instructions, the mod field (top 2 bits)
264 	 * is zero and the r/m field (bottom 3 bits) is 0x5.
265 	 */
266 	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
267 }
268 
269 /**
270  * insn_get_sib() - Get the SIB byte of instruction
271  * @insn:	&struct insn containing instruction
272  *
273  * If necessary, first collects the instruction up to and including the
274  * ModRM byte.
275  */
276 void insn_get_sib(struct insn *insn)
277 {
278 	insn_byte_t modrm;
279 
280 	if (insn->sib.got)
281 		return;
282 	if (!insn->modrm.got)
283 		insn_get_modrm(insn);
284 	if (insn->modrm.nbytes) {
285 		modrm = (insn_byte_t)insn->modrm.value;
286 		if (insn->addr_bytes != 2 &&
287 		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
288 			insn->sib.value = get_next(insn_byte_t, insn);
289 			insn->sib.nbytes = 1;
290 		}
291 	}
292 	insn->sib.got = 1;
293 }
294 
295 
296 /**
297  * insn_get_displacement() - Get the displacement of instruction
298  * @insn:	&struct insn containing instruction
299  *
300  * If necessary, first collects the instruction up to and including the
301  * SIB byte.
302  * Displacement value is sign-expanded.
303  */
304 void insn_get_displacement(struct insn *insn)
305 {
306 	insn_byte_t mod, rm, base;
307 
308 	if (insn->displacement.got)
309 		return;
310 	if (!insn->sib.got)
311 		insn_get_sib(insn);
312 	if (insn->modrm.nbytes) {
313 		/*
314 		 * Interpreting the modrm byte:
315 		 * mod = 00 - no displacement fields (exceptions below)
316 		 * mod = 01 - 1-byte displacement field
317 		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
318 		 * 	address size = 2 (0x67 prefix in 32-bit mode)
319 		 * mod = 11 - no memory operand
320 		 *
321 		 * If address size = 2...
322 		 * mod = 00, r/m = 110 - displacement field is 2 bytes
323 		 *
324 		 * If address size != 2...
325 		 * mod != 11, r/m = 100 - SIB byte exists
326 		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
327 		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
328 		 * 	field is 4 bytes
329 		 */
330 		mod = X86_MODRM_MOD(insn->modrm.value);
331 		rm = X86_MODRM_RM(insn->modrm.value);
332 		base = X86_SIB_BASE(insn->sib.value);
333 		if (mod == 3)
334 			goto out;
335 		if (mod == 1) {
336 			insn->displacement.value = get_next(char, insn);
337 			insn->displacement.nbytes = 1;
338 		} else if (insn->addr_bytes == 2) {
339 			if ((mod == 0 && rm == 6) || mod == 2) {
340 				insn->displacement.value =
341 					 get_next(short, insn);
342 				insn->displacement.nbytes = 2;
343 			}
344 		} else {
345 			if ((mod == 0 && rm == 5) || mod == 2 ||
346 			    (mod == 0 && base == 5)) {
347 				insn->displacement.value = get_next(int, insn);
348 				insn->displacement.nbytes = 4;
349 			}
350 		}
351 	}
352 out:
353 	insn->displacement.got = 1;
354 }
355 
356 /* Decode moffset16/32/64 */
357 static void __get_moffset(struct insn *insn)
358 {
359 	switch (insn->addr_bytes) {
360 	case 2:
361 		insn->moffset1.value = get_next(short, insn);
362 		insn->moffset1.nbytes = 2;
363 		break;
364 	case 4:
365 		insn->moffset1.value = get_next(int, insn);
366 		insn->moffset1.nbytes = 4;
367 		break;
368 	case 8:
369 		insn->moffset1.value = get_next(int, insn);
370 		insn->moffset1.nbytes = 4;
371 		insn->moffset2.value = get_next(int, insn);
372 		insn->moffset2.nbytes = 4;
373 		break;
374 	}
375 	insn->moffset1.got = insn->moffset2.got = 1;
376 }
377 
378 /* Decode imm v32(Iz) */
379 static void __get_immv32(struct insn *insn)
380 {
381 	switch (insn->opnd_bytes) {
382 	case 2:
383 		insn->immediate.value = get_next(short, insn);
384 		insn->immediate.nbytes = 2;
385 		break;
386 	case 4:
387 	case 8:
388 		insn->immediate.value = get_next(int, insn);
389 		insn->immediate.nbytes = 4;
390 		break;
391 	}
392 }
393 
394 /* Decode imm v64(Iv/Ov) */
395 static void __get_immv(struct insn *insn)
396 {
397 	switch (insn->opnd_bytes) {
398 	case 2:
399 		insn->immediate1.value = get_next(short, insn);
400 		insn->immediate1.nbytes = 2;
401 		break;
402 	case 4:
403 		insn->immediate1.value = get_next(int, insn);
404 		insn->immediate1.nbytes = 4;
405 		break;
406 	case 8:
407 		insn->immediate1.value = get_next(int, insn);
408 		insn->immediate1.nbytes = 4;
409 		insn->immediate2.value = get_next(int, insn);
410 		insn->immediate2.nbytes = 4;
411 		break;
412 	}
413 	insn->immediate1.got = insn->immediate2.got = 1;
414 }
415 
416 /* Decode ptr16:16/32(Ap) */
417 static void __get_immptr(struct insn *insn)
418 {
419 	switch (insn->opnd_bytes) {
420 	case 2:
421 		insn->immediate1.value = get_next(short, insn);
422 		insn->immediate1.nbytes = 2;
423 		break;
424 	case 4:
425 		insn->immediate1.value = get_next(int, insn);
426 		insn->immediate1.nbytes = 4;
427 		break;
428 	case 8:
429 		/* ptr16:64 is not exist (no segment) */
430 		return;
431 	}
432 	insn->immediate2.value = get_next(unsigned short, insn);
433 	insn->immediate2.nbytes = 2;
434 	insn->immediate1.got = insn->immediate2.got = 1;
435 }
436 
437 /**
438  * insn_get_immediate() - Get the immediates of instruction
439  * @insn:	&struct insn containing instruction
440  *
441  * If necessary, first collects the instruction up to and including the
442  * displacement bytes.
443  * Basically, most of immediates are sign-expanded. Unsigned-value can be
444  * get by bit masking with ((1 << (nbytes * 8)) - 1)
445  */
446 void insn_get_immediate(struct insn *insn)
447 {
448 	if (insn->immediate.got)
449 		return;
450 	if (!insn->displacement.got)
451 		insn_get_displacement(insn);
452 
453 	if (inat_has_moffset(insn->attr)) {
454 		__get_moffset(insn);
455 		goto done;
456 	}
457 
458 	if (!inat_has_immediate(insn->attr))
459 		/* no immediates */
460 		goto done;
461 
462 	switch (inat_immediate_size(insn->attr)) {
463 	case INAT_IMM_BYTE:
464 		insn->immediate.value = get_next(char, insn);
465 		insn->immediate.nbytes = 1;
466 		break;
467 	case INAT_IMM_WORD:
468 		insn->immediate.value = get_next(short, insn);
469 		insn->immediate.nbytes = 2;
470 		break;
471 	case INAT_IMM_DWORD:
472 		insn->immediate.value = get_next(int, insn);
473 		insn->immediate.nbytes = 4;
474 		break;
475 	case INAT_IMM_QWORD:
476 		insn->immediate1.value = get_next(int, insn);
477 		insn->immediate1.nbytes = 4;
478 		insn->immediate2.value = get_next(int, insn);
479 		insn->immediate2.nbytes = 4;
480 		break;
481 	case INAT_IMM_PTR:
482 		__get_immptr(insn);
483 		break;
484 	case INAT_IMM_VWORD32:
485 		__get_immv32(insn);
486 		break;
487 	case INAT_IMM_VWORD:
488 		__get_immv(insn);
489 		break;
490 	default:
491 		break;
492 	}
493 	if (inat_has_second_immediate(insn->attr)) {
494 		insn->immediate2.value = get_next(char, insn);
495 		insn->immediate2.nbytes = 1;
496 	}
497 done:
498 	insn->immediate.got = 1;
499 }
500 
501 /**
502  * insn_get_length() - Get the length of instruction
503  * @insn:	&struct insn containing instruction
504  *
505  * If necessary, first collects the instruction up to and including the
506  * immediates bytes.
507  */
508 void insn_get_length(struct insn *insn)
509 {
510 	if (insn->length)
511 		return;
512 	if (!insn->immediate.got)
513 		insn_get_immediate(insn);
514 	insn->length = (unsigned char)((unsigned long)insn->next_byte
515 				     - (unsigned long)insn->kaddr);
516 }
517