xref: /openbmc/linux/arch/x86/lib/insn.c (revision 69b4bf2b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * x86 instruction analysis
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004, 2009
6  */
7 
8 #ifdef __KERNEL__
9 #include <linux/string.h>
10 #else
11 #include <string.h>
12 #endif
13 #include <asm/inat.h>
14 #include <asm/insn.h>
15 
16 #include <asm/emulate_prefix.h>
17 
18 /* Verify next sizeof(t) bytes can be on the same instruction */
19 #define validate_next(t, insn, n)	\
20 	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
21 
22 #define __get_next(t, insn)	\
23 	({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
24 
25 #define __peek_nbyte_next(t, insn, n)	\
26 	({ t r = *(t*)((insn)->next_byte + n); r; })
27 
28 #define get_next(t, insn)	\
29 	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
30 
31 #define peek_nbyte_next(t, insn, n)	\
32 	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
33 
34 #define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
35 
36 /**
37  * insn_init() - initialize struct insn
38  * @insn:	&struct insn to be initialized
39  * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
40  * @x86_64:	!0 for 64-bit kernel or 64-bit app
41  */
42 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
43 {
44 	/*
45 	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
46 	 * even if the input buffer is long enough to hold them.
47 	 */
48 	if (buf_len > MAX_INSN_SIZE)
49 		buf_len = MAX_INSN_SIZE;
50 
51 	memset(insn, 0, sizeof(*insn));
52 	insn->kaddr = kaddr;
53 	insn->end_kaddr = kaddr + buf_len;
54 	insn->next_byte = kaddr;
55 	insn->x86_64 = x86_64 ? 1 : 0;
56 	insn->opnd_bytes = 4;
57 	if (x86_64)
58 		insn->addr_bytes = 8;
59 	else
60 		insn->addr_bytes = 4;
61 }
62 
63 static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
64 static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
65 
66 static int __insn_get_emulate_prefix(struct insn *insn,
67 				     const insn_byte_t *prefix, size_t len)
68 {
69 	size_t i;
70 
71 	for (i = 0; i < len; i++) {
72 		if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
73 			goto err_out;
74 	}
75 
76 	insn->emulate_prefix_size = len;
77 	insn->next_byte += len;
78 
79 	return 1;
80 
81 err_out:
82 	return 0;
83 }
84 
85 static void insn_get_emulate_prefix(struct insn *insn)
86 {
87 	if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
88 		return;
89 
90 	__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
91 }
92 
93 /**
94  * insn_get_prefixes - scan x86 instruction prefix bytes
95  * @insn:	&struct insn containing instruction
96  *
97  * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
98  * to point to the (first) opcode.  No effect if @insn->prefixes.got
99  * is already set.
100  */
101 void insn_get_prefixes(struct insn *insn)
102 {
103 	struct insn_field *prefixes = &insn->prefixes;
104 	insn_attr_t attr;
105 	insn_byte_t b, lb;
106 	int i, nb;
107 
108 	if (prefixes->got)
109 		return;
110 
111 	insn_get_emulate_prefix(insn);
112 
113 	nb = 0;
114 	lb = 0;
115 	b = peek_next(insn_byte_t, insn);
116 	attr = inat_get_opcode_attribute(b);
117 	while (inat_is_legacy_prefix(attr)) {
118 		/* Skip if same prefix */
119 		for (i = 0; i < nb; i++)
120 			if (prefixes->bytes[i] == b)
121 				goto found;
122 		if (nb == 4)
123 			/* Invalid instruction */
124 			break;
125 		prefixes->bytes[nb++] = b;
126 		if (inat_is_address_size_prefix(attr)) {
127 			/* address size switches 2/4 or 4/8 */
128 			if (insn->x86_64)
129 				insn->addr_bytes ^= 12;
130 			else
131 				insn->addr_bytes ^= 6;
132 		} else if (inat_is_operand_size_prefix(attr)) {
133 			/* oprand size switches 2/4 */
134 			insn->opnd_bytes ^= 6;
135 		}
136 found:
137 		prefixes->nbytes++;
138 		insn->next_byte++;
139 		lb = b;
140 		b = peek_next(insn_byte_t, insn);
141 		attr = inat_get_opcode_attribute(b);
142 	}
143 	/* Set the last prefix */
144 	if (lb && lb != insn->prefixes.bytes[3]) {
145 		if (unlikely(insn->prefixes.bytes[3])) {
146 			/* Swap the last prefix */
147 			b = insn->prefixes.bytes[3];
148 			for (i = 0; i < nb; i++)
149 				if (prefixes->bytes[i] == lb)
150 					prefixes->bytes[i] = b;
151 		}
152 		insn->prefixes.bytes[3] = lb;
153 	}
154 
155 	/* Decode REX prefix */
156 	if (insn->x86_64) {
157 		b = peek_next(insn_byte_t, insn);
158 		attr = inat_get_opcode_attribute(b);
159 		if (inat_is_rex_prefix(attr)) {
160 			insn->rex_prefix.value = b;
161 			insn->rex_prefix.nbytes = 1;
162 			insn->next_byte++;
163 			if (X86_REX_W(b))
164 				/* REX.W overrides opnd_size */
165 				insn->opnd_bytes = 8;
166 		}
167 	}
168 	insn->rex_prefix.got = 1;
169 
170 	/* Decode VEX prefix */
171 	b = peek_next(insn_byte_t, insn);
172 	attr = inat_get_opcode_attribute(b);
173 	if (inat_is_vex_prefix(attr)) {
174 		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
175 		if (!insn->x86_64) {
176 			/*
177 			 * In 32-bits mode, if the [7:6] bits (mod bits of
178 			 * ModRM) on the second byte are not 11b, it is
179 			 * LDS or LES or BOUND.
180 			 */
181 			if (X86_MODRM_MOD(b2) != 3)
182 				goto vex_end;
183 		}
184 		insn->vex_prefix.bytes[0] = b;
185 		insn->vex_prefix.bytes[1] = b2;
186 		if (inat_is_evex_prefix(attr)) {
187 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
188 			insn->vex_prefix.bytes[2] = b2;
189 			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
190 			insn->vex_prefix.bytes[3] = b2;
191 			insn->vex_prefix.nbytes = 4;
192 			insn->next_byte += 4;
193 			if (insn->x86_64 && X86_VEX_W(b2))
194 				/* VEX.W overrides opnd_size */
195 				insn->opnd_bytes = 8;
196 		} else if (inat_is_vex3_prefix(attr)) {
197 			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
198 			insn->vex_prefix.bytes[2] = b2;
199 			insn->vex_prefix.nbytes = 3;
200 			insn->next_byte += 3;
201 			if (insn->x86_64 && X86_VEX_W(b2))
202 				/* VEX.W overrides opnd_size */
203 				insn->opnd_bytes = 8;
204 		} else {
205 			/*
206 			 * For VEX2, fake VEX3-like byte#2.
207 			 * Makes it easier to decode vex.W, vex.vvvv,
208 			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
209 			 */
210 			insn->vex_prefix.bytes[2] = b2 & 0x7f;
211 			insn->vex_prefix.nbytes = 2;
212 			insn->next_byte += 2;
213 		}
214 	}
215 vex_end:
216 	insn->vex_prefix.got = 1;
217 
218 	prefixes->got = 1;
219 
220 err_out:
221 	return;
222 }
223 
224 /**
225  * insn_get_opcode - collect opcode(s)
226  * @insn:	&struct insn containing instruction
227  *
228  * Populates @insn->opcode, updates @insn->next_byte to point past the
229  * opcode byte(s), and set @insn->attr (except for groups).
230  * If necessary, first collects any preceding (prefix) bytes.
231  * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
232  * is already 1.
233  */
234 void insn_get_opcode(struct insn *insn)
235 {
236 	struct insn_field *opcode = &insn->opcode;
237 	insn_byte_t op;
238 	int pfx_id;
239 	if (opcode->got)
240 		return;
241 	if (!insn->prefixes.got)
242 		insn_get_prefixes(insn);
243 
244 	/* Get first opcode */
245 	op = get_next(insn_byte_t, insn);
246 	opcode->bytes[0] = op;
247 	opcode->nbytes = 1;
248 
249 	/* Check if there is VEX prefix or not */
250 	if (insn_is_avx(insn)) {
251 		insn_byte_t m, p;
252 		m = insn_vex_m_bits(insn);
253 		p = insn_vex_p_bits(insn);
254 		insn->attr = inat_get_avx_attribute(op, m, p);
255 		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
256 		    (!inat_accept_vex(insn->attr) &&
257 		     !inat_is_group(insn->attr)))
258 			insn->attr = 0;	/* This instruction is bad */
259 		goto end;	/* VEX has only 1 byte for opcode */
260 	}
261 
262 	insn->attr = inat_get_opcode_attribute(op);
263 	while (inat_is_escape(insn->attr)) {
264 		/* Get escaped opcode */
265 		op = get_next(insn_byte_t, insn);
266 		opcode->bytes[opcode->nbytes++] = op;
267 		pfx_id = insn_last_prefix_id(insn);
268 		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
269 	}
270 	if (inat_must_vex(insn->attr))
271 		insn->attr = 0;	/* This instruction is bad */
272 end:
273 	opcode->got = 1;
274 
275 err_out:
276 	return;
277 }
278 
279 /**
280  * insn_get_modrm - collect ModRM byte, if any
281  * @insn:	&struct insn containing instruction
282  *
283  * Populates @insn->modrm and updates @insn->next_byte to point past the
284  * ModRM byte, if any.  If necessary, first collects the preceding bytes
285  * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
286  */
287 void insn_get_modrm(struct insn *insn)
288 {
289 	struct insn_field *modrm = &insn->modrm;
290 	insn_byte_t pfx_id, mod;
291 	if (modrm->got)
292 		return;
293 	if (!insn->opcode.got)
294 		insn_get_opcode(insn);
295 
296 	if (inat_has_modrm(insn->attr)) {
297 		mod = get_next(insn_byte_t, insn);
298 		modrm->value = mod;
299 		modrm->nbytes = 1;
300 		if (inat_is_group(insn->attr)) {
301 			pfx_id = insn_last_prefix_id(insn);
302 			insn->attr = inat_get_group_attribute(mod, pfx_id,
303 							      insn->attr);
304 			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
305 				insn->attr = 0;	/* This is bad */
306 		}
307 	}
308 
309 	if (insn->x86_64 && inat_is_force64(insn->attr))
310 		insn->opnd_bytes = 8;
311 	modrm->got = 1;
312 
313 err_out:
314 	return;
315 }
316 
317 
318 /**
319  * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
320  * @insn:	&struct insn containing instruction
321  *
322  * If necessary, first collects the instruction up to and including the
323  * ModRM byte.  No effect if @insn->x86_64 is 0.
324  */
325 int insn_rip_relative(struct insn *insn)
326 {
327 	struct insn_field *modrm = &insn->modrm;
328 
329 	if (!insn->x86_64)
330 		return 0;
331 	if (!modrm->got)
332 		insn_get_modrm(insn);
333 	/*
334 	 * For rip-relative instructions, the mod field (top 2 bits)
335 	 * is zero and the r/m field (bottom 3 bits) is 0x5.
336 	 */
337 	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
338 }
339 
340 /**
341  * insn_get_sib() - Get the SIB byte of instruction
342  * @insn:	&struct insn containing instruction
343  *
344  * If necessary, first collects the instruction up to and including the
345  * ModRM byte.
346  */
347 void insn_get_sib(struct insn *insn)
348 {
349 	insn_byte_t modrm;
350 
351 	if (insn->sib.got)
352 		return;
353 	if (!insn->modrm.got)
354 		insn_get_modrm(insn);
355 	if (insn->modrm.nbytes) {
356 		modrm = (insn_byte_t)insn->modrm.value;
357 		if (insn->addr_bytes != 2 &&
358 		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
359 			insn->sib.value = get_next(insn_byte_t, insn);
360 			insn->sib.nbytes = 1;
361 		}
362 	}
363 	insn->sib.got = 1;
364 
365 err_out:
366 	return;
367 }
368 
369 
370 /**
371  * insn_get_displacement() - Get the displacement of instruction
372  * @insn:	&struct insn containing instruction
373  *
374  * If necessary, first collects the instruction up to and including the
375  * SIB byte.
376  * Displacement value is sign-expanded.
377  */
378 void insn_get_displacement(struct insn *insn)
379 {
380 	insn_byte_t mod, rm, base;
381 
382 	if (insn->displacement.got)
383 		return;
384 	if (!insn->sib.got)
385 		insn_get_sib(insn);
386 	if (insn->modrm.nbytes) {
387 		/*
388 		 * Interpreting the modrm byte:
389 		 * mod = 00 - no displacement fields (exceptions below)
390 		 * mod = 01 - 1-byte displacement field
391 		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
392 		 * 	address size = 2 (0x67 prefix in 32-bit mode)
393 		 * mod = 11 - no memory operand
394 		 *
395 		 * If address size = 2...
396 		 * mod = 00, r/m = 110 - displacement field is 2 bytes
397 		 *
398 		 * If address size != 2...
399 		 * mod != 11, r/m = 100 - SIB byte exists
400 		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
401 		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
402 		 * 	field is 4 bytes
403 		 */
404 		mod = X86_MODRM_MOD(insn->modrm.value);
405 		rm = X86_MODRM_RM(insn->modrm.value);
406 		base = X86_SIB_BASE(insn->sib.value);
407 		if (mod == 3)
408 			goto out;
409 		if (mod == 1) {
410 			insn->displacement.value = get_next(signed char, insn);
411 			insn->displacement.nbytes = 1;
412 		} else if (insn->addr_bytes == 2) {
413 			if ((mod == 0 && rm == 6) || mod == 2) {
414 				insn->displacement.value =
415 					 get_next(short, insn);
416 				insn->displacement.nbytes = 2;
417 			}
418 		} else {
419 			if ((mod == 0 && rm == 5) || mod == 2 ||
420 			    (mod == 0 && base == 5)) {
421 				insn->displacement.value = get_next(int, insn);
422 				insn->displacement.nbytes = 4;
423 			}
424 		}
425 	}
426 out:
427 	insn->displacement.got = 1;
428 
429 err_out:
430 	return;
431 }
432 
433 /* Decode moffset16/32/64. Return 0 if failed */
434 static int __get_moffset(struct insn *insn)
435 {
436 	switch (insn->addr_bytes) {
437 	case 2:
438 		insn->moffset1.value = get_next(short, insn);
439 		insn->moffset1.nbytes = 2;
440 		break;
441 	case 4:
442 		insn->moffset1.value = get_next(int, insn);
443 		insn->moffset1.nbytes = 4;
444 		break;
445 	case 8:
446 		insn->moffset1.value = get_next(int, insn);
447 		insn->moffset1.nbytes = 4;
448 		insn->moffset2.value = get_next(int, insn);
449 		insn->moffset2.nbytes = 4;
450 		break;
451 	default:	/* opnd_bytes must be modified manually */
452 		goto err_out;
453 	}
454 	insn->moffset1.got = insn->moffset2.got = 1;
455 
456 	return 1;
457 
458 err_out:
459 	return 0;
460 }
461 
462 /* Decode imm v32(Iz). Return 0 if failed */
463 static int __get_immv32(struct insn *insn)
464 {
465 	switch (insn->opnd_bytes) {
466 	case 2:
467 		insn->immediate.value = get_next(short, insn);
468 		insn->immediate.nbytes = 2;
469 		break;
470 	case 4:
471 	case 8:
472 		insn->immediate.value = get_next(int, insn);
473 		insn->immediate.nbytes = 4;
474 		break;
475 	default:	/* opnd_bytes must be modified manually */
476 		goto err_out;
477 	}
478 
479 	return 1;
480 
481 err_out:
482 	return 0;
483 }
484 
485 /* Decode imm v64(Iv/Ov), Return 0 if failed */
486 static int __get_immv(struct insn *insn)
487 {
488 	switch (insn->opnd_bytes) {
489 	case 2:
490 		insn->immediate1.value = get_next(short, insn);
491 		insn->immediate1.nbytes = 2;
492 		break;
493 	case 4:
494 		insn->immediate1.value = get_next(int, insn);
495 		insn->immediate1.nbytes = 4;
496 		break;
497 	case 8:
498 		insn->immediate1.value = get_next(int, insn);
499 		insn->immediate1.nbytes = 4;
500 		insn->immediate2.value = get_next(int, insn);
501 		insn->immediate2.nbytes = 4;
502 		break;
503 	default:	/* opnd_bytes must be modified manually */
504 		goto err_out;
505 	}
506 	insn->immediate1.got = insn->immediate2.got = 1;
507 
508 	return 1;
509 err_out:
510 	return 0;
511 }
512 
513 /* Decode ptr16:16/32(Ap) */
514 static int __get_immptr(struct insn *insn)
515 {
516 	switch (insn->opnd_bytes) {
517 	case 2:
518 		insn->immediate1.value = get_next(short, insn);
519 		insn->immediate1.nbytes = 2;
520 		break;
521 	case 4:
522 		insn->immediate1.value = get_next(int, insn);
523 		insn->immediate1.nbytes = 4;
524 		break;
525 	case 8:
526 		/* ptr16:64 is not exist (no segment) */
527 		return 0;
528 	default:	/* opnd_bytes must be modified manually */
529 		goto err_out;
530 	}
531 	insn->immediate2.value = get_next(unsigned short, insn);
532 	insn->immediate2.nbytes = 2;
533 	insn->immediate1.got = insn->immediate2.got = 1;
534 
535 	return 1;
536 err_out:
537 	return 0;
538 }
539 
540 /**
541  * insn_get_immediate() - Get the immediates of instruction
542  * @insn:	&struct insn containing instruction
543  *
544  * If necessary, first collects the instruction up to and including the
545  * displacement bytes.
546  * Basically, most of immediates are sign-expanded. Unsigned-value can be
547  * get by bit masking with ((1 << (nbytes * 8)) - 1)
548  */
549 void insn_get_immediate(struct insn *insn)
550 {
551 	if (insn->immediate.got)
552 		return;
553 	if (!insn->displacement.got)
554 		insn_get_displacement(insn);
555 
556 	if (inat_has_moffset(insn->attr)) {
557 		if (!__get_moffset(insn))
558 			goto err_out;
559 		goto done;
560 	}
561 
562 	if (!inat_has_immediate(insn->attr))
563 		/* no immediates */
564 		goto done;
565 
566 	switch (inat_immediate_size(insn->attr)) {
567 	case INAT_IMM_BYTE:
568 		insn->immediate.value = get_next(signed char, insn);
569 		insn->immediate.nbytes = 1;
570 		break;
571 	case INAT_IMM_WORD:
572 		insn->immediate.value = get_next(short, insn);
573 		insn->immediate.nbytes = 2;
574 		break;
575 	case INAT_IMM_DWORD:
576 		insn->immediate.value = get_next(int, insn);
577 		insn->immediate.nbytes = 4;
578 		break;
579 	case INAT_IMM_QWORD:
580 		insn->immediate1.value = get_next(int, insn);
581 		insn->immediate1.nbytes = 4;
582 		insn->immediate2.value = get_next(int, insn);
583 		insn->immediate2.nbytes = 4;
584 		break;
585 	case INAT_IMM_PTR:
586 		if (!__get_immptr(insn))
587 			goto err_out;
588 		break;
589 	case INAT_IMM_VWORD32:
590 		if (!__get_immv32(insn))
591 			goto err_out;
592 		break;
593 	case INAT_IMM_VWORD:
594 		if (!__get_immv(insn))
595 			goto err_out;
596 		break;
597 	default:
598 		/* Here, insn must have an immediate, but failed */
599 		goto err_out;
600 	}
601 	if (inat_has_second_immediate(insn->attr)) {
602 		insn->immediate2.value = get_next(signed char, insn);
603 		insn->immediate2.nbytes = 1;
604 	}
605 done:
606 	insn->immediate.got = 1;
607 
608 err_out:
609 	return;
610 }
611 
612 /**
613  * insn_get_length() - Get the length of instruction
614  * @insn:	&struct insn containing instruction
615  *
616  * If necessary, first collects the instruction up to and including the
617  * immediates bytes.
618  */
619 void insn_get_length(struct insn *insn)
620 {
621 	if (insn->length)
622 		return;
623 	if (!insn->immediate.got)
624 		insn_get_immediate(insn);
625 	insn->length = (unsigned char)((unsigned long)insn->next_byte
626 				     - (unsigned long)insn->kaddr);
627 }
628