xref: /openbmc/linux/arch/x86/lib/insn-eval.c (revision dfc53baa)
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17 
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20 
21 enum reg_type {
22 	REG_TYPE_RM = 0,
23 	REG_TYPE_INDEX,
24 	REG_TYPE_BASE,
25 };
26 
27 /**
28  * is_string_insn() - Determine if instruction is a string instruction
29  * @insn:	Instruction containing the opcode to inspect
30  *
31  * Returns:
32  *
33  * true if the instruction, determined by the opcode, is any of the
34  * string instructions as defined in the Intel Software Development manual.
35  * False otherwise.
36  */
37 static bool is_string_insn(struct insn *insn)
38 {
39 	insn_get_opcode(insn);
40 
41 	/* All string instructions have a 1-byte opcode. */
42 	if (insn->opcode.nbytes != 1)
43 		return false;
44 
45 	switch (insn->opcode.bytes[0]) {
46 	case 0x6c ... 0x6f:	/* INS, OUTS */
47 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
48 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
49 		return true;
50 	default:
51 		return false;
52 	}
53 }
54 
55 /**
56  * get_seg_reg_override_idx() - obtain segment register override index
57  * @insn:	Valid instruction with segment override prefixes
58  *
59  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60  *
61  * Returns:
62  *
63  * A constant identifying the segment register to use, among CS, SS, DS,
64  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65  * prefixes were found.
66  *
67  * -EINVAL in case of error.
68  */
69 static int get_seg_reg_override_idx(struct insn *insn)
70 {
71 	int idx = INAT_SEG_REG_DEFAULT;
72 	int num_overrides = 0, i;
73 
74 	insn_get_prefixes(insn);
75 
76 	/* Look for any segment override prefixes. */
77 	for (i = 0; i < insn->prefixes.nbytes; i++) {
78 		insn_attr_t attr;
79 
80 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 		switch (attr) {
82 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 			idx = INAT_SEG_REG_CS;
84 			num_overrides++;
85 			break;
86 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 			idx = INAT_SEG_REG_SS;
88 			num_overrides++;
89 			break;
90 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 			idx = INAT_SEG_REG_DS;
92 			num_overrides++;
93 			break;
94 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 			idx = INAT_SEG_REG_ES;
96 			num_overrides++;
97 			break;
98 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 			idx = INAT_SEG_REG_FS;
100 			num_overrides++;
101 			break;
102 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 			idx = INAT_SEG_REG_GS;
104 			num_overrides++;
105 			break;
106 		/* No default action needed. */
107 		}
108 	}
109 
110 	/* More than one segment override prefix leads to undefined behavior. */
111 	if (num_overrides > 1)
112 		return -EINVAL;
113 
114 	return idx;
115 }
116 
117 /**
118  * check_seg_overrides() - check if segment override prefixes are allowed
119  * @insn:	Valid instruction with segment override prefixes
120  * @regoff:	Operand offset, in pt_regs, for which the check is performed
121  *
122  * For a particular register used in register-indirect addressing, determine if
123  * segment override prefixes can be used. Specifically, no overrides are allowed
124  * for rDI if used with a string instruction.
125  *
126  * Returns:
127  *
128  * True if segment override prefixes can be used with the register indicated
129  * in @regoff. False if otherwise.
130  */
131 static bool check_seg_overrides(struct insn *insn, int regoff)
132 {
133 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 		return false;
135 
136 	return true;
137 }
138 
139 /**
140  * resolve_default_seg() - resolve default segment register index for an operand
141  * @insn:	Instruction with opcode and address size. Must be valid.
142  * @regs:	Register values as seen when entering kernel mode
143  * @off:	Operand offset, in pt_regs, for which resolution is needed
144  *
145  * Resolve the default segment register index associated with the instruction
146  * operand register indicated by @off. Such index is resolved based on defaults
147  * described in the Intel Software Development Manual.
148  *
149  * Returns:
150  *
151  * If in protected mode, a constant identifying the segment register to use,
152  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153  *
154  * -EINVAL in case of error.
155  */
156 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157 {
158 	if (any_64bit_mode(regs))
159 		return INAT_SEG_REG_IGNORE;
160 	/*
161 	 * Resolve the default segment register as described in Section 3.7.4
162 	 * of the Intel Software Development Manual Vol. 1:
163 	 *
164 	 *  + DS for all references involving r[ABCD]X, and rSI.
165 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
166 	 *  + AX, CX and DX are not valid register operands in 16-bit address
167 	 *    encodings but are valid for 32-bit and 64-bit encodings.
168 	 *  + -EDOM is reserved to identify for cases in which no register
169 	 *    is used (i.e., displacement-only addressing). Use DS.
170 	 *  + SS for rSP or rBP.
171 	 *  + CS for rIP.
172 	 */
173 
174 	switch (off) {
175 	case offsetof(struct pt_regs, ax):
176 	case offsetof(struct pt_regs, cx):
177 	case offsetof(struct pt_regs, dx):
178 		/* Need insn to verify address size. */
179 		if (insn->addr_bytes == 2)
180 			return -EINVAL;
181 
182 		fallthrough;
183 
184 	case -EDOM:
185 	case offsetof(struct pt_regs, bx):
186 	case offsetof(struct pt_regs, si):
187 		return INAT_SEG_REG_DS;
188 
189 	case offsetof(struct pt_regs, di):
190 		if (is_string_insn(insn))
191 			return INAT_SEG_REG_ES;
192 		return INAT_SEG_REG_DS;
193 
194 	case offsetof(struct pt_regs, bp):
195 	case offsetof(struct pt_regs, sp):
196 		return INAT_SEG_REG_SS;
197 
198 	case offsetof(struct pt_regs, ip):
199 		return INAT_SEG_REG_CS;
200 
201 	default:
202 		return -EINVAL;
203 	}
204 }
205 
206 /**
207  * resolve_seg_reg() - obtain segment register index
208  * @insn:	Instruction with operands
209  * @regs:	Register values as seen when entering kernel mode
210  * @regoff:	Operand offset, in pt_regs, used to deterimine segment register
211  *
212  * Determine the segment register associated with the operands and, if
213  * applicable, prefixes and the instruction pointed by @insn.
214  *
215  * The segment register associated to an operand used in register-indirect
216  * addressing depends on:
217  *
218  * a) Whether running in long mode (in such a case segments are ignored, except
219  * if FS or GS are used).
220  *
221  * b) Whether segment override prefixes can be used. Certain instructions and
222  *    registers do not allow override prefixes.
223  *
224  * c) Whether segment overrides prefixes are found in the instruction prefixes.
225  *
226  * d) If there are not segment override prefixes or they cannot be used, the
227  *    default segment register associated with the operand register is used.
228  *
229  * The function checks first if segment override prefixes can be used with the
230  * operand indicated by @regoff. If allowed, obtain such overridden segment
231  * register index. Lastly, if not prefixes were found or cannot be used, resolve
232  * the segment register index to use based on the defaults described in the
233  * Intel documentation. In long mode, all segment register indexes will be
234  * ignored, except if overrides were found for FS or GS. All these operations
235  * are done using helper functions.
236  *
237  * The operand register, @regoff, is represented as the offset from the base of
238  * pt_regs.
239  *
240  * As stated, the main use of this function is to determine the segment register
241  * index based on the instruction, its operands and prefixes. Hence, @insn
242  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
243  * @insn at all as in this case CS is used in all cases. This case is checked
244  * before proceeding further.
245  *
246  * Please note that this function does not return the value in the segment
247  * register (i.e., the segment selector) but our defined index. The segment
248  * selector needs to be obtained using get_segment_selector() and passing the
249  * segment register index resolved by this function.
250  *
251  * Returns:
252  *
253  * An index identifying the segment register to use, among CS, SS, DS,
254  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
255  *
256  * -EINVAL in case of error.
257  */
258 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
259 {
260 	int idx;
261 
262 	/*
263 	 * In the unlikely event of having to resolve the segment register
264 	 * index for rIP, do it first. Segment override prefixes should not
265 	 * be used. Hence, it is not necessary to inspect the instruction,
266 	 * which may be invalid at this point.
267 	 */
268 	if (regoff == offsetof(struct pt_regs, ip)) {
269 		if (any_64bit_mode(regs))
270 			return INAT_SEG_REG_IGNORE;
271 		else
272 			return INAT_SEG_REG_CS;
273 	}
274 
275 	if (!insn)
276 		return -EINVAL;
277 
278 	if (!check_seg_overrides(insn, regoff))
279 		return resolve_default_seg(insn, regs, regoff);
280 
281 	idx = get_seg_reg_override_idx(insn);
282 	if (idx < 0)
283 		return idx;
284 
285 	if (idx == INAT_SEG_REG_DEFAULT)
286 		return resolve_default_seg(insn, regs, regoff);
287 
288 	/*
289 	 * In long mode, segment override prefixes are ignored, except for
290 	 * overrides for FS and GS.
291 	 */
292 	if (any_64bit_mode(regs)) {
293 		if (idx != INAT_SEG_REG_FS &&
294 		    idx != INAT_SEG_REG_GS)
295 			idx = INAT_SEG_REG_IGNORE;
296 	}
297 
298 	return idx;
299 }
300 
301 /**
302  * get_segment_selector() - obtain segment selector
303  * @regs:		Register values as seen when entering kernel mode
304  * @seg_reg_idx:	Segment register index to use
305  *
306  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
307  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
308  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
309  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
310  * registers. This done for only for completeness as in CONFIG_X86_64 segment
311  * registers are ignored.
312  *
313  * Returns:
314  *
315  * Value of the segment selector, including null when running in
316  * long mode.
317  *
318  * -EINVAL on error.
319  */
320 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
321 {
322 #ifdef CONFIG_X86_64
323 	unsigned short sel;
324 
325 	switch (seg_reg_idx) {
326 	case INAT_SEG_REG_IGNORE:
327 		return 0;
328 	case INAT_SEG_REG_CS:
329 		return (unsigned short)(regs->cs & 0xffff);
330 	case INAT_SEG_REG_SS:
331 		return (unsigned short)(regs->ss & 0xffff);
332 	case INAT_SEG_REG_DS:
333 		savesegment(ds, sel);
334 		return sel;
335 	case INAT_SEG_REG_ES:
336 		savesegment(es, sel);
337 		return sel;
338 	case INAT_SEG_REG_FS:
339 		savesegment(fs, sel);
340 		return sel;
341 	case INAT_SEG_REG_GS:
342 		savesegment(gs, sel);
343 		return sel;
344 	default:
345 		return -EINVAL;
346 	}
347 #else /* CONFIG_X86_32 */
348 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
349 
350 	if (v8086_mode(regs)) {
351 		switch (seg_reg_idx) {
352 		case INAT_SEG_REG_CS:
353 			return (unsigned short)(regs->cs & 0xffff);
354 		case INAT_SEG_REG_SS:
355 			return (unsigned short)(regs->ss & 0xffff);
356 		case INAT_SEG_REG_DS:
357 			return vm86regs->ds;
358 		case INAT_SEG_REG_ES:
359 			return vm86regs->es;
360 		case INAT_SEG_REG_FS:
361 			return vm86regs->fs;
362 		case INAT_SEG_REG_GS:
363 			return vm86regs->gs;
364 		case INAT_SEG_REG_IGNORE:
365 		default:
366 			return -EINVAL;
367 		}
368 	}
369 
370 	switch (seg_reg_idx) {
371 	case INAT_SEG_REG_CS:
372 		return (unsigned short)(regs->cs & 0xffff);
373 	case INAT_SEG_REG_SS:
374 		return (unsigned short)(regs->ss & 0xffff);
375 	case INAT_SEG_REG_DS:
376 		return (unsigned short)(regs->ds & 0xffff);
377 	case INAT_SEG_REG_ES:
378 		return (unsigned short)(regs->es & 0xffff);
379 	case INAT_SEG_REG_FS:
380 		return (unsigned short)(regs->fs & 0xffff);
381 	case INAT_SEG_REG_GS:
382 		/*
383 		 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
384 		 * The macro below takes care of both cases.
385 		 */
386 		return get_user_gs(regs);
387 	case INAT_SEG_REG_IGNORE:
388 	default:
389 		return -EINVAL;
390 	}
391 #endif /* CONFIG_X86_64 */
392 }
393 
394 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
395 			  enum reg_type type)
396 {
397 	int regno = 0;
398 
399 	static const int regoff[] = {
400 		offsetof(struct pt_regs, ax),
401 		offsetof(struct pt_regs, cx),
402 		offsetof(struct pt_regs, dx),
403 		offsetof(struct pt_regs, bx),
404 		offsetof(struct pt_regs, sp),
405 		offsetof(struct pt_regs, bp),
406 		offsetof(struct pt_regs, si),
407 		offsetof(struct pt_regs, di),
408 #ifdef CONFIG_X86_64
409 		offsetof(struct pt_regs, r8),
410 		offsetof(struct pt_regs, r9),
411 		offsetof(struct pt_regs, r10),
412 		offsetof(struct pt_regs, r11),
413 		offsetof(struct pt_regs, r12),
414 		offsetof(struct pt_regs, r13),
415 		offsetof(struct pt_regs, r14),
416 		offsetof(struct pt_regs, r15),
417 #endif
418 	};
419 	int nr_registers = ARRAY_SIZE(regoff);
420 	/*
421 	 * Don't possibly decode a 32-bit instructions as
422 	 * reading a 64-bit-only register.
423 	 */
424 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
425 		nr_registers -= 8;
426 
427 	switch (type) {
428 	case REG_TYPE_RM:
429 		regno = X86_MODRM_RM(insn->modrm.value);
430 
431 		/*
432 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
433 		 * follows the ModRM byte.
434 		 */
435 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
436 			return -EDOM;
437 
438 		if (X86_REX_B(insn->rex_prefix.value))
439 			regno += 8;
440 		break;
441 
442 	case REG_TYPE_INDEX:
443 		regno = X86_SIB_INDEX(insn->sib.value);
444 		if (X86_REX_X(insn->rex_prefix.value))
445 			regno += 8;
446 
447 		/*
448 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
449 		 * portion of the address computation is null. This is
450 		 * true only if REX.X is 0. In such a case, the SIB index
451 		 * is used in the address computation.
452 		 */
453 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
454 			return -EDOM;
455 		break;
456 
457 	case REG_TYPE_BASE:
458 		regno = X86_SIB_BASE(insn->sib.value);
459 		/*
460 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
461 		 * register-indirect addressing is 0. In this case, a
462 		 * 32-bit displacement follows the SIB byte.
463 		 */
464 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
465 			return -EDOM;
466 
467 		if (X86_REX_B(insn->rex_prefix.value))
468 			regno += 8;
469 		break;
470 
471 	default:
472 		pr_err_ratelimited("invalid register type: %d\n", type);
473 		return -EINVAL;
474 	}
475 
476 	if (regno >= nr_registers) {
477 		WARN_ONCE(1, "decoded an instruction with an invalid register");
478 		return -EINVAL;
479 	}
480 	return regoff[regno];
481 }
482 
483 /**
484  * get_reg_offset_16() - Obtain offset of register indicated by instruction
485  * @insn:	Instruction containing ModRM byte
486  * @regs:	Register values as seen when entering kernel mode
487  * @offs1:	Offset of the first operand register
488  * @offs2:	Offset of the second opeand register, if applicable
489  *
490  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
491  * in @insn. This function is to be used with 16-bit address encodings. The
492  * @offs1 and @offs2 will be written with the offset of the two registers
493  * indicated by the instruction. In cases where any of the registers is not
494  * referenced by the instruction, the value will be set to -EDOM.
495  *
496  * Returns:
497  *
498  * 0 on success, -EINVAL on error.
499  */
500 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
501 			     int *offs1, int *offs2)
502 {
503 	/*
504 	 * 16-bit addressing can use one or two registers. Specifics of
505 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
506 	 * ModR/M Byte" of the Intel Software Development Manual.
507 	 */
508 	static const int regoff1[] = {
509 		offsetof(struct pt_regs, bx),
510 		offsetof(struct pt_regs, bx),
511 		offsetof(struct pt_regs, bp),
512 		offsetof(struct pt_regs, bp),
513 		offsetof(struct pt_regs, si),
514 		offsetof(struct pt_regs, di),
515 		offsetof(struct pt_regs, bp),
516 		offsetof(struct pt_regs, bx),
517 	};
518 
519 	static const int regoff2[] = {
520 		offsetof(struct pt_regs, si),
521 		offsetof(struct pt_regs, di),
522 		offsetof(struct pt_regs, si),
523 		offsetof(struct pt_regs, di),
524 		-EDOM,
525 		-EDOM,
526 		-EDOM,
527 		-EDOM,
528 	};
529 
530 	if (!offs1 || !offs2)
531 		return -EINVAL;
532 
533 	/* Operand is a register, use the generic function. */
534 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
535 		*offs1 = insn_get_modrm_rm_off(insn, regs);
536 		*offs2 = -EDOM;
537 		return 0;
538 	}
539 
540 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
541 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
542 
543 	/*
544 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
545 	 * only addressing. This means that no registers are involved in
546 	 * computing the effective address. Thus, ensure that the first
547 	 * register offset is invalild. The second register offset is already
548 	 * invalid under the aforementioned conditions.
549 	 */
550 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
551 	    (X86_MODRM_RM(insn->modrm.value) == 6))
552 		*offs1 = -EDOM;
553 
554 	return 0;
555 }
556 
557 /**
558  * get_desc() - Obtain contents of a segment descriptor
559  * @out:	Segment descriptor contents on success
560  * @sel:	Segment selector
561  *
562  * Given a segment selector, obtain a pointer to the segment descriptor.
563  * Both global and local descriptor tables are supported.
564  *
565  * Returns:
566  *
567  * True on success, false on failure.
568  *
569  * NULL on error.
570  */
571 static bool get_desc(struct desc_struct *out, unsigned short sel)
572 {
573 	struct desc_ptr gdt_desc = {0, 0};
574 	unsigned long desc_base;
575 
576 #ifdef CONFIG_MODIFY_LDT_SYSCALL
577 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
578 		bool success = false;
579 		struct ldt_struct *ldt;
580 
581 		/* Bits [15:3] contain the index of the desired entry. */
582 		sel >>= 3;
583 
584 		mutex_lock(&current->active_mm->context.lock);
585 		ldt = current->active_mm->context.ldt;
586 		if (ldt && sel < ldt->nr_entries) {
587 			*out = ldt->entries[sel];
588 			success = true;
589 		}
590 
591 		mutex_unlock(&current->active_mm->context.lock);
592 
593 		return success;
594 	}
595 #endif
596 	native_store_gdt(&gdt_desc);
597 
598 	/*
599 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
600 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
601 	 * from the base of the GDT. As bits [15:3] of the segment selector
602 	 * contain the index, it can be regarded as multiplied by 8 already.
603 	 * All that remains is to clear bits [2:0].
604 	 */
605 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
606 
607 	if (desc_base > gdt_desc.size)
608 		return false;
609 
610 	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
611 	return true;
612 }
613 
614 /**
615  * insn_get_seg_base() - Obtain base address of segment descriptor.
616  * @regs:		Register values as seen when entering kernel mode
617  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
618  *
619  * Obtain the base address of the segment as indicated by the segment descriptor
620  * pointed by the segment selector. The segment selector is obtained from the
621  * input segment register index @seg_reg_idx.
622  *
623  * Returns:
624  *
625  * In protected mode, base address of the segment. Zero in long mode,
626  * except when FS or GS are used. In virtual-8086 mode, the segment
627  * selector shifted 4 bits to the right.
628  *
629  * -1L in case of error.
630  */
631 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
632 {
633 	struct desc_struct desc;
634 	short sel;
635 
636 	sel = get_segment_selector(regs, seg_reg_idx);
637 	if (sel < 0)
638 		return -1L;
639 
640 	if (v8086_mode(regs))
641 		/*
642 		 * Base is simply the segment selector shifted 4
643 		 * bits to the right.
644 		 */
645 		return (unsigned long)(sel << 4);
646 
647 	if (any_64bit_mode(regs)) {
648 		/*
649 		 * Only FS or GS will have a base address, the rest of
650 		 * the segments' bases are forced to 0.
651 		 */
652 		unsigned long base;
653 
654 		if (seg_reg_idx == INAT_SEG_REG_FS) {
655 			rdmsrl(MSR_FS_BASE, base);
656 		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
657 			/*
658 			 * swapgs was called at the kernel entry point. Thus,
659 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
660 			 */
661 			if (user_mode(regs))
662 				rdmsrl(MSR_KERNEL_GS_BASE, base);
663 			else
664 				rdmsrl(MSR_GS_BASE, base);
665 		} else {
666 			base = 0;
667 		}
668 		return base;
669 	}
670 
671 	/* In protected mode the segment selector cannot be null. */
672 	if (!sel)
673 		return -1L;
674 
675 	if (!get_desc(&desc, sel))
676 		return -1L;
677 
678 	return get_desc_base(&desc);
679 }
680 
681 /**
682  * get_seg_limit() - Obtain the limit of a segment descriptor
683  * @regs:		Register values as seen when entering kernel mode
684  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
685  *
686  * Obtain the limit of the segment as indicated by the segment descriptor
687  * pointed by the segment selector. The segment selector is obtained from the
688  * input segment register index @seg_reg_idx.
689  *
690  * Returns:
691  *
692  * In protected mode, the limit of the segment descriptor in bytes.
693  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
694  * limit is returned as -1L to imply a limit-less segment.
695  *
696  * Zero is returned on error.
697  */
698 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
699 {
700 	struct desc_struct desc;
701 	unsigned long limit;
702 	short sel;
703 
704 	sel = get_segment_selector(regs, seg_reg_idx);
705 	if (sel < 0)
706 		return 0;
707 
708 	if (any_64bit_mode(regs) || v8086_mode(regs))
709 		return -1L;
710 
711 	if (!sel)
712 		return 0;
713 
714 	if (!get_desc(&desc, sel))
715 		return 0;
716 
717 	/*
718 	 * If the granularity bit is set, the limit is given in multiples
719 	 * of 4096. This also means that the 12 least significant bits are
720 	 * not tested when checking the segment limits. In practice,
721 	 * this means that the segment ends in (limit << 12) + 0xfff.
722 	 */
723 	limit = get_desc_limit(&desc);
724 	if (desc.g)
725 		limit = (limit << 12) + 0xfff;
726 
727 	return limit;
728 }
729 
730 /**
731  * insn_get_code_seg_params() - Obtain code segment parameters
732  * @regs:	Structure with register values as seen when entering kernel mode
733  *
734  * Obtain address and operand sizes of the code segment. It is obtained from the
735  * selector contained in the CS register in regs. In protected mode, the default
736  * address is determined by inspecting the L and D bits of the segment
737  * descriptor. In virtual-8086 mode, the default is always two bytes for both
738  * address and operand sizes.
739  *
740  * Returns:
741  *
742  * An int containing ORed-in default parameters on success.
743  *
744  * -EINVAL on error.
745  */
746 int insn_get_code_seg_params(struct pt_regs *regs)
747 {
748 	struct desc_struct desc;
749 	short sel;
750 
751 	if (v8086_mode(regs))
752 		/* Address and operand size are both 16-bit. */
753 		return INSN_CODE_SEG_PARAMS(2, 2);
754 
755 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
756 	if (sel < 0)
757 		return sel;
758 
759 	if (!get_desc(&desc, sel))
760 		return -EINVAL;
761 
762 	/*
763 	 * The most significant byte of the Type field of the segment descriptor
764 	 * determines whether a segment contains data or code. If this is a data
765 	 * segment, return error.
766 	 */
767 	if (!(desc.type & BIT(3)))
768 		return -EINVAL;
769 
770 	switch ((desc.l << 1) | desc.d) {
771 	case 0: /*
772 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
773 		 * both 16-bit.
774 		 */
775 		return INSN_CODE_SEG_PARAMS(2, 2);
776 	case 1: /*
777 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
778 		 * both 32-bit.
779 		 */
780 		return INSN_CODE_SEG_PARAMS(4, 4);
781 	case 2: /*
782 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
783 		 * operand size is 32-bit.
784 		 */
785 		return INSN_CODE_SEG_PARAMS(4, 8);
786 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
787 		fallthrough;
788 	default:
789 		return -EINVAL;
790 	}
791 }
792 
793 /**
794  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
795  * @insn:	Instruction containing the ModRM byte
796  * @regs:	Register values as seen when entering kernel mode
797  *
798  * Returns:
799  *
800  * The register indicated by the r/m part of the ModRM byte. The
801  * register is obtained as an offset from the base of pt_regs. In specific
802  * cases, the returned value can be -EDOM to indicate that the particular value
803  * of ModRM does not refer to a register and shall be ignored.
804  */
805 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
806 {
807 	return get_reg_offset(insn, regs, REG_TYPE_RM);
808 }
809 
810 /**
811  * get_seg_base_limit() - obtain base address and limit of a segment
812  * @insn:	Instruction. Must be valid.
813  * @regs:	Register values as seen when entering kernel mode
814  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
815  * @base:	Obtained segment base
816  * @limit:	Obtained segment limit
817  *
818  * Obtain the base address and limit of the segment associated with the operand
819  * @regoff and, if any or allowed, override prefixes in @insn. This function is
820  * different from insn_get_seg_base() as the latter does not resolve the segment
821  * associated with the instruction operand. If a limit is not needed (e.g.,
822  * when running in long mode), @limit can be NULL.
823  *
824  * Returns:
825  *
826  * 0 on success. @base and @limit will contain the base address and of the
827  * resolved segment, respectively.
828  *
829  * -EINVAL on error.
830  */
831 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
832 			      int regoff, unsigned long *base,
833 			      unsigned long *limit)
834 {
835 	int seg_reg_idx;
836 
837 	if (!base)
838 		return -EINVAL;
839 
840 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
841 	if (seg_reg_idx < 0)
842 		return seg_reg_idx;
843 
844 	*base = insn_get_seg_base(regs, seg_reg_idx);
845 	if (*base == -1L)
846 		return -EINVAL;
847 
848 	if (!limit)
849 		return 0;
850 
851 	*limit = get_seg_limit(regs, seg_reg_idx);
852 	if (!(*limit))
853 		return -EINVAL;
854 
855 	return 0;
856 }
857 
858 /**
859  * get_eff_addr_reg() - Obtain effective address from register operand
860  * @insn:	Instruction. Must be valid.
861  * @regs:	Register values as seen when entering kernel mode
862  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
863  * @eff_addr:	Obtained effective address
864  *
865  * Obtain the effective address stored in the register operand as indicated by
866  * the ModRM byte. This function is to be used only with register addressing
867  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
868  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
869  * such offset can then be used to resolve the segment associated with the
870  * operand. This function can be used with any of the supported address sizes
871  * in x86.
872  *
873  * Returns:
874  *
875  * 0 on success. @eff_addr will have the effective address stored in the
876  * operand indicated by ModRM. @regoff will have such operand as an offset from
877  * the base of pt_regs.
878  *
879  * -EINVAL on error.
880  */
881 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
882 			    int *regoff, long *eff_addr)
883 {
884 	insn_get_modrm(insn);
885 
886 	if (!insn->modrm.nbytes)
887 		return -EINVAL;
888 
889 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
890 		return -EINVAL;
891 
892 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
893 	if (*regoff < 0)
894 		return -EINVAL;
895 
896 	/* Ignore bytes that are outside the address size. */
897 	if (insn->addr_bytes == 2)
898 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
899 	else if (insn->addr_bytes == 4)
900 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
901 	else /* 64-bit address */
902 		*eff_addr = regs_get_register(regs, *regoff);
903 
904 	return 0;
905 }
906 
907 /**
908  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
909  * @insn:	Instruction. Must be valid.
910  * @regs:	Register values as seen when entering kernel mode
911  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
912  * @eff_addr:	Obtained effective address
913  *
914  * Obtain the effective address referenced by the ModRM byte of @insn. After
915  * identifying the registers involved in the register-indirect memory reference,
916  * its value is obtained from the operands in @regs. The computed address is
917  * stored @eff_addr. Also, the register operand that indicates the associated
918  * segment is stored in @regoff, this parameter can later be used to determine
919  * such segment.
920  *
921  * Returns:
922  *
923  * 0 on success. @eff_addr will have the referenced effective address. @regoff
924  * will have a register, as an offset from the base of pt_regs, that can be used
925  * to resolve the associated segment.
926  *
927  * -EINVAL on error.
928  */
929 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
930 			      int *regoff, long *eff_addr)
931 {
932 	long tmp;
933 
934 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
935 		return -EINVAL;
936 
937 	insn_get_modrm(insn);
938 
939 	if (!insn->modrm.nbytes)
940 		return -EINVAL;
941 
942 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
943 		return -EINVAL;
944 
945 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
946 
947 	/*
948 	 * -EDOM means that we must ignore the address_offset. In such a case,
949 	 * in 64-bit mode the effective address relative to the rIP of the
950 	 * following instruction.
951 	 */
952 	if (*regoff == -EDOM) {
953 		if (any_64bit_mode(regs))
954 			tmp = regs->ip + insn->length;
955 		else
956 			tmp = 0;
957 	} else if (*regoff < 0) {
958 		return -EINVAL;
959 	} else {
960 		tmp = regs_get_register(regs, *regoff);
961 	}
962 
963 	if (insn->addr_bytes == 4) {
964 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
965 
966 		*eff_addr = addr32 & 0xffffffff;
967 	} else {
968 		*eff_addr = tmp + insn->displacement.value;
969 	}
970 
971 	return 0;
972 }
973 
974 /**
975  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
976  * @insn:	Instruction. Must be valid.
977  * @regs:	Register values as seen when entering kernel mode
978  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
979  * @eff_addr:	Obtained effective address
980  *
981  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
982  * After identifying the registers involved in the register-indirect memory
983  * reference, its value is obtained from the operands in @regs. The computed
984  * address is stored @eff_addr. Also, the register operand that indicates
985  * the associated segment is stored in @regoff, this parameter can later be used
986  * to determine such segment.
987  *
988  * Returns:
989  *
990  * 0 on success. @eff_addr will have the referenced effective address. @regoff
991  * will have a register, as an offset from the base of pt_regs, that can be used
992  * to resolve the associated segment.
993  *
994  * -EINVAL on error.
995  */
996 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
997 				 int *regoff, short *eff_addr)
998 {
999 	int addr_offset1, addr_offset2, ret;
1000 	short addr1 = 0, addr2 = 0, displacement;
1001 
1002 	if (insn->addr_bytes != 2)
1003 		return -EINVAL;
1004 
1005 	insn_get_modrm(insn);
1006 
1007 	if (!insn->modrm.nbytes)
1008 		return -EINVAL;
1009 
1010 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1011 		return -EINVAL;
1012 
1013 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1014 	if (ret < 0)
1015 		return -EINVAL;
1016 
1017 	/*
1018 	 * Don't fail on invalid offset values. They might be invalid because
1019 	 * they cannot be used for this particular value of ModRM. Instead, use
1020 	 * them in the computation only if they contain a valid value.
1021 	 */
1022 	if (addr_offset1 != -EDOM)
1023 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1024 
1025 	if (addr_offset2 != -EDOM)
1026 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1027 
1028 	displacement = insn->displacement.value & 0xffff;
1029 	*eff_addr = addr1 + addr2 + displacement;
1030 
1031 	/*
1032 	 * The first operand register could indicate to use of either SS or DS
1033 	 * registers to obtain the segment selector.  The second operand
1034 	 * register can only indicate the use of DS. Thus, the first operand
1035 	 * will be used to obtain the segment selector.
1036 	 */
1037 	*regoff = addr_offset1;
1038 
1039 	return 0;
1040 }
1041 
1042 /**
1043  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1044  * @insn:	Instruction. Must be valid.
1045  * @regs:	Register values as seen when entering kernel mode
1046  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1047  * @eff_addr:	Obtained effective address
1048  *
1049  * Obtain the effective address referenced by the SIB byte of @insn. After
1050  * identifying the registers involved in the indexed, register-indirect memory
1051  * reference, its value is obtained from the operands in @regs. The computed
1052  * address is stored @eff_addr. Also, the register operand that indicates the
1053  * associated segment is stored in @regoff, this parameter can later be used to
1054  * determine such segment.
1055  *
1056  * Returns:
1057  *
1058  * 0 on success. @eff_addr will have the referenced effective address.
1059  * @base_offset will have a register, as an offset from the base of pt_regs,
1060  * that can be used to resolve the associated segment.
1061  *
1062  * -EINVAL on error.
1063  */
1064 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1065 			    int *base_offset, long *eff_addr)
1066 {
1067 	long base, indx;
1068 	int indx_offset;
1069 
1070 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1071 		return -EINVAL;
1072 
1073 	insn_get_modrm(insn);
1074 
1075 	if (!insn->modrm.nbytes)
1076 		return -EINVAL;
1077 
1078 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1079 		return -EINVAL;
1080 
1081 	insn_get_sib(insn);
1082 
1083 	if (!insn->sib.nbytes)
1084 		return -EINVAL;
1085 
1086 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1087 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1088 
1089 	/*
1090 	 * Negative values in the base and index offset means an error when
1091 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1092 	 * should not be used in the address computation.
1093 	 */
1094 	if (*base_offset == -EDOM)
1095 		base = 0;
1096 	else if (*base_offset < 0)
1097 		return -EINVAL;
1098 	else
1099 		base = regs_get_register(regs, *base_offset);
1100 
1101 	if (indx_offset == -EDOM)
1102 		indx = 0;
1103 	else if (indx_offset < 0)
1104 		return -EINVAL;
1105 	else
1106 		indx = regs_get_register(regs, indx_offset);
1107 
1108 	if (insn->addr_bytes == 4) {
1109 		int addr32, base32, idx32;
1110 
1111 		base32 = base & 0xffffffff;
1112 		idx32 = indx & 0xffffffff;
1113 
1114 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1115 		addr32 += insn->displacement.value;
1116 
1117 		*eff_addr = addr32 & 0xffffffff;
1118 	} else {
1119 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1120 		*eff_addr += insn->displacement.value;
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /**
1127  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1128  * @insn:	Instruction containing ModRM byte and displacement
1129  * @regs:	Register values as seen when entering kernel mode
1130  *
1131  * This function is to be used with 16-bit address encodings. Obtain the memory
1132  * address referred by the instruction's ModRM and displacement bytes. Also, the
1133  * segment used as base is determined by either any segment override prefixes in
1134  * @insn or the default segment of the registers involved in the address
1135  * computation. In protected mode, segment limits are enforced.
1136  *
1137  * Returns:
1138  *
1139  * Linear address referenced by the instruction operands on success.
1140  *
1141  * -1L on error.
1142  */
1143 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1144 {
1145 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1146 	int ret, regoff;
1147 	short eff_addr;
1148 	long tmp;
1149 
1150 	insn_get_modrm(insn);
1151 	insn_get_displacement(insn);
1152 
1153 	if (insn->addr_bytes != 2)
1154 		goto out;
1155 
1156 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1157 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1158 		if (ret)
1159 			goto out;
1160 
1161 		eff_addr = tmp;
1162 	} else {
1163 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1164 		if (ret)
1165 			goto out;
1166 	}
1167 
1168 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1169 	if (ret)
1170 		goto out;
1171 
1172 	/*
1173 	 * Before computing the linear address, make sure the effective address
1174 	 * is within the limits of the segment. In virtual-8086 mode, segment
1175 	 * limits are not enforced. In such a case, the segment limit is -1L to
1176 	 * reflect this fact.
1177 	 */
1178 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1179 		goto out;
1180 
1181 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1182 
1183 	/* Limit linear address to 20 bits */
1184 	if (v8086_mode(regs))
1185 		linear_addr &= 0xfffff;
1186 
1187 out:
1188 	return (void __user *)linear_addr;
1189 }
1190 
1191 /**
1192  * get_addr_ref_32() - Obtain a 32-bit linear address
1193  * @insn:	Instruction with ModRM, SIB bytes and displacement
1194  * @regs:	Register values as seen when entering kernel mode
1195  *
1196  * This function is to be used with 32-bit address encodings to obtain the
1197  * linear memory address referred by the instruction's ModRM, SIB,
1198  * displacement bytes and segment base address, as applicable. If in protected
1199  * mode, segment limits are enforced.
1200  *
1201  * Returns:
1202  *
1203  * Linear address referenced by instruction and registers on success.
1204  *
1205  * -1L on error.
1206  */
1207 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1208 {
1209 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1210 	int eff_addr, regoff;
1211 	long tmp;
1212 	int ret;
1213 
1214 	if (insn->addr_bytes != 4)
1215 		goto out;
1216 
1217 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1218 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1219 		if (ret)
1220 			goto out;
1221 
1222 		eff_addr = tmp;
1223 
1224 	} else {
1225 		if (insn->sib.nbytes) {
1226 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1227 			if (ret)
1228 				goto out;
1229 
1230 			eff_addr = tmp;
1231 		} else {
1232 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1233 			if (ret)
1234 				goto out;
1235 
1236 			eff_addr = tmp;
1237 		}
1238 	}
1239 
1240 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1241 	if (ret)
1242 		goto out;
1243 
1244 	/*
1245 	 * In protected mode, before computing the linear address, make sure
1246 	 * the effective address is within the limits of the segment.
1247 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1248 	 * address override prefix is used. In such cases, segment limits are
1249 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1250 	 * to reflect this situation.
1251 	 *
1252 	 * After computed, the effective address is treated as an unsigned
1253 	 * quantity.
1254 	 */
1255 	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1256 		goto out;
1257 
1258 	/*
1259 	 * Even though 32-bit address encodings are allowed in virtual-8086
1260 	 * mode, the address range is still limited to [0x-0xffff].
1261 	 */
1262 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1263 		goto out;
1264 
1265 	/*
1266 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1267 	 * effective address is not sign-extended when computing the linear
1268 	 * address.
1269 	 */
1270 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1271 
1272 	/* Limit linear address to 20 bits */
1273 	if (v8086_mode(regs))
1274 		linear_addr &= 0xfffff;
1275 
1276 out:
1277 	return (void __user *)linear_addr;
1278 }
1279 
1280 /**
1281  * get_addr_ref_64() - Obtain a 64-bit linear address
1282  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1283  * @regs:	Structure with register values as seen when entering kernel mode
1284  *
1285  * This function is to be used with 64-bit address encodings to obtain the
1286  * linear memory address referred by the instruction's ModRM, SIB,
1287  * displacement bytes and segment base address, as applicable.
1288  *
1289  * Returns:
1290  *
1291  * Linear address referenced by instruction and registers on success.
1292  *
1293  * -1L on error.
1294  */
1295 #ifndef CONFIG_X86_64
1296 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1297 {
1298 	return (void __user *)-1L;
1299 }
1300 #else
1301 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1302 {
1303 	unsigned long linear_addr = -1L, seg_base;
1304 	int regoff, ret;
1305 	long eff_addr;
1306 
1307 	if (insn->addr_bytes != 8)
1308 		goto out;
1309 
1310 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1311 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1312 		if (ret)
1313 			goto out;
1314 
1315 	} else {
1316 		if (insn->sib.nbytes) {
1317 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1318 			if (ret)
1319 				goto out;
1320 		} else {
1321 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1322 			if (ret)
1323 				goto out;
1324 		}
1325 
1326 	}
1327 
1328 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1329 	if (ret)
1330 		goto out;
1331 
1332 	linear_addr = (unsigned long)eff_addr + seg_base;
1333 
1334 out:
1335 	return (void __user *)linear_addr;
1336 }
1337 #endif /* CONFIG_X86_64 */
1338 
1339 /**
1340  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1341  * @insn:	Instruction structure containing ModRM byte and displacement
1342  * @regs:	Structure with register values as seen when entering kernel mode
1343  *
1344  * Obtain the linear address referred by the instruction's ModRM, SIB and
1345  * displacement bytes, and segment base, as applicable. In protected mode,
1346  * segment limits are enforced.
1347  *
1348  * Returns:
1349  *
1350  * Linear address referenced by instruction and registers on success.
1351  *
1352  * -1L on error.
1353  */
1354 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1355 {
1356 	if (!insn || !regs)
1357 		return (void __user *)-1L;
1358 
1359 	switch (insn->addr_bytes) {
1360 	case 2:
1361 		return get_addr_ref_16(insn, regs);
1362 	case 4:
1363 		return get_addr_ref_32(insn, regs);
1364 	case 8:
1365 		return get_addr_ref_64(insn, regs);
1366 	default:
1367 		return (void __user *)-1L;
1368 	}
1369 }
1370