xref: /openbmc/linux/arch/x86/lib/insn-eval.c (revision dc6a81c3)
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17 
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20 
21 enum reg_type {
22 	REG_TYPE_RM = 0,
23 	REG_TYPE_INDEX,
24 	REG_TYPE_BASE,
25 };
26 
27 /**
28  * is_string_insn() - Determine if instruction is a string instruction
29  * @insn:	Instruction containing the opcode to inspect
30  *
31  * Returns:
32  *
33  * true if the instruction, determined by the opcode, is any of the
34  * string instructions as defined in the Intel Software Development manual.
35  * False otherwise.
36  */
37 static bool is_string_insn(struct insn *insn)
38 {
39 	insn_get_opcode(insn);
40 
41 	/* All string instructions have a 1-byte opcode. */
42 	if (insn->opcode.nbytes != 1)
43 		return false;
44 
45 	switch (insn->opcode.bytes[0]) {
46 	case 0x6c ... 0x6f:	/* INS, OUTS */
47 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
48 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
49 		return true;
50 	default:
51 		return false;
52 	}
53 }
54 
55 /**
56  * get_seg_reg_override_idx() - obtain segment register override index
57  * @insn:	Valid instruction with segment override prefixes
58  *
59  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60  *
61  * Returns:
62  *
63  * A constant identifying the segment register to use, among CS, SS, DS,
64  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65  * prefixes were found.
66  *
67  * -EINVAL in case of error.
68  */
69 static int get_seg_reg_override_idx(struct insn *insn)
70 {
71 	int idx = INAT_SEG_REG_DEFAULT;
72 	int num_overrides = 0, i;
73 
74 	insn_get_prefixes(insn);
75 
76 	/* Look for any segment override prefixes. */
77 	for (i = 0; i < insn->prefixes.nbytes; i++) {
78 		insn_attr_t attr;
79 
80 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 		switch (attr) {
82 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 			idx = INAT_SEG_REG_CS;
84 			num_overrides++;
85 			break;
86 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 			idx = INAT_SEG_REG_SS;
88 			num_overrides++;
89 			break;
90 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 			idx = INAT_SEG_REG_DS;
92 			num_overrides++;
93 			break;
94 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 			idx = INAT_SEG_REG_ES;
96 			num_overrides++;
97 			break;
98 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 			idx = INAT_SEG_REG_FS;
100 			num_overrides++;
101 			break;
102 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 			idx = INAT_SEG_REG_GS;
104 			num_overrides++;
105 			break;
106 		/* No default action needed. */
107 		}
108 	}
109 
110 	/* More than one segment override prefix leads to undefined behavior. */
111 	if (num_overrides > 1)
112 		return -EINVAL;
113 
114 	return idx;
115 }
116 
117 /**
118  * check_seg_overrides() - check if segment override prefixes are allowed
119  * @insn:	Valid instruction with segment override prefixes
120  * @regoff:	Operand offset, in pt_regs, for which the check is performed
121  *
122  * For a particular register used in register-indirect addressing, determine if
123  * segment override prefixes can be used. Specifically, no overrides are allowed
124  * for rDI if used with a string instruction.
125  *
126  * Returns:
127  *
128  * True if segment override prefixes can be used with the register indicated
129  * in @regoff. False if otherwise.
130  */
131 static bool check_seg_overrides(struct insn *insn, int regoff)
132 {
133 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 		return false;
135 
136 	return true;
137 }
138 
139 /**
140  * resolve_default_seg() - resolve default segment register index for an operand
141  * @insn:	Instruction with opcode and address size. Must be valid.
142  * @regs:	Register values as seen when entering kernel mode
143  * @off:	Operand offset, in pt_regs, for which resolution is needed
144  *
145  * Resolve the default segment register index associated with the instruction
146  * operand register indicated by @off. Such index is resolved based on defaults
147  * described in the Intel Software Development Manual.
148  *
149  * Returns:
150  *
151  * If in protected mode, a constant identifying the segment register to use,
152  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153  *
154  * -EINVAL in case of error.
155  */
156 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157 {
158 	if (any_64bit_mode(regs))
159 		return INAT_SEG_REG_IGNORE;
160 	/*
161 	 * Resolve the default segment register as described in Section 3.7.4
162 	 * of the Intel Software Development Manual Vol. 1:
163 	 *
164 	 *  + DS for all references involving r[ABCD]X, and rSI.
165 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
166 	 *  + AX, CX and DX are not valid register operands in 16-bit address
167 	 *    encodings but are valid for 32-bit and 64-bit encodings.
168 	 *  + -EDOM is reserved to identify for cases in which no register
169 	 *    is used (i.e., displacement-only addressing). Use DS.
170 	 *  + SS for rSP or rBP.
171 	 *  + CS for rIP.
172 	 */
173 
174 	switch (off) {
175 	case offsetof(struct pt_regs, ax):
176 	case offsetof(struct pt_regs, cx):
177 	case offsetof(struct pt_regs, dx):
178 		/* Need insn to verify address size. */
179 		if (insn->addr_bytes == 2)
180 			return -EINVAL;
181 
182 		/* fall through */
183 
184 	case -EDOM:
185 	case offsetof(struct pt_regs, bx):
186 	case offsetof(struct pt_regs, si):
187 		return INAT_SEG_REG_DS;
188 
189 	case offsetof(struct pt_regs, di):
190 		if (is_string_insn(insn))
191 			return INAT_SEG_REG_ES;
192 		return INAT_SEG_REG_DS;
193 
194 	case offsetof(struct pt_regs, bp):
195 	case offsetof(struct pt_regs, sp):
196 		return INAT_SEG_REG_SS;
197 
198 	case offsetof(struct pt_regs, ip):
199 		return INAT_SEG_REG_CS;
200 
201 	default:
202 		return -EINVAL;
203 	}
204 }
205 
206 /**
207  * resolve_seg_reg() - obtain segment register index
208  * @insn:	Instruction with operands
209  * @regs:	Register values as seen when entering kernel mode
210  * @regoff:	Operand offset, in pt_regs, used to deterimine segment register
211  *
212  * Determine the segment register associated with the operands and, if
213  * applicable, prefixes and the instruction pointed by @insn.
214  *
215  * The segment register associated to an operand used in register-indirect
216  * addressing depends on:
217  *
218  * a) Whether running in long mode (in such a case segments are ignored, except
219  * if FS or GS are used).
220  *
221  * b) Whether segment override prefixes can be used. Certain instructions and
222  *    registers do not allow override prefixes.
223  *
224  * c) Whether segment overrides prefixes are found in the instruction prefixes.
225  *
226  * d) If there are not segment override prefixes or they cannot be used, the
227  *    default segment register associated with the operand register is used.
228  *
229  * The function checks first if segment override prefixes can be used with the
230  * operand indicated by @regoff. If allowed, obtain such overridden segment
231  * register index. Lastly, if not prefixes were found or cannot be used, resolve
232  * the segment register index to use based on the defaults described in the
233  * Intel documentation. In long mode, all segment register indexes will be
234  * ignored, except if overrides were found for FS or GS. All these operations
235  * are done using helper functions.
236  *
237  * The operand register, @regoff, is represented as the offset from the base of
238  * pt_regs.
239  *
240  * As stated, the main use of this function is to determine the segment register
241  * index based on the instruction, its operands and prefixes. Hence, @insn
242  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
243  * @insn at all as in this case CS is used in all cases. This case is checked
244  * before proceeding further.
245  *
246  * Please note that this function does not return the value in the segment
247  * register (i.e., the segment selector) but our defined index. The segment
248  * selector needs to be obtained using get_segment_selector() and passing the
249  * segment register index resolved by this function.
250  *
251  * Returns:
252  *
253  * An index identifying the segment register to use, among CS, SS, DS,
254  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
255  *
256  * -EINVAL in case of error.
257  */
258 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
259 {
260 	int idx;
261 
262 	/*
263 	 * In the unlikely event of having to resolve the segment register
264 	 * index for rIP, do it first. Segment override prefixes should not
265 	 * be used. Hence, it is not necessary to inspect the instruction,
266 	 * which may be invalid at this point.
267 	 */
268 	if (regoff == offsetof(struct pt_regs, ip)) {
269 		if (any_64bit_mode(regs))
270 			return INAT_SEG_REG_IGNORE;
271 		else
272 			return INAT_SEG_REG_CS;
273 	}
274 
275 	if (!insn)
276 		return -EINVAL;
277 
278 	if (!check_seg_overrides(insn, regoff))
279 		return resolve_default_seg(insn, regs, regoff);
280 
281 	idx = get_seg_reg_override_idx(insn);
282 	if (idx < 0)
283 		return idx;
284 
285 	if (idx == INAT_SEG_REG_DEFAULT)
286 		return resolve_default_seg(insn, regs, regoff);
287 
288 	/*
289 	 * In long mode, segment override prefixes are ignored, except for
290 	 * overrides for FS and GS.
291 	 */
292 	if (any_64bit_mode(regs)) {
293 		if (idx != INAT_SEG_REG_FS &&
294 		    idx != INAT_SEG_REG_GS)
295 			idx = INAT_SEG_REG_IGNORE;
296 	}
297 
298 	return idx;
299 }
300 
301 /**
302  * get_segment_selector() - obtain segment selector
303  * @regs:		Register values as seen when entering kernel mode
304  * @seg_reg_idx:	Segment register index to use
305  *
306  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
307  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
308  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
309  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
310  * registers. This done for only for completeness as in CONFIG_X86_64 segment
311  * registers are ignored.
312  *
313  * Returns:
314  *
315  * Value of the segment selector, including null when running in
316  * long mode.
317  *
318  * -EINVAL on error.
319  */
320 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
321 {
322 #ifdef CONFIG_X86_64
323 	unsigned short sel;
324 
325 	switch (seg_reg_idx) {
326 	case INAT_SEG_REG_IGNORE:
327 		return 0;
328 	case INAT_SEG_REG_CS:
329 		return (unsigned short)(regs->cs & 0xffff);
330 	case INAT_SEG_REG_SS:
331 		return (unsigned short)(regs->ss & 0xffff);
332 	case INAT_SEG_REG_DS:
333 		savesegment(ds, sel);
334 		return sel;
335 	case INAT_SEG_REG_ES:
336 		savesegment(es, sel);
337 		return sel;
338 	case INAT_SEG_REG_FS:
339 		savesegment(fs, sel);
340 		return sel;
341 	case INAT_SEG_REG_GS:
342 		savesegment(gs, sel);
343 		return sel;
344 	default:
345 		return -EINVAL;
346 	}
347 #else /* CONFIG_X86_32 */
348 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
349 
350 	if (v8086_mode(regs)) {
351 		switch (seg_reg_idx) {
352 		case INAT_SEG_REG_CS:
353 			return (unsigned short)(regs->cs & 0xffff);
354 		case INAT_SEG_REG_SS:
355 			return (unsigned short)(regs->ss & 0xffff);
356 		case INAT_SEG_REG_DS:
357 			return vm86regs->ds;
358 		case INAT_SEG_REG_ES:
359 			return vm86regs->es;
360 		case INAT_SEG_REG_FS:
361 			return vm86regs->fs;
362 		case INAT_SEG_REG_GS:
363 			return vm86regs->gs;
364 		case INAT_SEG_REG_IGNORE:
365 			/* fall through */
366 		default:
367 			return -EINVAL;
368 		}
369 	}
370 
371 	switch (seg_reg_idx) {
372 	case INAT_SEG_REG_CS:
373 		return (unsigned short)(regs->cs & 0xffff);
374 	case INAT_SEG_REG_SS:
375 		return (unsigned short)(regs->ss & 0xffff);
376 	case INAT_SEG_REG_DS:
377 		return (unsigned short)(regs->ds & 0xffff);
378 	case INAT_SEG_REG_ES:
379 		return (unsigned short)(regs->es & 0xffff);
380 	case INAT_SEG_REG_FS:
381 		return (unsigned short)(regs->fs & 0xffff);
382 	case INAT_SEG_REG_GS:
383 		/*
384 		 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
385 		 * The macro below takes care of both cases.
386 		 */
387 		return get_user_gs(regs);
388 	case INAT_SEG_REG_IGNORE:
389 		/* fall through */
390 	default:
391 		return -EINVAL;
392 	}
393 #endif /* CONFIG_X86_64 */
394 }
395 
396 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
397 			  enum reg_type type)
398 {
399 	int regno = 0;
400 
401 	static const int regoff[] = {
402 		offsetof(struct pt_regs, ax),
403 		offsetof(struct pt_regs, cx),
404 		offsetof(struct pt_regs, dx),
405 		offsetof(struct pt_regs, bx),
406 		offsetof(struct pt_regs, sp),
407 		offsetof(struct pt_regs, bp),
408 		offsetof(struct pt_regs, si),
409 		offsetof(struct pt_regs, di),
410 #ifdef CONFIG_X86_64
411 		offsetof(struct pt_regs, r8),
412 		offsetof(struct pt_regs, r9),
413 		offsetof(struct pt_regs, r10),
414 		offsetof(struct pt_regs, r11),
415 		offsetof(struct pt_regs, r12),
416 		offsetof(struct pt_regs, r13),
417 		offsetof(struct pt_regs, r14),
418 		offsetof(struct pt_regs, r15),
419 #endif
420 	};
421 	int nr_registers = ARRAY_SIZE(regoff);
422 	/*
423 	 * Don't possibly decode a 32-bit instructions as
424 	 * reading a 64-bit-only register.
425 	 */
426 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
427 		nr_registers -= 8;
428 
429 	switch (type) {
430 	case REG_TYPE_RM:
431 		regno = X86_MODRM_RM(insn->modrm.value);
432 
433 		/*
434 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
435 		 * follows the ModRM byte.
436 		 */
437 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
438 			return -EDOM;
439 
440 		if (X86_REX_B(insn->rex_prefix.value))
441 			regno += 8;
442 		break;
443 
444 	case REG_TYPE_INDEX:
445 		regno = X86_SIB_INDEX(insn->sib.value);
446 		if (X86_REX_X(insn->rex_prefix.value))
447 			regno += 8;
448 
449 		/*
450 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
451 		 * portion of the address computation is null. This is
452 		 * true only if REX.X is 0. In such a case, the SIB index
453 		 * is used in the address computation.
454 		 */
455 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
456 			return -EDOM;
457 		break;
458 
459 	case REG_TYPE_BASE:
460 		regno = X86_SIB_BASE(insn->sib.value);
461 		/*
462 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
463 		 * register-indirect addressing is 0. In this case, a
464 		 * 32-bit displacement follows the SIB byte.
465 		 */
466 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
467 			return -EDOM;
468 
469 		if (X86_REX_B(insn->rex_prefix.value))
470 			regno += 8;
471 		break;
472 
473 	default:
474 		pr_err_ratelimited("invalid register type: %d\n", type);
475 		return -EINVAL;
476 	}
477 
478 	if (regno >= nr_registers) {
479 		WARN_ONCE(1, "decoded an instruction with an invalid register");
480 		return -EINVAL;
481 	}
482 	return regoff[regno];
483 }
484 
485 /**
486  * get_reg_offset_16() - Obtain offset of register indicated by instruction
487  * @insn:	Instruction containing ModRM byte
488  * @regs:	Register values as seen when entering kernel mode
489  * @offs1:	Offset of the first operand register
490  * @offs2:	Offset of the second opeand register, if applicable
491  *
492  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
493  * in @insn. This function is to be used with 16-bit address encodings. The
494  * @offs1 and @offs2 will be written with the offset of the two registers
495  * indicated by the instruction. In cases where any of the registers is not
496  * referenced by the instruction, the value will be set to -EDOM.
497  *
498  * Returns:
499  *
500  * 0 on success, -EINVAL on error.
501  */
502 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
503 			     int *offs1, int *offs2)
504 {
505 	/*
506 	 * 16-bit addressing can use one or two registers. Specifics of
507 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
508 	 * ModR/M Byte" of the Intel Software Development Manual.
509 	 */
510 	static const int regoff1[] = {
511 		offsetof(struct pt_regs, bx),
512 		offsetof(struct pt_regs, bx),
513 		offsetof(struct pt_regs, bp),
514 		offsetof(struct pt_regs, bp),
515 		offsetof(struct pt_regs, si),
516 		offsetof(struct pt_regs, di),
517 		offsetof(struct pt_regs, bp),
518 		offsetof(struct pt_regs, bx),
519 	};
520 
521 	static const int regoff2[] = {
522 		offsetof(struct pt_regs, si),
523 		offsetof(struct pt_regs, di),
524 		offsetof(struct pt_regs, si),
525 		offsetof(struct pt_regs, di),
526 		-EDOM,
527 		-EDOM,
528 		-EDOM,
529 		-EDOM,
530 	};
531 
532 	if (!offs1 || !offs2)
533 		return -EINVAL;
534 
535 	/* Operand is a register, use the generic function. */
536 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
537 		*offs1 = insn_get_modrm_rm_off(insn, regs);
538 		*offs2 = -EDOM;
539 		return 0;
540 	}
541 
542 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
543 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
544 
545 	/*
546 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
547 	 * only addressing. This means that no registers are involved in
548 	 * computing the effective address. Thus, ensure that the first
549 	 * register offset is invalild. The second register offset is already
550 	 * invalid under the aforementioned conditions.
551 	 */
552 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
553 	    (X86_MODRM_RM(insn->modrm.value) == 6))
554 		*offs1 = -EDOM;
555 
556 	return 0;
557 }
558 
559 /**
560  * get_desc() - Obtain contents of a segment descriptor
561  * @out:	Segment descriptor contents on success
562  * @sel:	Segment selector
563  *
564  * Given a segment selector, obtain a pointer to the segment descriptor.
565  * Both global and local descriptor tables are supported.
566  *
567  * Returns:
568  *
569  * True on success, false on failure.
570  *
571  * NULL on error.
572  */
573 static bool get_desc(struct desc_struct *out, unsigned short sel)
574 {
575 	struct desc_ptr gdt_desc = {0, 0};
576 	unsigned long desc_base;
577 
578 #ifdef CONFIG_MODIFY_LDT_SYSCALL
579 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
580 		bool success = false;
581 		struct ldt_struct *ldt;
582 
583 		/* Bits [15:3] contain the index of the desired entry. */
584 		sel >>= 3;
585 
586 		mutex_lock(&current->active_mm->context.lock);
587 		ldt = current->active_mm->context.ldt;
588 		if (ldt && sel < ldt->nr_entries) {
589 			*out = ldt->entries[sel];
590 			success = true;
591 		}
592 
593 		mutex_unlock(&current->active_mm->context.lock);
594 
595 		return success;
596 	}
597 #endif
598 	native_store_gdt(&gdt_desc);
599 
600 	/*
601 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
602 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
603 	 * from the base of the GDT. As bits [15:3] of the segment selector
604 	 * contain the index, it can be regarded as multiplied by 8 already.
605 	 * All that remains is to clear bits [2:0].
606 	 */
607 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
608 
609 	if (desc_base > gdt_desc.size)
610 		return false;
611 
612 	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
613 	return true;
614 }
615 
616 /**
617  * insn_get_seg_base() - Obtain base address of segment descriptor.
618  * @regs:		Register values as seen when entering kernel mode
619  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
620  *
621  * Obtain the base address of the segment as indicated by the segment descriptor
622  * pointed by the segment selector. The segment selector is obtained from the
623  * input segment register index @seg_reg_idx.
624  *
625  * Returns:
626  *
627  * In protected mode, base address of the segment. Zero in long mode,
628  * except when FS or GS are used. In virtual-8086 mode, the segment
629  * selector shifted 4 bits to the right.
630  *
631  * -1L in case of error.
632  */
633 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
634 {
635 	struct desc_struct desc;
636 	short sel;
637 
638 	sel = get_segment_selector(regs, seg_reg_idx);
639 	if (sel < 0)
640 		return -1L;
641 
642 	if (v8086_mode(regs))
643 		/*
644 		 * Base is simply the segment selector shifted 4
645 		 * bits to the right.
646 		 */
647 		return (unsigned long)(sel << 4);
648 
649 	if (any_64bit_mode(regs)) {
650 		/*
651 		 * Only FS or GS will have a base address, the rest of
652 		 * the segments' bases are forced to 0.
653 		 */
654 		unsigned long base;
655 
656 		if (seg_reg_idx == INAT_SEG_REG_FS) {
657 			rdmsrl(MSR_FS_BASE, base);
658 		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
659 			/*
660 			 * swapgs was called at the kernel entry point. Thus,
661 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
662 			 */
663 			if (user_mode(regs))
664 				rdmsrl(MSR_KERNEL_GS_BASE, base);
665 			else
666 				rdmsrl(MSR_GS_BASE, base);
667 		} else {
668 			base = 0;
669 		}
670 		return base;
671 	}
672 
673 	/* In protected mode the segment selector cannot be null. */
674 	if (!sel)
675 		return -1L;
676 
677 	if (!get_desc(&desc, sel))
678 		return -1L;
679 
680 	return get_desc_base(&desc);
681 }
682 
683 /**
684  * get_seg_limit() - Obtain the limit of a segment descriptor
685  * @regs:		Register values as seen when entering kernel mode
686  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
687  *
688  * Obtain the limit of the segment as indicated by the segment descriptor
689  * pointed by the segment selector. The segment selector is obtained from the
690  * input segment register index @seg_reg_idx.
691  *
692  * Returns:
693  *
694  * In protected mode, the limit of the segment descriptor in bytes.
695  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
696  * limit is returned as -1L to imply a limit-less segment.
697  *
698  * Zero is returned on error.
699  */
700 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
701 {
702 	struct desc_struct desc;
703 	unsigned long limit;
704 	short sel;
705 
706 	sel = get_segment_selector(regs, seg_reg_idx);
707 	if (sel < 0)
708 		return 0;
709 
710 	if (any_64bit_mode(regs) || v8086_mode(regs))
711 		return -1L;
712 
713 	if (!sel)
714 		return 0;
715 
716 	if (!get_desc(&desc, sel))
717 		return 0;
718 
719 	/*
720 	 * If the granularity bit is set, the limit is given in multiples
721 	 * of 4096. This also means that the 12 least significant bits are
722 	 * not tested when checking the segment limits. In practice,
723 	 * this means that the segment ends in (limit << 12) + 0xfff.
724 	 */
725 	limit = get_desc_limit(&desc);
726 	if (desc.g)
727 		limit = (limit << 12) + 0xfff;
728 
729 	return limit;
730 }
731 
732 /**
733  * insn_get_code_seg_params() - Obtain code segment parameters
734  * @regs:	Structure with register values as seen when entering kernel mode
735  *
736  * Obtain address and operand sizes of the code segment. It is obtained from the
737  * selector contained in the CS register in regs. In protected mode, the default
738  * address is determined by inspecting the L and D bits of the segment
739  * descriptor. In virtual-8086 mode, the default is always two bytes for both
740  * address and operand sizes.
741  *
742  * Returns:
743  *
744  * An int containing ORed-in default parameters on success.
745  *
746  * -EINVAL on error.
747  */
748 int insn_get_code_seg_params(struct pt_regs *regs)
749 {
750 	struct desc_struct desc;
751 	short sel;
752 
753 	if (v8086_mode(regs))
754 		/* Address and operand size are both 16-bit. */
755 		return INSN_CODE_SEG_PARAMS(2, 2);
756 
757 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
758 	if (sel < 0)
759 		return sel;
760 
761 	if (!get_desc(&desc, sel))
762 		return -EINVAL;
763 
764 	/*
765 	 * The most significant byte of the Type field of the segment descriptor
766 	 * determines whether a segment contains data or code. If this is a data
767 	 * segment, return error.
768 	 */
769 	if (!(desc.type & BIT(3)))
770 		return -EINVAL;
771 
772 	switch ((desc.l << 1) | desc.d) {
773 	case 0: /*
774 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
775 		 * both 16-bit.
776 		 */
777 		return INSN_CODE_SEG_PARAMS(2, 2);
778 	case 1: /*
779 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
780 		 * both 32-bit.
781 		 */
782 		return INSN_CODE_SEG_PARAMS(4, 4);
783 	case 2: /*
784 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
785 		 * operand size is 32-bit.
786 		 */
787 		return INSN_CODE_SEG_PARAMS(4, 8);
788 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
789 		/* fall through */
790 	default:
791 		return -EINVAL;
792 	}
793 }
794 
795 /**
796  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
797  * @insn:	Instruction containing the ModRM byte
798  * @regs:	Register values as seen when entering kernel mode
799  *
800  * Returns:
801  *
802  * The register indicated by the r/m part of the ModRM byte. The
803  * register is obtained as an offset from the base of pt_regs. In specific
804  * cases, the returned value can be -EDOM to indicate that the particular value
805  * of ModRM does not refer to a register and shall be ignored.
806  */
807 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
808 {
809 	return get_reg_offset(insn, regs, REG_TYPE_RM);
810 }
811 
812 /**
813  * get_seg_base_limit() - obtain base address and limit of a segment
814  * @insn:	Instruction. Must be valid.
815  * @regs:	Register values as seen when entering kernel mode
816  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
817  * @base:	Obtained segment base
818  * @limit:	Obtained segment limit
819  *
820  * Obtain the base address and limit of the segment associated with the operand
821  * @regoff and, if any or allowed, override prefixes in @insn. This function is
822  * different from insn_get_seg_base() as the latter does not resolve the segment
823  * associated with the instruction operand. If a limit is not needed (e.g.,
824  * when running in long mode), @limit can be NULL.
825  *
826  * Returns:
827  *
828  * 0 on success. @base and @limit will contain the base address and of the
829  * resolved segment, respectively.
830  *
831  * -EINVAL on error.
832  */
833 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
834 			      int regoff, unsigned long *base,
835 			      unsigned long *limit)
836 {
837 	int seg_reg_idx;
838 
839 	if (!base)
840 		return -EINVAL;
841 
842 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
843 	if (seg_reg_idx < 0)
844 		return seg_reg_idx;
845 
846 	*base = insn_get_seg_base(regs, seg_reg_idx);
847 	if (*base == -1L)
848 		return -EINVAL;
849 
850 	if (!limit)
851 		return 0;
852 
853 	*limit = get_seg_limit(regs, seg_reg_idx);
854 	if (!(*limit))
855 		return -EINVAL;
856 
857 	return 0;
858 }
859 
860 /**
861  * get_eff_addr_reg() - Obtain effective address from register operand
862  * @insn:	Instruction. Must be valid.
863  * @regs:	Register values as seen when entering kernel mode
864  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
865  * @eff_addr:	Obtained effective address
866  *
867  * Obtain the effective address stored in the register operand as indicated by
868  * the ModRM byte. This function is to be used only with register addressing
869  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
870  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
871  * such offset can then be used to resolve the segment associated with the
872  * operand. This function can be used with any of the supported address sizes
873  * in x86.
874  *
875  * Returns:
876  *
877  * 0 on success. @eff_addr will have the effective address stored in the
878  * operand indicated by ModRM. @regoff will have such operand as an offset from
879  * the base of pt_regs.
880  *
881  * -EINVAL on error.
882  */
883 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
884 			    int *regoff, long *eff_addr)
885 {
886 	insn_get_modrm(insn);
887 
888 	if (!insn->modrm.nbytes)
889 		return -EINVAL;
890 
891 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
892 		return -EINVAL;
893 
894 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
895 	if (*regoff < 0)
896 		return -EINVAL;
897 
898 	/* Ignore bytes that are outside the address size. */
899 	if (insn->addr_bytes == 2)
900 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
901 	else if (insn->addr_bytes == 4)
902 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
903 	else /* 64-bit address */
904 		*eff_addr = regs_get_register(regs, *regoff);
905 
906 	return 0;
907 }
908 
909 /**
910  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
911  * @insn:	Instruction. Must be valid.
912  * @regs:	Register values as seen when entering kernel mode
913  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
914  * @eff_addr:	Obtained effective address
915  *
916  * Obtain the effective address referenced by the ModRM byte of @insn. After
917  * identifying the registers involved in the register-indirect memory reference,
918  * its value is obtained from the operands in @regs. The computed address is
919  * stored @eff_addr. Also, the register operand that indicates the associated
920  * segment is stored in @regoff, this parameter can later be used to determine
921  * such segment.
922  *
923  * Returns:
924  *
925  * 0 on success. @eff_addr will have the referenced effective address. @regoff
926  * will have a register, as an offset from the base of pt_regs, that can be used
927  * to resolve the associated segment.
928  *
929  * -EINVAL on error.
930  */
931 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
932 			      int *regoff, long *eff_addr)
933 {
934 	long tmp;
935 
936 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
937 		return -EINVAL;
938 
939 	insn_get_modrm(insn);
940 
941 	if (!insn->modrm.nbytes)
942 		return -EINVAL;
943 
944 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
945 		return -EINVAL;
946 
947 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
948 
949 	/*
950 	 * -EDOM means that we must ignore the address_offset. In such a case,
951 	 * in 64-bit mode the effective address relative to the rIP of the
952 	 * following instruction.
953 	 */
954 	if (*regoff == -EDOM) {
955 		if (any_64bit_mode(regs))
956 			tmp = regs->ip + insn->length;
957 		else
958 			tmp = 0;
959 	} else if (*regoff < 0) {
960 		return -EINVAL;
961 	} else {
962 		tmp = regs_get_register(regs, *regoff);
963 	}
964 
965 	if (insn->addr_bytes == 4) {
966 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
967 
968 		*eff_addr = addr32 & 0xffffffff;
969 	} else {
970 		*eff_addr = tmp + insn->displacement.value;
971 	}
972 
973 	return 0;
974 }
975 
976 /**
977  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
978  * @insn:	Instruction. Must be valid.
979  * @regs:	Register values as seen when entering kernel mode
980  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
981  * @eff_addr:	Obtained effective address
982  *
983  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
984  * After identifying the registers involved in the register-indirect memory
985  * reference, its value is obtained from the operands in @regs. The computed
986  * address is stored @eff_addr. Also, the register operand that indicates
987  * the associated segment is stored in @regoff, this parameter can later be used
988  * to determine such segment.
989  *
990  * Returns:
991  *
992  * 0 on success. @eff_addr will have the referenced effective address. @regoff
993  * will have a register, as an offset from the base of pt_regs, that can be used
994  * to resolve the associated segment.
995  *
996  * -EINVAL on error.
997  */
998 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
999 				 int *regoff, short *eff_addr)
1000 {
1001 	int addr_offset1, addr_offset2, ret;
1002 	short addr1 = 0, addr2 = 0, displacement;
1003 
1004 	if (insn->addr_bytes != 2)
1005 		return -EINVAL;
1006 
1007 	insn_get_modrm(insn);
1008 
1009 	if (!insn->modrm.nbytes)
1010 		return -EINVAL;
1011 
1012 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1013 		return -EINVAL;
1014 
1015 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1016 	if (ret < 0)
1017 		return -EINVAL;
1018 
1019 	/*
1020 	 * Don't fail on invalid offset values. They might be invalid because
1021 	 * they cannot be used for this particular value of ModRM. Instead, use
1022 	 * them in the computation only if they contain a valid value.
1023 	 */
1024 	if (addr_offset1 != -EDOM)
1025 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1026 
1027 	if (addr_offset2 != -EDOM)
1028 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1029 
1030 	displacement = insn->displacement.value & 0xffff;
1031 	*eff_addr = addr1 + addr2 + displacement;
1032 
1033 	/*
1034 	 * The first operand register could indicate to use of either SS or DS
1035 	 * registers to obtain the segment selector.  The second operand
1036 	 * register can only indicate the use of DS. Thus, the first operand
1037 	 * will be used to obtain the segment selector.
1038 	 */
1039 	*regoff = addr_offset1;
1040 
1041 	return 0;
1042 }
1043 
1044 /**
1045  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1046  * @insn:	Instruction. Must be valid.
1047  * @regs:	Register values as seen when entering kernel mode
1048  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1049  * @eff_addr:	Obtained effective address
1050  *
1051  * Obtain the effective address referenced by the SIB byte of @insn. After
1052  * identifying the registers involved in the indexed, register-indirect memory
1053  * reference, its value is obtained from the operands in @regs. The computed
1054  * address is stored @eff_addr. Also, the register operand that indicates the
1055  * associated segment is stored in @regoff, this parameter can later be used to
1056  * determine such segment.
1057  *
1058  * Returns:
1059  *
1060  * 0 on success. @eff_addr will have the referenced effective address.
1061  * @base_offset will have a register, as an offset from the base of pt_regs,
1062  * that can be used to resolve the associated segment.
1063  *
1064  * -EINVAL on error.
1065  */
1066 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1067 			    int *base_offset, long *eff_addr)
1068 {
1069 	long base, indx;
1070 	int indx_offset;
1071 
1072 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1073 		return -EINVAL;
1074 
1075 	insn_get_modrm(insn);
1076 
1077 	if (!insn->modrm.nbytes)
1078 		return -EINVAL;
1079 
1080 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1081 		return -EINVAL;
1082 
1083 	insn_get_sib(insn);
1084 
1085 	if (!insn->sib.nbytes)
1086 		return -EINVAL;
1087 
1088 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1089 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1090 
1091 	/*
1092 	 * Negative values in the base and index offset means an error when
1093 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1094 	 * should not be used in the address computation.
1095 	 */
1096 	if (*base_offset == -EDOM)
1097 		base = 0;
1098 	else if (*base_offset < 0)
1099 		return -EINVAL;
1100 	else
1101 		base = regs_get_register(regs, *base_offset);
1102 
1103 	if (indx_offset == -EDOM)
1104 		indx = 0;
1105 	else if (indx_offset < 0)
1106 		return -EINVAL;
1107 	else
1108 		indx = regs_get_register(regs, indx_offset);
1109 
1110 	if (insn->addr_bytes == 4) {
1111 		int addr32, base32, idx32;
1112 
1113 		base32 = base & 0xffffffff;
1114 		idx32 = indx & 0xffffffff;
1115 
1116 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1117 		addr32 += insn->displacement.value;
1118 
1119 		*eff_addr = addr32 & 0xffffffff;
1120 	} else {
1121 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1122 		*eff_addr += insn->displacement.value;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /**
1129  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1130  * @insn:	Instruction containing ModRM byte and displacement
1131  * @regs:	Register values as seen when entering kernel mode
1132  *
1133  * This function is to be used with 16-bit address encodings. Obtain the memory
1134  * address referred by the instruction's ModRM and displacement bytes. Also, the
1135  * segment used as base is determined by either any segment override prefixes in
1136  * @insn or the default segment of the registers involved in the address
1137  * computation. In protected mode, segment limits are enforced.
1138  *
1139  * Returns:
1140  *
1141  * Linear address referenced by the instruction operands on success.
1142  *
1143  * -1L on error.
1144  */
1145 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1146 {
1147 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1148 	int ret, regoff;
1149 	short eff_addr;
1150 	long tmp;
1151 
1152 	insn_get_modrm(insn);
1153 	insn_get_displacement(insn);
1154 
1155 	if (insn->addr_bytes != 2)
1156 		goto out;
1157 
1158 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1159 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1160 		if (ret)
1161 			goto out;
1162 
1163 		eff_addr = tmp;
1164 	} else {
1165 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1166 		if (ret)
1167 			goto out;
1168 	}
1169 
1170 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1171 	if (ret)
1172 		goto out;
1173 
1174 	/*
1175 	 * Before computing the linear address, make sure the effective address
1176 	 * is within the limits of the segment. In virtual-8086 mode, segment
1177 	 * limits are not enforced. In such a case, the segment limit is -1L to
1178 	 * reflect this fact.
1179 	 */
1180 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1181 		goto out;
1182 
1183 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1184 
1185 	/* Limit linear address to 20 bits */
1186 	if (v8086_mode(regs))
1187 		linear_addr &= 0xfffff;
1188 
1189 out:
1190 	return (void __user *)linear_addr;
1191 }
1192 
1193 /**
1194  * get_addr_ref_32() - Obtain a 32-bit linear address
1195  * @insn:	Instruction with ModRM, SIB bytes and displacement
1196  * @regs:	Register values as seen when entering kernel mode
1197  *
1198  * This function is to be used with 32-bit address encodings to obtain the
1199  * linear memory address referred by the instruction's ModRM, SIB,
1200  * displacement bytes and segment base address, as applicable. If in protected
1201  * mode, segment limits are enforced.
1202  *
1203  * Returns:
1204  *
1205  * Linear address referenced by instruction and registers on success.
1206  *
1207  * -1L on error.
1208  */
1209 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1210 {
1211 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1212 	int eff_addr, regoff;
1213 	long tmp;
1214 	int ret;
1215 
1216 	if (insn->addr_bytes != 4)
1217 		goto out;
1218 
1219 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1220 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1221 		if (ret)
1222 			goto out;
1223 
1224 		eff_addr = tmp;
1225 
1226 	} else {
1227 		if (insn->sib.nbytes) {
1228 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1229 			if (ret)
1230 				goto out;
1231 
1232 			eff_addr = tmp;
1233 		} else {
1234 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1235 			if (ret)
1236 				goto out;
1237 
1238 			eff_addr = tmp;
1239 		}
1240 	}
1241 
1242 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1243 	if (ret)
1244 		goto out;
1245 
1246 	/*
1247 	 * In protected mode, before computing the linear address, make sure
1248 	 * the effective address is within the limits of the segment.
1249 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1250 	 * address override prefix is used. In such cases, segment limits are
1251 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1252 	 * to reflect this situation.
1253 	 *
1254 	 * After computed, the effective address is treated as an unsigned
1255 	 * quantity.
1256 	 */
1257 	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1258 		goto out;
1259 
1260 	/*
1261 	 * Even though 32-bit address encodings are allowed in virtual-8086
1262 	 * mode, the address range is still limited to [0x-0xffff].
1263 	 */
1264 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1265 		goto out;
1266 
1267 	/*
1268 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1269 	 * effective address is not sign-extended when computing the linear
1270 	 * address.
1271 	 */
1272 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1273 
1274 	/* Limit linear address to 20 bits */
1275 	if (v8086_mode(regs))
1276 		linear_addr &= 0xfffff;
1277 
1278 out:
1279 	return (void __user *)linear_addr;
1280 }
1281 
1282 /**
1283  * get_addr_ref_64() - Obtain a 64-bit linear address
1284  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1285  * @regs:	Structure with register values as seen when entering kernel mode
1286  *
1287  * This function is to be used with 64-bit address encodings to obtain the
1288  * linear memory address referred by the instruction's ModRM, SIB,
1289  * displacement bytes and segment base address, as applicable.
1290  *
1291  * Returns:
1292  *
1293  * Linear address referenced by instruction and registers on success.
1294  *
1295  * -1L on error.
1296  */
1297 #ifndef CONFIG_X86_64
1298 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1299 {
1300 	return (void __user *)-1L;
1301 }
1302 #else
1303 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1304 {
1305 	unsigned long linear_addr = -1L, seg_base;
1306 	int regoff, ret;
1307 	long eff_addr;
1308 
1309 	if (insn->addr_bytes != 8)
1310 		goto out;
1311 
1312 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1313 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1314 		if (ret)
1315 			goto out;
1316 
1317 	} else {
1318 		if (insn->sib.nbytes) {
1319 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1320 			if (ret)
1321 				goto out;
1322 		} else {
1323 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1324 			if (ret)
1325 				goto out;
1326 		}
1327 
1328 	}
1329 
1330 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1331 	if (ret)
1332 		goto out;
1333 
1334 	linear_addr = (unsigned long)eff_addr + seg_base;
1335 
1336 out:
1337 	return (void __user *)linear_addr;
1338 }
1339 #endif /* CONFIG_X86_64 */
1340 
1341 /**
1342  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1343  * @insn:	Instruction structure containing ModRM byte and displacement
1344  * @regs:	Structure with register values as seen when entering kernel mode
1345  *
1346  * Obtain the linear address referred by the instruction's ModRM, SIB and
1347  * displacement bytes, and segment base, as applicable. In protected mode,
1348  * segment limits are enforced.
1349  *
1350  * Returns:
1351  *
1352  * Linear address referenced by instruction and registers on success.
1353  *
1354  * -1L on error.
1355  */
1356 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1357 {
1358 	if (!insn || !regs)
1359 		return (void __user *)-1L;
1360 
1361 	switch (insn->addr_bytes) {
1362 	case 2:
1363 		return get_addr_ref_16(insn, regs);
1364 	case 4:
1365 		return get_addr_ref_32(insn, regs);
1366 	case 8:
1367 		return get_addr_ref_64(insn, regs);
1368 	default:
1369 		return (void __user *)-1L;
1370 	}
1371 }
1372