xref: /openbmc/linux/arch/x86/lib/insn-eval.c (revision ae213c44)
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17 
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20 
21 enum reg_type {
22 	REG_TYPE_RM = 0,
23 	REG_TYPE_INDEX,
24 	REG_TYPE_BASE,
25 };
26 
27 /**
28  * is_string_insn() - Determine if instruction is a string instruction
29  * @insn:	Instruction containing the opcode to inspect
30  *
31  * Returns:
32  *
33  * true if the instruction, determined by the opcode, is any of the
34  * string instructions as defined in the Intel Software Development manual.
35  * False otherwise.
36  */
37 static bool is_string_insn(struct insn *insn)
38 {
39 	insn_get_opcode(insn);
40 
41 	/* All string instructions have a 1-byte opcode. */
42 	if (insn->opcode.nbytes != 1)
43 		return false;
44 
45 	switch (insn->opcode.bytes[0]) {
46 	case 0x6c ... 0x6f:	/* INS, OUTS */
47 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
48 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
49 		return true;
50 	default:
51 		return false;
52 	}
53 }
54 
55 /**
56  * get_seg_reg_override_idx() - obtain segment register override index
57  * @insn:	Valid instruction with segment override prefixes
58  *
59  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60  *
61  * Returns:
62  *
63  * A constant identifying the segment register to use, among CS, SS, DS,
64  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65  * prefixes were found.
66  *
67  * -EINVAL in case of error.
68  */
69 static int get_seg_reg_override_idx(struct insn *insn)
70 {
71 	int idx = INAT_SEG_REG_DEFAULT;
72 	int num_overrides = 0, i;
73 
74 	insn_get_prefixes(insn);
75 
76 	/* Look for any segment override prefixes. */
77 	for (i = 0; i < insn->prefixes.nbytes; i++) {
78 		insn_attr_t attr;
79 
80 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 		switch (attr) {
82 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 			idx = INAT_SEG_REG_CS;
84 			num_overrides++;
85 			break;
86 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 			idx = INAT_SEG_REG_SS;
88 			num_overrides++;
89 			break;
90 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 			idx = INAT_SEG_REG_DS;
92 			num_overrides++;
93 			break;
94 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 			idx = INAT_SEG_REG_ES;
96 			num_overrides++;
97 			break;
98 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 			idx = INAT_SEG_REG_FS;
100 			num_overrides++;
101 			break;
102 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 			idx = INAT_SEG_REG_GS;
104 			num_overrides++;
105 			break;
106 		/* No default action needed. */
107 		}
108 	}
109 
110 	/* More than one segment override prefix leads to undefined behavior. */
111 	if (num_overrides > 1)
112 		return -EINVAL;
113 
114 	return idx;
115 }
116 
117 /**
118  * check_seg_overrides() - check if segment override prefixes are allowed
119  * @insn:	Valid instruction with segment override prefixes
120  * @regoff:	Operand offset, in pt_regs, for which the check is performed
121  *
122  * For a particular register used in register-indirect addressing, determine if
123  * segment override prefixes can be used. Specifically, no overrides are allowed
124  * for rDI if used with a string instruction.
125  *
126  * Returns:
127  *
128  * True if segment override prefixes can be used with the register indicated
129  * in @regoff. False if otherwise.
130  */
131 static bool check_seg_overrides(struct insn *insn, int regoff)
132 {
133 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 		return false;
135 
136 	return true;
137 }
138 
139 /**
140  * resolve_default_seg() - resolve default segment register index for an operand
141  * @insn:	Instruction with opcode and address size. Must be valid.
142  * @regs:	Register values as seen when entering kernel mode
143  * @off:	Operand offset, in pt_regs, for which resolution is needed
144  *
145  * Resolve the default segment register index associated with the instruction
146  * operand register indicated by @off. Such index is resolved based on defaults
147  * described in the Intel Software Development Manual.
148  *
149  * Returns:
150  *
151  * If in protected mode, a constant identifying the segment register to use,
152  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153  *
154  * -EINVAL in case of error.
155  */
156 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157 {
158 	if (user_64bit_mode(regs))
159 		return INAT_SEG_REG_IGNORE;
160 	/*
161 	 * Resolve the default segment register as described in Section 3.7.4
162 	 * of the Intel Software Development Manual Vol. 1:
163 	 *
164 	 *  + DS for all references involving r[ABCD]X, and rSI.
165 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
166 	 *  + AX, CX and DX are not valid register operands in 16-bit address
167 	 *    encodings but are valid for 32-bit and 64-bit encodings.
168 	 *  + -EDOM is reserved to identify for cases in which no register
169 	 *    is used (i.e., displacement-only addressing). Use DS.
170 	 *  + SS for rSP or rBP.
171 	 *  + CS for rIP.
172 	 */
173 
174 	switch (off) {
175 	case offsetof(struct pt_regs, ax):
176 	case offsetof(struct pt_regs, cx):
177 	case offsetof(struct pt_regs, dx):
178 		/* Need insn to verify address size. */
179 		if (insn->addr_bytes == 2)
180 			return -EINVAL;
181 
182 		/* fall through */
183 
184 	case -EDOM:
185 	case offsetof(struct pt_regs, bx):
186 	case offsetof(struct pt_regs, si):
187 		return INAT_SEG_REG_DS;
188 
189 	case offsetof(struct pt_regs, di):
190 		if (is_string_insn(insn))
191 			return INAT_SEG_REG_ES;
192 		return INAT_SEG_REG_DS;
193 
194 	case offsetof(struct pt_regs, bp):
195 	case offsetof(struct pt_regs, sp):
196 		return INAT_SEG_REG_SS;
197 
198 	case offsetof(struct pt_regs, ip):
199 		return INAT_SEG_REG_CS;
200 
201 	default:
202 		return -EINVAL;
203 	}
204 }
205 
206 /**
207  * resolve_seg_reg() - obtain segment register index
208  * @insn:	Instruction with operands
209  * @regs:	Register values as seen when entering kernel mode
210  * @regoff:	Operand offset, in pt_regs, used to deterimine segment register
211  *
212  * Determine the segment register associated with the operands and, if
213  * applicable, prefixes and the instruction pointed by @insn.
214  *
215  * The segment register associated to an operand used in register-indirect
216  * addressing depends on:
217  *
218  * a) Whether running in long mode (in such a case segments are ignored, except
219  * if FS or GS are used).
220  *
221  * b) Whether segment override prefixes can be used. Certain instructions and
222  *    registers do not allow override prefixes.
223  *
224  * c) Whether segment overrides prefixes are found in the instruction prefixes.
225  *
226  * d) If there are not segment override prefixes or they cannot be used, the
227  *    default segment register associated with the operand register is used.
228  *
229  * The function checks first if segment override prefixes can be used with the
230  * operand indicated by @regoff. If allowed, obtain such overridden segment
231  * register index. Lastly, if not prefixes were found or cannot be used, resolve
232  * the segment register index to use based on the defaults described in the
233  * Intel documentation. In long mode, all segment register indexes will be
234  * ignored, except if overrides were found for FS or GS. All these operations
235  * are done using helper functions.
236  *
237  * The operand register, @regoff, is represented as the offset from the base of
238  * pt_regs.
239  *
240  * As stated, the main use of this function is to determine the segment register
241  * index based on the instruction, its operands and prefixes. Hence, @insn
242  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
243  * @insn at all as in this case CS is used in all cases. This case is checked
244  * before proceeding further.
245  *
246  * Please note that this function does not return the value in the segment
247  * register (i.e., the segment selector) but our defined index. The segment
248  * selector needs to be obtained using get_segment_selector() and passing the
249  * segment register index resolved by this function.
250  *
251  * Returns:
252  *
253  * An index identifying the segment register to use, among CS, SS, DS,
254  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
255  *
256  * -EINVAL in case of error.
257  */
258 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
259 {
260 	int idx;
261 
262 	/*
263 	 * In the unlikely event of having to resolve the segment register
264 	 * index for rIP, do it first. Segment override prefixes should not
265 	 * be used. Hence, it is not necessary to inspect the instruction,
266 	 * which may be invalid at this point.
267 	 */
268 	if (regoff == offsetof(struct pt_regs, ip)) {
269 		if (user_64bit_mode(regs))
270 			return INAT_SEG_REG_IGNORE;
271 		else
272 			return INAT_SEG_REG_CS;
273 	}
274 
275 	if (!insn)
276 		return -EINVAL;
277 
278 	if (!check_seg_overrides(insn, regoff))
279 		return resolve_default_seg(insn, regs, regoff);
280 
281 	idx = get_seg_reg_override_idx(insn);
282 	if (idx < 0)
283 		return idx;
284 
285 	if (idx == INAT_SEG_REG_DEFAULT)
286 		return resolve_default_seg(insn, regs, regoff);
287 
288 	/*
289 	 * In long mode, segment override prefixes are ignored, except for
290 	 * overrides for FS and GS.
291 	 */
292 	if (user_64bit_mode(regs)) {
293 		if (idx != INAT_SEG_REG_FS &&
294 		    idx != INAT_SEG_REG_GS)
295 			idx = INAT_SEG_REG_IGNORE;
296 	}
297 
298 	return idx;
299 }
300 
301 /**
302  * get_segment_selector() - obtain segment selector
303  * @regs:		Register values as seen when entering kernel mode
304  * @seg_reg_idx:	Segment register index to use
305  *
306  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
307  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
308  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
309  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
310  * registers. This done for only for completeness as in CONFIG_X86_64 segment
311  * registers are ignored.
312  *
313  * Returns:
314  *
315  * Value of the segment selector, including null when running in
316  * long mode.
317  *
318  * -EINVAL on error.
319  */
320 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
321 {
322 #ifdef CONFIG_X86_64
323 	unsigned short sel;
324 
325 	switch (seg_reg_idx) {
326 	case INAT_SEG_REG_IGNORE:
327 		return 0;
328 	case INAT_SEG_REG_CS:
329 		return (unsigned short)(regs->cs & 0xffff);
330 	case INAT_SEG_REG_SS:
331 		return (unsigned short)(regs->ss & 0xffff);
332 	case INAT_SEG_REG_DS:
333 		savesegment(ds, sel);
334 		return sel;
335 	case INAT_SEG_REG_ES:
336 		savesegment(es, sel);
337 		return sel;
338 	case INAT_SEG_REG_FS:
339 		savesegment(fs, sel);
340 		return sel;
341 	case INAT_SEG_REG_GS:
342 		savesegment(gs, sel);
343 		return sel;
344 	default:
345 		return -EINVAL;
346 	}
347 #else /* CONFIG_X86_32 */
348 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
349 
350 	if (v8086_mode(regs)) {
351 		switch (seg_reg_idx) {
352 		case INAT_SEG_REG_CS:
353 			return (unsigned short)(regs->cs & 0xffff);
354 		case INAT_SEG_REG_SS:
355 			return (unsigned short)(regs->ss & 0xffff);
356 		case INAT_SEG_REG_DS:
357 			return vm86regs->ds;
358 		case INAT_SEG_REG_ES:
359 			return vm86regs->es;
360 		case INAT_SEG_REG_FS:
361 			return vm86regs->fs;
362 		case INAT_SEG_REG_GS:
363 			return vm86regs->gs;
364 		case INAT_SEG_REG_IGNORE:
365 			/* fall through */
366 		default:
367 			return -EINVAL;
368 		}
369 	}
370 
371 	switch (seg_reg_idx) {
372 	case INAT_SEG_REG_CS:
373 		return (unsigned short)(regs->cs & 0xffff);
374 	case INAT_SEG_REG_SS:
375 		return (unsigned short)(regs->ss & 0xffff);
376 	case INAT_SEG_REG_DS:
377 		return (unsigned short)(regs->ds & 0xffff);
378 	case INAT_SEG_REG_ES:
379 		return (unsigned short)(regs->es & 0xffff);
380 	case INAT_SEG_REG_FS:
381 		return (unsigned short)(regs->fs & 0xffff);
382 	case INAT_SEG_REG_GS:
383 		/*
384 		 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
385 		 * The macro below takes care of both cases.
386 		 */
387 		return get_user_gs(regs);
388 	case INAT_SEG_REG_IGNORE:
389 		/* fall through */
390 	default:
391 		return -EINVAL;
392 	}
393 #endif /* CONFIG_X86_64 */
394 }
395 
396 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
397 			  enum reg_type type)
398 {
399 	int regno = 0;
400 
401 	static const int regoff[] = {
402 		offsetof(struct pt_regs, ax),
403 		offsetof(struct pt_regs, cx),
404 		offsetof(struct pt_regs, dx),
405 		offsetof(struct pt_regs, bx),
406 		offsetof(struct pt_regs, sp),
407 		offsetof(struct pt_regs, bp),
408 		offsetof(struct pt_regs, si),
409 		offsetof(struct pt_regs, di),
410 #ifdef CONFIG_X86_64
411 		offsetof(struct pt_regs, r8),
412 		offsetof(struct pt_regs, r9),
413 		offsetof(struct pt_regs, r10),
414 		offsetof(struct pt_regs, r11),
415 		offsetof(struct pt_regs, r12),
416 		offsetof(struct pt_regs, r13),
417 		offsetof(struct pt_regs, r14),
418 		offsetof(struct pt_regs, r15),
419 #endif
420 	};
421 	int nr_registers = ARRAY_SIZE(regoff);
422 	/*
423 	 * Don't possibly decode a 32-bit instructions as
424 	 * reading a 64-bit-only register.
425 	 */
426 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
427 		nr_registers -= 8;
428 
429 	switch (type) {
430 	case REG_TYPE_RM:
431 		regno = X86_MODRM_RM(insn->modrm.value);
432 
433 		/*
434 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
435 		 * follows the ModRM byte.
436 		 */
437 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
438 			return -EDOM;
439 
440 		if (X86_REX_B(insn->rex_prefix.value))
441 			regno += 8;
442 		break;
443 
444 	case REG_TYPE_INDEX:
445 		regno = X86_SIB_INDEX(insn->sib.value);
446 		if (X86_REX_X(insn->rex_prefix.value))
447 			regno += 8;
448 
449 		/*
450 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
451 		 * portion of the address computation is null. This is
452 		 * true only if REX.X is 0. In such a case, the SIB index
453 		 * is used in the address computation.
454 		 */
455 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
456 			return -EDOM;
457 		break;
458 
459 	case REG_TYPE_BASE:
460 		regno = X86_SIB_BASE(insn->sib.value);
461 		/*
462 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
463 		 * register-indirect addressing is 0. In this case, a
464 		 * 32-bit displacement follows the SIB byte.
465 		 */
466 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
467 			return -EDOM;
468 
469 		if (X86_REX_B(insn->rex_prefix.value))
470 			regno += 8;
471 		break;
472 
473 	default:
474 		pr_err_ratelimited("invalid register type: %d\n", type);
475 		return -EINVAL;
476 	}
477 
478 	if (regno >= nr_registers) {
479 		WARN_ONCE(1, "decoded an instruction with an invalid register");
480 		return -EINVAL;
481 	}
482 	return regoff[regno];
483 }
484 
485 /**
486  * get_reg_offset_16() - Obtain offset of register indicated by instruction
487  * @insn:	Instruction containing ModRM byte
488  * @regs:	Register values as seen when entering kernel mode
489  * @offs1:	Offset of the first operand register
490  * @offs2:	Offset of the second opeand register, if applicable
491  *
492  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
493  * in @insn. This function is to be used with 16-bit address encodings. The
494  * @offs1 and @offs2 will be written with the offset of the two registers
495  * indicated by the instruction. In cases where any of the registers is not
496  * referenced by the instruction, the value will be set to -EDOM.
497  *
498  * Returns:
499  *
500  * 0 on success, -EINVAL on error.
501  */
502 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
503 			     int *offs1, int *offs2)
504 {
505 	/*
506 	 * 16-bit addressing can use one or two registers. Specifics of
507 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
508 	 * ModR/M Byte" of the Intel Software Development Manual.
509 	 */
510 	static const int regoff1[] = {
511 		offsetof(struct pt_regs, bx),
512 		offsetof(struct pt_regs, bx),
513 		offsetof(struct pt_regs, bp),
514 		offsetof(struct pt_regs, bp),
515 		offsetof(struct pt_regs, si),
516 		offsetof(struct pt_regs, di),
517 		offsetof(struct pt_regs, bp),
518 		offsetof(struct pt_regs, bx),
519 	};
520 
521 	static const int regoff2[] = {
522 		offsetof(struct pt_regs, si),
523 		offsetof(struct pt_regs, di),
524 		offsetof(struct pt_regs, si),
525 		offsetof(struct pt_regs, di),
526 		-EDOM,
527 		-EDOM,
528 		-EDOM,
529 		-EDOM,
530 	};
531 
532 	if (!offs1 || !offs2)
533 		return -EINVAL;
534 
535 	/* Operand is a register, use the generic function. */
536 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
537 		*offs1 = insn_get_modrm_rm_off(insn, regs);
538 		*offs2 = -EDOM;
539 		return 0;
540 	}
541 
542 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
543 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
544 
545 	/*
546 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
547 	 * only addressing. This means that no registers are involved in
548 	 * computing the effective address. Thus, ensure that the first
549 	 * register offset is invalild. The second register offset is already
550 	 * invalid under the aforementioned conditions.
551 	 */
552 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
553 	    (X86_MODRM_RM(insn->modrm.value) == 6))
554 		*offs1 = -EDOM;
555 
556 	return 0;
557 }
558 
559 /**
560  * get_desc() - Obtain pointer to a segment descriptor
561  * @sel:	Segment selector
562  *
563  * Given a segment selector, obtain a pointer to the segment descriptor.
564  * Both global and local descriptor tables are supported.
565  *
566  * Returns:
567  *
568  * Pointer to segment descriptor on success.
569  *
570  * NULL on error.
571  */
572 static struct desc_struct *get_desc(unsigned short sel)
573 {
574 	struct desc_ptr gdt_desc = {0, 0};
575 	unsigned long desc_base;
576 
577 #ifdef CONFIG_MODIFY_LDT_SYSCALL
578 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
579 		struct desc_struct *desc = NULL;
580 		struct ldt_struct *ldt;
581 
582 		/* Bits [15:3] contain the index of the desired entry. */
583 		sel >>= 3;
584 
585 		mutex_lock(&current->active_mm->context.lock);
586 		ldt = current->active_mm->context.ldt;
587 		if (ldt && sel < ldt->nr_entries)
588 			desc = &ldt->entries[sel];
589 
590 		mutex_unlock(&current->active_mm->context.lock);
591 
592 		return desc;
593 	}
594 #endif
595 	native_store_gdt(&gdt_desc);
596 
597 	/*
598 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
599 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
600 	 * from the base of the GDT. As bits [15:3] of the segment selector
601 	 * contain the index, it can be regarded as multiplied by 8 already.
602 	 * All that remains is to clear bits [2:0].
603 	 */
604 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
605 
606 	if (desc_base > gdt_desc.size)
607 		return NULL;
608 
609 	return (struct desc_struct *)(gdt_desc.address + desc_base);
610 }
611 
612 /**
613  * insn_get_seg_base() - Obtain base address of segment descriptor.
614  * @regs:		Register values as seen when entering kernel mode
615  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
616  *
617  * Obtain the base address of the segment as indicated by the segment descriptor
618  * pointed by the segment selector. The segment selector is obtained from the
619  * input segment register index @seg_reg_idx.
620  *
621  * Returns:
622  *
623  * In protected mode, base address of the segment. Zero in long mode,
624  * except when FS or GS are used. In virtual-8086 mode, the segment
625  * selector shifted 4 bits to the right.
626  *
627  * -1L in case of error.
628  */
629 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
630 {
631 	struct desc_struct *desc;
632 	short sel;
633 
634 	sel = get_segment_selector(regs, seg_reg_idx);
635 	if (sel < 0)
636 		return -1L;
637 
638 	if (v8086_mode(regs))
639 		/*
640 		 * Base is simply the segment selector shifted 4
641 		 * bits to the right.
642 		 */
643 		return (unsigned long)(sel << 4);
644 
645 	if (user_64bit_mode(regs)) {
646 		/*
647 		 * Only FS or GS will have a base address, the rest of
648 		 * the segments' bases are forced to 0.
649 		 */
650 		unsigned long base;
651 
652 		if (seg_reg_idx == INAT_SEG_REG_FS)
653 			rdmsrl(MSR_FS_BASE, base);
654 		else if (seg_reg_idx == INAT_SEG_REG_GS)
655 			/*
656 			 * swapgs was called at the kernel entry point. Thus,
657 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
658 			 */
659 			rdmsrl(MSR_KERNEL_GS_BASE, base);
660 		else
661 			base = 0;
662 		return base;
663 	}
664 
665 	/* In protected mode the segment selector cannot be null. */
666 	if (!sel)
667 		return -1L;
668 
669 	desc = get_desc(sel);
670 	if (!desc)
671 		return -1L;
672 
673 	return get_desc_base(desc);
674 }
675 
676 /**
677  * get_seg_limit() - Obtain the limit of a segment descriptor
678  * @regs:		Register values as seen when entering kernel mode
679  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
680  *
681  * Obtain the limit of the segment as indicated by the segment descriptor
682  * pointed by the segment selector. The segment selector is obtained from the
683  * input segment register index @seg_reg_idx.
684  *
685  * Returns:
686  *
687  * In protected mode, the limit of the segment descriptor in bytes.
688  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
689  * limit is returned as -1L to imply a limit-less segment.
690  *
691  * Zero is returned on error.
692  */
693 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
694 {
695 	struct desc_struct *desc;
696 	unsigned long limit;
697 	short sel;
698 
699 	sel = get_segment_selector(regs, seg_reg_idx);
700 	if (sel < 0)
701 		return 0;
702 
703 	if (user_64bit_mode(regs) || v8086_mode(regs))
704 		return -1L;
705 
706 	if (!sel)
707 		return 0;
708 
709 	desc = get_desc(sel);
710 	if (!desc)
711 		return 0;
712 
713 	/*
714 	 * If the granularity bit is set, the limit is given in multiples
715 	 * of 4096. This also means that the 12 least significant bits are
716 	 * not tested when checking the segment limits. In practice,
717 	 * this means that the segment ends in (limit << 12) + 0xfff.
718 	 */
719 	limit = get_desc_limit(desc);
720 	if (desc->g)
721 		limit = (limit << 12) + 0xfff;
722 
723 	return limit;
724 }
725 
726 /**
727  * insn_get_code_seg_params() - Obtain code segment parameters
728  * @regs:	Structure with register values as seen when entering kernel mode
729  *
730  * Obtain address and operand sizes of the code segment. It is obtained from the
731  * selector contained in the CS register in regs. In protected mode, the default
732  * address is determined by inspecting the L and D bits of the segment
733  * descriptor. In virtual-8086 mode, the default is always two bytes for both
734  * address and operand sizes.
735  *
736  * Returns:
737  *
738  * An int containing ORed-in default parameters on success.
739  *
740  * -EINVAL on error.
741  */
742 int insn_get_code_seg_params(struct pt_regs *regs)
743 {
744 	struct desc_struct *desc;
745 	short sel;
746 
747 	if (v8086_mode(regs))
748 		/* Address and operand size are both 16-bit. */
749 		return INSN_CODE_SEG_PARAMS(2, 2);
750 
751 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
752 	if (sel < 0)
753 		return sel;
754 
755 	desc = get_desc(sel);
756 	if (!desc)
757 		return -EINVAL;
758 
759 	/*
760 	 * The most significant byte of the Type field of the segment descriptor
761 	 * determines whether a segment contains data or code. If this is a data
762 	 * segment, return error.
763 	 */
764 	if (!(desc->type & BIT(3)))
765 		return -EINVAL;
766 
767 	switch ((desc->l << 1) | desc->d) {
768 	case 0: /*
769 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
770 		 * both 16-bit.
771 		 */
772 		return INSN_CODE_SEG_PARAMS(2, 2);
773 	case 1: /*
774 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
775 		 * both 32-bit.
776 		 */
777 		return INSN_CODE_SEG_PARAMS(4, 4);
778 	case 2: /*
779 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
780 		 * operand size is 32-bit.
781 		 */
782 		return INSN_CODE_SEG_PARAMS(4, 8);
783 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
784 		/* fall through */
785 	default:
786 		return -EINVAL;
787 	}
788 }
789 
790 /**
791  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
792  * @insn:	Instruction containing the ModRM byte
793  * @regs:	Register values as seen when entering kernel mode
794  *
795  * Returns:
796  *
797  * The register indicated by the r/m part of the ModRM byte. The
798  * register is obtained as an offset from the base of pt_regs. In specific
799  * cases, the returned value can be -EDOM to indicate that the particular value
800  * of ModRM does not refer to a register and shall be ignored.
801  */
802 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
803 {
804 	return get_reg_offset(insn, regs, REG_TYPE_RM);
805 }
806 
807 /**
808  * get_seg_base_limit() - obtain base address and limit of a segment
809  * @insn:	Instruction. Must be valid.
810  * @regs:	Register values as seen when entering kernel mode
811  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
812  * @base:	Obtained segment base
813  * @limit:	Obtained segment limit
814  *
815  * Obtain the base address and limit of the segment associated with the operand
816  * @regoff and, if any or allowed, override prefixes in @insn. This function is
817  * different from insn_get_seg_base() as the latter does not resolve the segment
818  * associated with the instruction operand. If a limit is not needed (e.g.,
819  * when running in long mode), @limit can be NULL.
820  *
821  * Returns:
822  *
823  * 0 on success. @base and @limit will contain the base address and of the
824  * resolved segment, respectively.
825  *
826  * -EINVAL on error.
827  */
828 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
829 			      int regoff, unsigned long *base,
830 			      unsigned long *limit)
831 {
832 	int seg_reg_idx;
833 
834 	if (!base)
835 		return -EINVAL;
836 
837 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
838 	if (seg_reg_idx < 0)
839 		return seg_reg_idx;
840 
841 	*base = insn_get_seg_base(regs, seg_reg_idx);
842 	if (*base == -1L)
843 		return -EINVAL;
844 
845 	if (!limit)
846 		return 0;
847 
848 	*limit = get_seg_limit(regs, seg_reg_idx);
849 	if (!(*limit))
850 		return -EINVAL;
851 
852 	return 0;
853 }
854 
855 /**
856  * get_eff_addr_reg() - Obtain effective address from register operand
857  * @insn:	Instruction. Must be valid.
858  * @regs:	Register values as seen when entering kernel mode
859  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
860  * @eff_addr:	Obtained effective address
861  *
862  * Obtain the effective address stored in the register operand as indicated by
863  * the ModRM byte. This function is to be used only with register addressing
864  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
865  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
866  * such offset can then be used to resolve the segment associated with the
867  * operand. This function can be used with any of the supported address sizes
868  * in x86.
869  *
870  * Returns:
871  *
872  * 0 on success. @eff_addr will have the effective address stored in the
873  * operand indicated by ModRM. @regoff will have such operand as an offset from
874  * the base of pt_regs.
875  *
876  * -EINVAL on error.
877  */
878 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
879 			    int *regoff, long *eff_addr)
880 {
881 	insn_get_modrm(insn);
882 
883 	if (!insn->modrm.nbytes)
884 		return -EINVAL;
885 
886 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
887 		return -EINVAL;
888 
889 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
890 	if (*regoff < 0)
891 		return -EINVAL;
892 
893 	/* Ignore bytes that are outside the address size. */
894 	if (insn->addr_bytes == 2)
895 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
896 	else if (insn->addr_bytes == 4)
897 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
898 	else /* 64-bit address */
899 		*eff_addr = regs_get_register(regs, *regoff);
900 
901 	return 0;
902 }
903 
904 /**
905  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
906  * @insn:	Instruction. Must be valid.
907  * @regs:	Register values as seen when entering kernel mode
908  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
909  * @eff_addr:	Obtained effective address
910  *
911  * Obtain the effective address referenced by the ModRM byte of @insn. After
912  * identifying the registers involved in the register-indirect memory reference,
913  * its value is obtained from the operands in @regs. The computed address is
914  * stored @eff_addr. Also, the register operand that indicates the associated
915  * segment is stored in @regoff, this parameter can later be used to determine
916  * such segment.
917  *
918  * Returns:
919  *
920  * 0 on success. @eff_addr will have the referenced effective address. @regoff
921  * will have a register, as an offset from the base of pt_regs, that can be used
922  * to resolve the associated segment.
923  *
924  * -EINVAL on error.
925  */
926 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
927 			      int *regoff, long *eff_addr)
928 {
929 	long tmp;
930 
931 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
932 		return -EINVAL;
933 
934 	insn_get_modrm(insn);
935 
936 	if (!insn->modrm.nbytes)
937 		return -EINVAL;
938 
939 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
940 		return -EINVAL;
941 
942 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
943 
944 	/*
945 	 * -EDOM means that we must ignore the address_offset. In such a case,
946 	 * in 64-bit mode the effective address relative to the rIP of the
947 	 * following instruction.
948 	 */
949 	if (*regoff == -EDOM) {
950 		if (user_64bit_mode(regs))
951 			tmp = regs->ip + insn->length;
952 		else
953 			tmp = 0;
954 	} else if (*regoff < 0) {
955 		return -EINVAL;
956 	} else {
957 		tmp = regs_get_register(regs, *regoff);
958 	}
959 
960 	if (insn->addr_bytes == 4) {
961 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
962 
963 		*eff_addr = addr32 & 0xffffffff;
964 	} else {
965 		*eff_addr = tmp + insn->displacement.value;
966 	}
967 
968 	return 0;
969 }
970 
971 /**
972  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
973  * @insn:	Instruction. Must be valid.
974  * @regs:	Register values as seen when entering kernel mode
975  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
976  * @eff_addr:	Obtained effective address
977  *
978  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
979  * After identifying the registers involved in the register-indirect memory
980  * reference, its value is obtained from the operands in @regs. The computed
981  * address is stored @eff_addr. Also, the register operand that indicates
982  * the associated segment is stored in @regoff, this parameter can later be used
983  * to determine such segment.
984  *
985  * Returns:
986  *
987  * 0 on success. @eff_addr will have the referenced effective address. @regoff
988  * will have a register, as an offset from the base of pt_regs, that can be used
989  * to resolve the associated segment.
990  *
991  * -EINVAL on error.
992  */
993 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
994 				 int *regoff, short *eff_addr)
995 {
996 	int addr_offset1, addr_offset2, ret;
997 	short addr1 = 0, addr2 = 0, displacement;
998 
999 	if (insn->addr_bytes != 2)
1000 		return -EINVAL;
1001 
1002 	insn_get_modrm(insn);
1003 
1004 	if (!insn->modrm.nbytes)
1005 		return -EINVAL;
1006 
1007 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1008 		return -EINVAL;
1009 
1010 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1011 	if (ret < 0)
1012 		return -EINVAL;
1013 
1014 	/*
1015 	 * Don't fail on invalid offset values. They might be invalid because
1016 	 * they cannot be used for this particular value of ModRM. Instead, use
1017 	 * them in the computation only if they contain a valid value.
1018 	 */
1019 	if (addr_offset1 != -EDOM)
1020 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1021 
1022 	if (addr_offset2 != -EDOM)
1023 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1024 
1025 	displacement = insn->displacement.value & 0xffff;
1026 	*eff_addr = addr1 + addr2 + displacement;
1027 
1028 	/*
1029 	 * The first operand register could indicate to use of either SS or DS
1030 	 * registers to obtain the segment selector.  The second operand
1031 	 * register can only indicate the use of DS. Thus, the first operand
1032 	 * will be used to obtain the segment selector.
1033 	 */
1034 	*regoff = addr_offset1;
1035 
1036 	return 0;
1037 }
1038 
1039 /**
1040  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1041  * @insn:	Instruction. Must be valid.
1042  * @regs:	Register values as seen when entering kernel mode
1043  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1044  * @eff_addr:	Obtained effective address
1045  *
1046  * Obtain the effective address referenced by the SIB byte of @insn. After
1047  * identifying the registers involved in the indexed, register-indirect memory
1048  * reference, its value is obtained from the operands in @regs. The computed
1049  * address is stored @eff_addr. Also, the register operand that indicates the
1050  * associated segment is stored in @regoff, this parameter can later be used to
1051  * determine such segment.
1052  *
1053  * Returns:
1054  *
1055  * 0 on success. @eff_addr will have the referenced effective address.
1056  * @base_offset will have a register, as an offset from the base of pt_regs,
1057  * that can be used to resolve the associated segment.
1058  *
1059  * -EINVAL on error.
1060  */
1061 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1062 			    int *base_offset, long *eff_addr)
1063 {
1064 	long base, indx;
1065 	int indx_offset;
1066 
1067 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1068 		return -EINVAL;
1069 
1070 	insn_get_modrm(insn);
1071 
1072 	if (!insn->modrm.nbytes)
1073 		return -EINVAL;
1074 
1075 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1076 		return -EINVAL;
1077 
1078 	insn_get_sib(insn);
1079 
1080 	if (!insn->sib.nbytes)
1081 		return -EINVAL;
1082 
1083 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1084 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1085 
1086 	/*
1087 	 * Negative values in the base and index offset means an error when
1088 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1089 	 * should not be used in the address computation.
1090 	 */
1091 	if (*base_offset == -EDOM)
1092 		base = 0;
1093 	else if (*base_offset < 0)
1094 		return -EINVAL;
1095 	else
1096 		base = regs_get_register(regs, *base_offset);
1097 
1098 	if (indx_offset == -EDOM)
1099 		indx = 0;
1100 	else if (indx_offset < 0)
1101 		return -EINVAL;
1102 	else
1103 		indx = regs_get_register(regs, indx_offset);
1104 
1105 	if (insn->addr_bytes == 4) {
1106 		int addr32, base32, idx32;
1107 
1108 		base32 = base & 0xffffffff;
1109 		idx32 = indx & 0xffffffff;
1110 
1111 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1112 		addr32 += insn->displacement.value;
1113 
1114 		*eff_addr = addr32 & 0xffffffff;
1115 	} else {
1116 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1117 		*eff_addr += insn->displacement.value;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1125  * @insn:	Instruction containing ModRM byte and displacement
1126  * @regs:	Register values as seen when entering kernel mode
1127  *
1128  * This function is to be used with 16-bit address encodings. Obtain the memory
1129  * address referred by the instruction's ModRM and displacement bytes. Also, the
1130  * segment used as base is determined by either any segment override prefixes in
1131  * @insn or the default segment of the registers involved in the address
1132  * computation. In protected mode, segment limits are enforced.
1133  *
1134  * Returns:
1135  *
1136  * Linear address referenced by the instruction operands on success.
1137  *
1138  * -1L on error.
1139  */
1140 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1141 {
1142 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1143 	int ret, regoff;
1144 	short eff_addr;
1145 	long tmp;
1146 
1147 	insn_get_modrm(insn);
1148 	insn_get_displacement(insn);
1149 
1150 	if (insn->addr_bytes != 2)
1151 		goto out;
1152 
1153 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1154 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1155 		if (ret)
1156 			goto out;
1157 
1158 		eff_addr = tmp;
1159 	} else {
1160 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1161 		if (ret)
1162 			goto out;
1163 	}
1164 
1165 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1166 	if (ret)
1167 		goto out;
1168 
1169 	/*
1170 	 * Before computing the linear address, make sure the effective address
1171 	 * is within the limits of the segment. In virtual-8086 mode, segment
1172 	 * limits are not enforced. In such a case, the segment limit is -1L to
1173 	 * reflect this fact.
1174 	 */
1175 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1176 		goto out;
1177 
1178 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1179 
1180 	/* Limit linear address to 20 bits */
1181 	if (v8086_mode(regs))
1182 		linear_addr &= 0xfffff;
1183 
1184 out:
1185 	return (void __user *)linear_addr;
1186 }
1187 
1188 /**
1189  * get_addr_ref_32() - Obtain a 32-bit linear address
1190  * @insn:	Instruction with ModRM, SIB bytes and displacement
1191  * @regs:	Register values as seen when entering kernel mode
1192  *
1193  * This function is to be used with 32-bit address encodings to obtain the
1194  * linear memory address referred by the instruction's ModRM, SIB,
1195  * displacement bytes and segment base address, as applicable. If in protected
1196  * mode, segment limits are enforced.
1197  *
1198  * Returns:
1199  *
1200  * Linear address referenced by instruction and registers on success.
1201  *
1202  * -1L on error.
1203  */
1204 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1205 {
1206 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1207 	int eff_addr, regoff;
1208 	long tmp;
1209 	int ret;
1210 
1211 	if (insn->addr_bytes != 4)
1212 		goto out;
1213 
1214 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1215 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1216 		if (ret)
1217 			goto out;
1218 
1219 		eff_addr = tmp;
1220 
1221 	} else {
1222 		if (insn->sib.nbytes) {
1223 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1224 			if (ret)
1225 				goto out;
1226 
1227 			eff_addr = tmp;
1228 		} else {
1229 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1230 			if (ret)
1231 				goto out;
1232 
1233 			eff_addr = tmp;
1234 		}
1235 	}
1236 
1237 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1238 	if (ret)
1239 		goto out;
1240 
1241 	/*
1242 	 * In protected mode, before computing the linear address, make sure
1243 	 * the effective address is within the limits of the segment.
1244 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1245 	 * address override prefix is used. In such cases, segment limits are
1246 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1247 	 * to reflect this situation.
1248 	 *
1249 	 * After computed, the effective address is treated as an unsigned
1250 	 * quantity.
1251 	 */
1252 	if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1253 		goto out;
1254 
1255 	/*
1256 	 * Even though 32-bit address encodings are allowed in virtual-8086
1257 	 * mode, the address range is still limited to [0x-0xffff].
1258 	 */
1259 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1260 		goto out;
1261 
1262 	/*
1263 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1264 	 * effective address is not sign-extended when computing the linear
1265 	 * address.
1266 	 */
1267 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1268 
1269 	/* Limit linear address to 20 bits */
1270 	if (v8086_mode(regs))
1271 		linear_addr &= 0xfffff;
1272 
1273 out:
1274 	return (void __user *)linear_addr;
1275 }
1276 
1277 /**
1278  * get_addr_ref_64() - Obtain a 64-bit linear address
1279  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1280  * @regs:	Structure with register values as seen when entering kernel mode
1281  *
1282  * This function is to be used with 64-bit address encodings to obtain the
1283  * linear memory address referred by the instruction's ModRM, SIB,
1284  * displacement bytes and segment base address, as applicable.
1285  *
1286  * Returns:
1287  *
1288  * Linear address referenced by instruction and registers on success.
1289  *
1290  * -1L on error.
1291  */
1292 #ifndef CONFIG_X86_64
1293 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1294 {
1295 	return (void __user *)-1L;
1296 }
1297 #else
1298 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1299 {
1300 	unsigned long linear_addr = -1L, seg_base;
1301 	int regoff, ret;
1302 	long eff_addr;
1303 
1304 	if (insn->addr_bytes != 8)
1305 		goto out;
1306 
1307 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1308 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1309 		if (ret)
1310 			goto out;
1311 
1312 	} else {
1313 		if (insn->sib.nbytes) {
1314 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1315 			if (ret)
1316 				goto out;
1317 		} else {
1318 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1319 			if (ret)
1320 				goto out;
1321 		}
1322 
1323 	}
1324 
1325 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1326 	if (ret)
1327 		goto out;
1328 
1329 	linear_addr = (unsigned long)eff_addr + seg_base;
1330 
1331 out:
1332 	return (void __user *)linear_addr;
1333 }
1334 #endif /* CONFIG_X86_64 */
1335 
1336 /**
1337  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1338  * @insn:	Instruction structure containing ModRM byte and displacement
1339  * @regs:	Structure with register values as seen when entering kernel mode
1340  *
1341  * Obtain the linear address referred by the instruction's ModRM, SIB and
1342  * displacement bytes, and segment base, as applicable. In protected mode,
1343  * segment limits are enforced.
1344  *
1345  * Returns:
1346  *
1347  * Linear address referenced by instruction and registers on success.
1348  *
1349  * -1L on error.
1350  */
1351 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1352 {
1353 	if (!insn || !regs)
1354 		return (void __user *)-1L;
1355 
1356 	switch (insn->addr_bytes) {
1357 	case 2:
1358 		return get_addr_ref_16(insn, regs);
1359 	case 4:
1360 		return get_addr_ref_32(insn, regs);
1361 	case 8:
1362 		return get_addr_ref_64(insn, regs);
1363 	default:
1364 		return (void __user *)-1L;
1365 	}
1366 }
1367