xref: /openbmc/linux/arch/x86/lib/insn-eval.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17 
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20 
21 enum reg_type {
22 	REG_TYPE_RM = 0,
23 	REG_TYPE_INDEX,
24 	REG_TYPE_BASE,
25 };
26 
27 /**
28  * is_string_insn() - Determine if instruction is a string instruction
29  * @insn:	Instruction containing the opcode to inspect
30  *
31  * Returns:
32  *
33  * true if the instruction, determined by the opcode, is any of the
34  * string instructions as defined in the Intel Software Development manual.
35  * False otherwise.
36  */
37 static bool is_string_insn(struct insn *insn)
38 {
39 	insn_get_opcode(insn);
40 
41 	/* All string instructions have a 1-byte opcode. */
42 	if (insn->opcode.nbytes != 1)
43 		return false;
44 
45 	switch (insn->opcode.bytes[0]) {
46 	case 0x6c ... 0x6f:	/* INS, OUTS */
47 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
48 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
49 		return true;
50 	default:
51 		return false;
52 	}
53 }
54 
55 /**
56  * get_seg_reg_override_idx() - obtain segment register override index
57  * @insn:	Valid instruction with segment override prefixes
58  *
59  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60  *
61  * Returns:
62  *
63  * A constant identifying the segment register to use, among CS, SS, DS,
64  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65  * prefixes were found.
66  *
67  * -EINVAL in case of error.
68  */
69 static int get_seg_reg_override_idx(struct insn *insn)
70 {
71 	int idx = INAT_SEG_REG_DEFAULT;
72 	int num_overrides = 0, i;
73 
74 	insn_get_prefixes(insn);
75 
76 	/* Look for any segment override prefixes. */
77 	for (i = 0; i < insn->prefixes.nbytes; i++) {
78 		insn_attr_t attr;
79 
80 		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 		switch (attr) {
82 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 			idx = INAT_SEG_REG_CS;
84 			num_overrides++;
85 			break;
86 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 			idx = INAT_SEG_REG_SS;
88 			num_overrides++;
89 			break;
90 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 			idx = INAT_SEG_REG_DS;
92 			num_overrides++;
93 			break;
94 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 			idx = INAT_SEG_REG_ES;
96 			num_overrides++;
97 			break;
98 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 			idx = INAT_SEG_REG_FS;
100 			num_overrides++;
101 			break;
102 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 			idx = INAT_SEG_REG_GS;
104 			num_overrides++;
105 			break;
106 		/* No default action needed. */
107 		}
108 	}
109 
110 	/* More than one segment override prefix leads to undefined behavior. */
111 	if (num_overrides > 1)
112 		return -EINVAL;
113 
114 	return idx;
115 }
116 
117 /**
118  * check_seg_overrides() - check if segment override prefixes are allowed
119  * @insn:	Valid instruction with segment override prefixes
120  * @regoff:	Operand offset, in pt_regs, for which the check is performed
121  *
122  * For a particular register used in register-indirect addressing, determine if
123  * segment override prefixes can be used. Specifically, no overrides are allowed
124  * for rDI if used with a string instruction.
125  *
126  * Returns:
127  *
128  * True if segment override prefixes can be used with the register indicated
129  * in @regoff. False if otherwise.
130  */
131 static bool check_seg_overrides(struct insn *insn, int regoff)
132 {
133 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 		return false;
135 
136 	return true;
137 }
138 
139 /**
140  * resolve_default_seg() - resolve default segment register index for an operand
141  * @insn:	Instruction with opcode and address size. Must be valid.
142  * @regs:	Register values as seen when entering kernel mode
143  * @off:	Operand offset, in pt_regs, for which resolution is needed
144  *
145  * Resolve the default segment register index associated with the instruction
146  * operand register indicated by @off. Such index is resolved based on defaults
147  * described in the Intel Software Development Manual.
148  *
149  * Returns:
150  *
151  * If in protected mode, a constant identifying the segment register to use,
152  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153  *
154  * -EINVAL in case of error.
155  */
156 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157 {
158 	if (user_64bit_mode(regs))
159 		return INAT_SEG_REG_IGNORE;
160 	/*
161 	 * Resolve the default segment register as described in Section 3.7.4
162 	 * of the Intel Software Development Manual Vol. 1:
163 	 *
164 	 *  + DS for all references involving r[ABCD]X, and rSI.
165 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
166 	 *  + AX, CX and DX are not valid register operands in 16-bit address
167 	 *    encodings but are valid for 32-bit and 64-bit encodings.
168 	 *  + -EDOM is reserved to identify for cases in which no register
169 	 *    is used (i.e., displacement-only addressing). Use DS.
170 	 *  + SS for rSP or rBP.
171 	 *  + CS for rIP.
172 	 */
173 
174 	switch (off) {
175 	case offsetof(struct pt_regs, ax):
176 	case offsetof(struct pt_regs, cx):
177 	case offsetof(struct pt_regs, dx):
178 		/* Need insn to verify address size. */
179 		if (insn->addr_bytes == 2)
180 			return -EINVAL;
181 
182 	case -EDOM:
183 	case offsetof(struct pt_regs, bx):
184 	case offsetof(struct pt_regs, si):
185 		return INAT_SEG_REG_DS;
186 
187 	case offsetof(struct pt_regs, di):
188 		if (is_string_insn(insn))
189 			return INAT_SEG_REG_ES;
190 		return INAT_SEG_REG_DS;
191 
192 	case offsetof(struct pt_regs, bp):
193 	case offsetof(struct pt_regs, sp):
194 		return INAT_SEG_REG_SS;
195 
196 	case offsetof(struct pt_regs, ip):
197 		return INAT_SEG_REG_CS;
198 
199 	default:
200 		return -EINVAL;
201 	}
202 }
203 
204 /**
205  * resolve_seg_reg() - obtain segment register index
206  * @insn:	Instruction with operands
207  * @regs:	Register values as seen when entering kernel mode
208  * @regoff:	Operand offset, in pt_regs, used to deterimine segment register
209  *
210  * Determine the segment register associated with the operands and, if
211  * applicable, prefixes and the instruction pointed by @insn.
212  *
213  * The segment register associated to an operand used in register-indirect
214  * addressing depends on:
215  *
216  * a) Whether running in long mode (in such a case segments are ignored, except
217  * if FS or GS are used).
218  *
219  * b) Whether segment override prefixes can be used. Certain instructions and
220  *    registers do not allow override prefixes.
221  *
222  * c) Whether segment overrides prefixes are found in the instruction prefixes.
223  *
224  * d) If there are not segment override prefixes or they cannot be used, the
225  *    default segment register associated with the operand register is used.
226  *
227  * The function checks first if segment override prefixes can be used with the
228  * operand indicated by @regoff. If allowed, obtain such overridden segment
229  * register index. Lastly, if not prefixes were found or cannot be used, resolve
230  * the segment register index to use based on the defaults described in the
231  * Intel documentation. In long mode, all segment register indexes will be
232  * ignored, except if overrides were found for FS or GS. All these operations
233  * are done using helper functions.
234  *
235  * The operand register, @regoff, is represented as the offset from the base of
236  * pt_regs.
237  *
238  * As stated, the main use of this function is to determine the segment register
239  * index based on the instruction, its operands and prefixes. Hence, @insn
240  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
241  * @insn at all as in this case CS is used in all cases. This case is checked
242  * before proceeding further.
243  *
244  * Please note that this function does not return the value in the segment
245  * register (i.e., the segment selector) but our defined index. The segment
246  * selector needs to be obtained using get_segment_selector() and passing the
247  * segment register index resolved by this function.
248  *
249  * Returns:
250  *
251  * An index identifying the segment register to use, among CS, SS, DS,
252  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
253  *
254  * -EINVAL in case of error.
255  */
256 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
257 {
258 	int idx;
259 
260 	/*
261 	 * In the unlikely event of having to resolve the segment register
262 	 * index for rIP, do it first. Segment override prefixes should not
263 	 * be used. Hence, it is not necessary to inspect the instruction,
264 	 * which may be invalid at this point.
265 	 */
266 	if (regoff == offsetof(struct pt_regs, ip)) {
267 		if (user_64bit_mode(regs))
268 			return INAT_SEG_REG_IGNORE;
269 		else
270 			return INAT_SEG_REG_CS;
271 	}
272 
273 	if (!insn)
274 		return -EINVAL;
275 
276 	if (!check_seg_overrides(insn, regoff))
277 		return resolve_default_seg(insn, regs, regoff);
278 
279 	idx = get_seg_reg_override_idx(insn);
280 	if (idx < 0)
281 		return idx;
282 
283 	if (idx == INAT_SEG_REG_DEFAULT)
284 		return resolve_default_seg(insn, regs, regoff);
285 
286 	/*
287 	 * In long mode, segment override prefixes are ignored, except for
288 	 * overrides for FS and GS.
289 	 */
290 	if (user_64bit_mode(regs)) {
291 		if (idx != INAT_SEG_REG_FS &&
292 		    idx != INAT_SEG_REG_GS)
293 			idx = INAT_SEG_REG_IGNORE;
294 	}
295 
296 	return idx;
297 }
298 
299 /**
300  * get_segment_selector() - obtain segment selector
301  * @regs:		Register values as seen when entering kernel mode
302  * @seg_reg_idx:	Segment register index to use
303  *
304  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
305  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
306  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
307  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
308  * registers. This done for only for completeness as in CONFIG_X86_64 segment
309  * registers are ignored.
310  *
311  * Returns:
312  *
313  * Value of the segment selector, including null when running in
314  * long mode.
315  *
316  * -EINVAL on error.
317  */
318 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
319 {
320 #ifdef CONFIG_X86_64
321 	unsigned short sel;
322 
323 	switch (seg_reg_idx) {
324 	case INAT_SEG_REG_IGNORE:
325 		return 0;
326 	case INAT_SEG_REG_CS:
327 		return (unsigned short)(regs->cs & 0xffff);
328 	case INAT_SEG_REG_SS:
329 		return (unsigned short)(regs->ss & 0xffff);
330 	case INAT_SEG_REG_DS:
331 		savesegment(ds, sel);
332 		return sel;
333 	case INAT_SEG_REG_ES:
334 		savesegment(es, sel);
335 		return sel;
336 	case INAT_SEG_REG_FS:
337 		savesegment(fs, sel);
338 		return sel;
339 	case INAT_SEG_REG_GS:
340 		savesegment(gs, sel);
341 		return sel;
342 	default:
343 		return -EINVAL;
344 	}
345 #else /* CONFIG_X86_32 */
346 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
347 
348 	if (v8086_mode(regs)) {
349 		switch (seg_reg_idx) {
350 		case INAT_SEG_REG_CS:
351 			return (unsigned short)(regs->cs & 0xffff);
352 		case INAT_SEG_REG_SS:
353 			return (unsigned short)(regs->ss & 0xffff);
354 		case INAT_SEG_REG_DS:
355 			return vm86regs->ds;
356 		case INAT_SEG_REG_ES:
357 			return vm86regs->es;
358 		case INAT_SEG_REG_FS:
359 			return vm86regs->fs;
360 		case INAT_SEG_REG_GS:
361 			return vm86regs->gs;
362 		case INAT_SEG_REG_IGNORE:
363 			/* fall through */
364 		default:
365 			return -EINVAL;
366 		}
367 	}
368 
369 	switch (seg_reg_idx) {
370 	case INAT_SEG_REG_CS:
371 		return (unsigned short)(regs->cs & 0xffff);
372 	case INAT_SEG_REG_SS:
373 		return (unsigned short)(regs->ss & 0xffff);
374 	case INAT_SEG_REG_DS:
375 		return (unsigned short)(regs->ds & 0xffff);
376 	case INAT_SEG_REG_ES:
377 		return (unsigned short)(regs->es & 0xffff);
378 	case INAT_SEG_REG_FS:
379 		return (unsigned short)(regs->fs & 0xffff);
380 	case INAT_SEG_REG_GS:
381 		/*
382 		 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
383 		 * The macro below takes care of both cases.
384 		 */
385 		return get_user_gs(regs);
386 	case INAT_SEG_REG_IGNORE:
387 		/* fall through */
388 	default:
389 		return -EINVAL;
390 	}
391 #endif /* CONFIG_X86_64 */
392 }
393 
394 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
395 			  enum reg_type type)
396 {
397 	int regno = 0;
398 
399 	static const int regoff[] = {
400 		offsetof(struct pt_regs, ax),
401 		offsetof(struct pt_regs, cx),
402 		offsetof(struct pt_regs, dx),
403 		offsetof(struct pt_regs, bx),
404 		offsetof(struct pt_regs, sp),
405 		offsetof(struct pt_regs, bp),
406 		offsetof(struct pt_regs, si),
407 		offsetof(struct pt_regs, di),
408 #ifdef CONFIG_X86_64
409 		offsetof(struct pt_regs, r8),
410 		offsetof(struct pt_regs, r9),
411 		offsetof(struct pt_regs, r10),
412 		offsetof(struct pt_regs, r11),
413 		offsetof(struct pt_regs, r12),
414 		offsetof(struct pt_regs, r13),
415 		offsetof(struct pt_regs, r14),
416 		offsetof(struct pt_regs, r15),
417 #endif
418 	};
419 	int nr_registers = ARRAY_SIZE(regoff);
420 	/*
421 	 * Don't possibly decode a 32-bit instructions as
422 	 * reading a 64-bit-only register.
423 	 */
424 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
425 		nr_registers -= 8;
426 
427 	switch (type) {
428 	case REG_TYPE_RM:
429 		regno = X86_MODRM_RM(insn->modrm.value);
430 
431 		/*
432 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
433 		 * follows the ModRM byte.
434 		 */
435 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
436 			return -EDOM;
437 
438 		if (X86_REX_B(insn->rex_prefix.value))
439 			regno += 8;
440 		break;
441 
442 	case REG_TYPE_INDEX:
443 		regno = X86_SIB_INDEX(insn->sib.value);
444 		if (X86_REX_X(insn->rex_prefix.value))
445 			regno += 8;
446 
447 		/*
448 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
449 		 * portion of the address computation is null. This is
450 		 * true only if REX.X is 0. In such a case, the SIB index
451 		 * is used in the address computation.
452 		 */
453 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
454 			return -EDOM;
455 		break;
456 
457 	case REG_TYPE_BASE:
458 		regno = X86_SIB_BASE(insn->sib.value);
459 		/*
460 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
461 		 * register-indirect addressing is 0. In this case, a
462 		 * 32-bit displacement follows the SIB byte.
463 		 */
464 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
465 			return -EDOM;
466 
467 		if (X86_REX_B(insn->rex_prefix.value))
468 			regno += 8;
469 		break;
470 
471 	default:
472 		pr_err_ratelimited("invalid register type: %d\n", type);
473 		return -EINVAL;
474 	}
475 
476 	if (regno >= nr_registers) {
477 		WARN_ONCE(1, "decoded an instruction with an invalid register");
478 		return -EINVAL;
479 	}
480 	return regoff[regno];
481 }
482 
483 /**
484  * get_reg_offset_16() - Obtain offset of register indicated by instruction
485  * @insn:	Instruction containing ModRM byte
486  * @regs:	Register values as seen when entering kernel mode
487  * @offs1:	Offset of the first operand register
488  * @offs2:	Offset of the second opeand register, if applicable
489  *
490  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
491  * in @insn. This function is to be used with 16-bit address encodings. The
492  * @offs1 and @offs2 will be written with the offset of the two registers
493  * indicated by the instruction. In cases where any of the registers is not
494  * referenced by the instruction, the value will be set to -EDOM.
495  *
496  * Returns:
497  *
498  * 0 on success, -EINVAL on error.
499  */
500 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
501 			     int *offs1, int *offs2)
502 {
503 	/*
504 	 * 16-bit addressing can use one or two registers. Specifics of
505 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
506 	 * ModR/M Byte" of the Intel Software Development Manual.
507 	 */
508 	static const int regoff1[] = {
509 		offsetof(struct pt_regs, bx),
510 		offsetof(struct pt_regs, bx),
511 		offsetof(struct pt_regs, bp),
512 		offsetof(struct pt_regs, bp),
513 		offsetof(struct pt_regs, si),
514 		offsetof(struct pt_regs, di),
515 		offsetof(struct pt_regs, bp),
516 		offsetof(struct pt_regs, bx),
517 	};
518 
519 	static const int regoff2[] = {
520 		offsetof(struct pt_regs, si),
521 		offsetof(struct pt_regs, di),
522 		offsetof(struct pt_regs, si),
523 		offsetof(struct pt_regs, di),
524 		-EDOM,
525 		-EDOM,
526 		-EDOM,
527 		-EDOM,
528 	};
529 
530 	if (!offs1 || !offs2)
531 		return -EINVAL;
532 
533 	/* Operand is a register, use the generic function. */
534 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
535 		*offs1 = insn_get_modrm_rm_off(insn, regs);
536 		*offs2 = -EDOM;
537 		return 0;
538 	}
539 
540 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
541 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
542 
543 	/*
544 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
545 	 * only addressing. This means that no registers are involved in
546 	 * computing the effective address. Thus, ensure that the first
547 	 * register offset is invalild. The second register offset is already
548 	 * invalid under the aforementioned conditions.
549 	 */
550 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
551 	    (X86_MODRM_RM(insn->modrm.value) == 6))
552 		*offs1 = -EDOM;
553 
554 	return 0;
555 }
556 
557 /**
558  * get_desc() - Obtain pointer to a segment descriptor
559  * @sel:	Segment selector
560  *
561  * Given a segment selector, obtain a pointer to the segment descriptor.
562  * Both global and local descriptor tables are supported.
563  *
564  * Returns:
565  *
566  * Pointer to segment descriptor on success.
567  *
568  * NULL on error.
569  */
570 static struct desc_struct *get_desc(unsigned short sel)
571 {
572 	struct desc_ptr gdt_desc = {0, 0};
573 	unsigned long desc_base;
574 
575 #ifdef CONFIG_MODIFY_LDT_SYSCALL
576 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
577 		struct desc_struct *desc = NULL;
578 		struct ldt_struct *ldt;
579 
580 		/* Bits [15:3] contain the index of the desired entry. */
581 		sel >>= 3;
582 
583 		mutex_lock(&current->active_mm->context.lock);
584 		ldt = current->active_mm->context.ldt;
585 		if (ldt && sel < ldt->nr_entries)
586 			desc = &ldt->entries[sel];
587 
588 		mutex_unlock(&current->active_mm->context.lock);
589 
590 		return desc;
591 	}
592 #endif
593 	native_store_gdt(&gdt_desc);
594 
595 	/*
596 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
597 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
598 	 * from the base of the GDT. As bits [15:3] of the segment selector
599 	 * contain the index, it can be regarded as multiplied by 8 already.
600 	 * All that remains is to clear bits [2:0].
601 	 */
602 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
603 
604 	if (desc_base > gdt_desc.size)
605 		return NULL;
606 
607 	return (struct desc_struct *)(gdt_desc.address + desc_base);
608 }
609 
610 /**
611  * insn_get_seg_base() - Obtain base address of segment descriptor.
612  * @regs:		Register values as seen when entering kernel mode
613  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
614  *
615  * Obtain the base address of the segment as indicated by the segment descriptor
616  * pointed by the segment selector. The segment selector is obtained from the
617  * input segment register index @seg_reg_idx.
618  *
619  * Returns:
620  *
621  * In protected mode, base address of the segment. Zero in long mode,
622  * except when FS or GS are used. In virtual-8086 mode, the segment
623  * selector shifted 4 bits to the right.
624  *
625  * -1L in case of error.
626  */
627 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
628 {
629 	struct desc_struct *desc;
630 	short sel;
631 
632 	sel = get_segment_selector(regs, seg_reg_idx);
633 	if (sel < 0)
634 		return -1L;
635 
636 	if (v8086_mode(regs))
637 		/*
638 		 * Base is simply the segment selector shifted 4
639 		 * bits to the right.
640 		 */
641 		return (unsigned long)(sel << 4);
642 
643 	if (user_64bit_mode(regs)) {
644 		/*
645 		 * Only FS or GS will have a base address, the rest of
646 		 * the segments' bases are forced to 0.
647 		 */
648 		unsigned long base;
649 
650 		if (seg_reg_idx == INAT_SEG_REG_FS)
651 			rdmsrl(MSR_FS_BASE, base);
652 		else if (seg_reg_idx == INAT_SEG_REG_GS)
653 			/*
654 			 * swapgs was called at the kernel entry point. Thus,
655 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
656 			 */
657 			rdmsrl(MSR_KERNEL_GS_BASE, base);
658 		else
659 			base = 0;
660 		return base;
661 	}
662 
663 	/* In protected mode the segment selector cannot be null. */
664 	if (!sel)
665 		return -1L;
666 
667 	desc = get_desc(sel);
668 	if (!desc)
669 		return -1L;
670 
671 	return get_desc_base(desc);
672 }
673 
674 /**
675  * get_seg_limit() - Obtain the limit of a segment descriptor
676  * @regs:		Register values as seen when entering kernel mode
677  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
678  *
679  * Obtain the limit of the segment as indicated by the segment descriptor
680  * pointed by the segment selector. The segment selector is obtained from the
681  * input segment register index @seg_reg_idx.
682  *
683  * Returns:
684  *
685  * In protected mode, the limit of the segment descriptor in bytes.
686  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
687  * limit is returned as -1L to imply a limit-less segment.
688  *
689  * Zero is returned on error.
690  */
691 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
692 {
693 	struct desc_struct *desc;
694 	unsigned long limit;
695 	short sel;
696 
697 	sel = get_segment_selector(regs, seg_reg_idx);
698 	if (sel < 0)
699 		return 0;
700 
701 	if (user_64bit_mode(regs) || v8086_mode(regs))
702 		return -1L;
703 
704 	if (!sel)
705 		return 0;
706 
707 	desc = get_desc(sel);
708 	if (!desc)
709 		return 0;
710 
711 	/*
712 	 * If the granularity bit is set, the limit is given in multiples
713 	 * of 4096. This also means that the 12 least significant bits are
714 	 * not tested when checking the segment limits. In practice,
715 	 * this means that the segment ends in (limit << 12) + 0xfff.
716 	 */
717 	limit = get_desc_limit(desc);
718 	if (desc->g)
719 		limit = (limit << 12) + 0xfff;
720 
721 	return limit;
722 }
723 
724 /**
725  * insn_get_code_seg_params() - Obtain code segment parameters
726  * @regs:	Structure with register values as seen when entering kernel mode
727  *
728  * Obtain address and operand sizes of the code segment. It is obtained from the
729  * selector contained in the CS register in regs. In protected mode, the default
730  * address is determined by inspecting the L and D bits of the segment
731  * descriptor. In virtual-8086 mode, the default is always two bytes for both
732  * address and operand sizes.
733  *
734  * Returns:
735  *
736  * An int containing ORed-in default parameters on success.
737  *
738  * -EINVAL on error.
739  */
740 int insn_get_code_seg_params(struct pt_regs *regs)
741 {
742 	struct desc_struct *desc;
743 	short sel;
744 
745 	if (v8086_mode(regs))
746 		/* Address and operand size are both 16-bit. */
747 		return INSN_CODE_SEG_PARAMS(2, 2);
748 
749 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
750 	if (sel < 0)
751 		return sel;
752 
753 	desc = get_desc(sel);
754 	if (!desc)
755 		return -EINVAL;
756 
757 	/*
758 	 * The most significant byte of the Type field of the segment descriptor
759 	 * determines whether a segment contains data or code. If this is a data
760 	 * segment, return error.
761 	 */
762 	if (!(desc->type & BIT(3)))
763 		return -EINVAL;
764 
765 	switch ((desc->l << 1) | desc->d) {
766 	case 0: /*
767 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
768 		 * both 16-bit.
769 		 */
770 		return INSN_CODE_SEG_PARAMS(2, 2);
771 	case 1: /*
772 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
773 		 * both 32-bit.
774 		 */
775 		return INSN_CODE_SEG_PARAMS(4, 4);
776 	case 2: /*
777 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
778 		 * operand size is 32-bit.
779 		 */
780 		return INSN_CODE_SEG_PARAMS(4, 8);
781 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
782 		/* fall through */
783 	default:
784 		return -EINVAL;
785 	}
786 }
787 
788 /**
789  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
790  * @insn:	Instruction containing the ModRM byte
791  * @regs:	Register values as seen when entering kernel mode
792  *
793  * Returns:
794  *
795  * The register indicated by the r/m part of the ModRM byte. The
796  * register is obtained as an offset from the base of pt_regs. In specific
797  * cases, the returned value can be -EDOM to indicate that the particular value
798  * of ModRM does not refer to a register and shall be ignored.
799  */
800 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
801 {
802 	return get_reg_offset(insn, regs, REG_TYPE_RM);
803 }
804 
805 /**
806  * get_seg_base_limit() - obtain base address and limit of a segment
807  * @insn:	Instruction. Must be valid.
808  * @regs:	Register values as seen when entering kernel mode
809  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
810  * @base:	Obtained segment base
811  * @limit:	Obtained segment limit
812  *
813  * Obtain the base address and limit of the segment associated with the operand
814  * @regoff and, if any or allowed, override prefixes in @insn. This function is
815  * different from insn_get_seg_base() as the latter does not resolve the segment
816  * associated with the instruction operand. If a limit is not needed (e.g.,
817  * when running in long mode), @limit can be NULL.
818  *
819  * Returns:
820  *
821  * 0 on success. @base and @limit will contain the base address and of the
822  * resolved segment, respectively.
823  *
824  * -EINVAL on error.
825  */
826 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
827 			      int regoff, unsigned long *base,
828 			      unsigned long *limit)
829 {
830 	int seg_reg_idx;
831 
832 	if (!base)
833 		return -EINVAL;
834 
835 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
836 	if (seg_reg_idx < 0)
837 		return seg_reg_idx;
838 
839 	*base = insn_get_seg_base(regs, seg_reg_idx);
840 	if (*base == -1L)
841 		return -EINVAL;
842 
843 	if (!limit)
844 		return 0;
845 
846 	*limit = get_seg_limit(regs, seg_reg_idx);
847 	if (!(*limit))
848 		return -EINVAL;
849 
850 	return 0;
851 }
852 
853 /**
854  * get_eff_addr_reg() - Obtain effective address from register operand
855  * @insn:	Instruction. Must be valid.
856  * @regs:	Register values as seen when entering kernel mode
857  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
858  * @eff_addr:	Obtained effective address
859  *
860  * Obtain the effective address stored in the register operand as indicated by
861  * the ModRM byte. This function is to be used only with register addressing
862  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
863  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
864  * such offset can then be used to resolve the segment associated with the
865  * operand. This function can be used with any of the supported address sizes
866  * in x86.
867  *
868  * Returns:
869  *
870  * 0 on success. @eff_addr will have the effective address stored in the
871  * operand indicated by ModRM. @regoff will have such operand as an offset from
872  * the base of pt_regs.
873  *
874  * -EINVAL on error.
875  */
876 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
877 			    int *regoff, long *eff_addr)
878 {
879 	insn_get_modrm(insn);
880 
881 	if (!insn->modrm.nbytes)
882 		return -EINVAL;
883 
884 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
885 		return -EINVAL;
886 
887 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
888 	if (*regoff < 0)
889 		return -EINVAL;
890 
891 	/* Ignore bytes that are outside the address size. */
892 	if (insn->addr_bytes == 2)
893 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
894 	else if (insn->addr_bytes == 4)
895 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
896 	else /* 64-bit address */
897 		*eff_addr = regs_get_register(regs, *regoff);
898 
899 	return 0;
900 }
901 
902 /**
903  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
904  * @insn:	Instruction. Must be valid.
905  * @regs:	Register values as seen when entering kernel mode
906  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
907  * @eff_addr:	Obtained effective address
908  *
909  * Obtain the effective address referenced by the ModRM byte of @insn. After
910  * identifying the registers involved in the register-indirect memory reference,
911  * its value is obtained from the operands in @regs. The computed address is
912  * stored @eff_addr. Also, the register operand that indicates the associated
913  * segment is stored in @regoff, this parameter can later be used to determine
914  * such segment.
915  *
916  * Returns:
917  *
918  * 0 on success. @eff_addr will have the referenced effective address. @regoff
919  * will have a register, as an offset from the base of pt_regs, that can be used
920  * to resolve the associated segment.
921  *
922  * -EINVAL on error.
923  */
924 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
925 			      int *regoff, long *eff_addr)
926 {
927 	long tmp;
928 
929 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
930 		return -EINVAL;
931 
932 	insn_get_modrm(insn);
933 
934 	if (!insn->modrm.nbytes)
935 		return -EINVAL;
936 
937 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
938 		return -EINVAL;
939 
940 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
941 
942 	/*
943 	 * -EDOM means that we must ignore the address_offset. In such a case,
944 	 * in 64-bit mode the effective address relative to the rIP of the
945 	 * following instruction.
946 	 */
947 	if (*regoff == -EDOM) {
948 		if (user_64bit_mode(regs))
949 			tmp = regs->ip + insn->length;
950 		else
951 			tmp = 0;
952 	} else if (*regoff < 0) {
953 		return -EINVAL;
954 	} else {
955 		tmp = regs_get_register(regs, *regoff);
956 	}
957 
958 	if (insn->addr_bytes == 4) {
959 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
960 
961 		*eff_addr = addr32 & 0xffffffff;
962 	} else {
963 		*eff_addr = tmp + insn->displacement.value;
964 	}
965 
966 	return 0;
967 }
968 
969 /**
970  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
971  * @insn:	Instruction. Must be valid.
972  * @regs:	Register values as seen when entering kernel mode
973  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
974  * @eff_addr:	Obtained effective address
975  *
976  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
977  * After identifying the registers involved in the register-indirect memory
978  * reference, its value is obtained from the operands in @regs. The computed
979  * address is stored @eff_addr. Also, the register operand that indicates
980  * the associated segment is stored in @regoff, this parameter can later be used
981  * to determine such segment.
982  *
983  * Returns:
984  *
985  * 0 on success. @eff_addr will have the referenced effective address. @regoff
986  * will have a register, as an offset from the base of pt_regs, that can be used
987  * to resolve the associated segment.
988  *
989  * -EINVAL on error.
990  */
991 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
992 				 int *regoff, short *eff_addr)
993 {
994 	int addr_offset1, addr_offset2, ret;
995 	short addr1 = 0, addr2 = 0, displacement;
996 
997 	if (insn->addr_bytes != 2)
998 		return -EINVAL;
999 
1000 	insn_get_modrm(insn);
1001 
1002 	if (!insn->modrm.nbytes)
1003 		return -EINVAL;
1004 
1005 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1006 		return -EINVAL;
1007 
1008 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1009 	if (ret < 0)
1010 		return -EINVAL;
1011 
1012 	/*
1013 	 * Don't fail on invalid offset values. They might be invalid because
1014 	 * they cannot be used for this particular value of ModRM. Instead, use
1015 	 * them in the computation only if they contain a valid value.
1016 	 */
1017 	if (addr_offset1 != -EDOM)
1018 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1019 
1020 	if (addr_offset2 != -EDOM)
1021 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1022 
1023 	displacement = insn->displacement.value & 0xffff;
1024 	*eff_addr = addr1 + addr2 + displacement;
1025 
1026 	/*
1027 	 * The first operand register could indicate to use of either SS or DS
1028 	 * registers to obtain the segment selector.  The second operand
1029 	 * register can only indicate the use of DS. Thus, the first operand
1030 	 * will be used to obtain the segment selector.
1031 	 */
1032 	*regoff = addr_offset1;
1033 
1034 	return 0;
1035 }
1036 
1037 /**
1038  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1039  * @insn:	Instruction. Must be valid.
1040  * @regs:	Register values as seen when entering kernel mode
1041  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1042  * @eff_addr:	Obtained effective address
1043  *
1044  * Obtain the effective address referenced by the SIB byte of @insn. After
1045  * identifying the registers involved in the indexed, register-indirect memory
1046  * reference, its value is obtained from the operands in @regs. The computed
1047  * address is stored @eff_addr. Also, the register operand that indicates the
1048  * associated segment is stored in @regoff, this parameter can later be used to
1049  * determine such segment.
1050  *
1051  * Returns:
1052  *
1053  * 0 on success. @eff_addr will have the referenced effective address.
1054  * @base_offset will have a register, as an offset from the base of pt_regs,
1055  * that can be used to resolve the associated segment.
1056  *
1057  * -EINVAL on error.
1058  */
1059 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1060 			    int *base_offset, long *eff_addr)
1061 {
1062 	long base, indx;
1063 	int indx_offset;
1064 
1065 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1066 		return -EINVAL;
1067 
1068 	insn_get_modrm(insn);
1069 
1070 	if (!insn->modrm.nbytes)
1071 		return -EINVAL;
1072 
1073 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1074 		return -EINVAL;
1075 
1076 	insn_get_sib(insn);
1077 
1078 	if (!insn->sib.nbytes)
1079 		return -EINVAL;
1080 
1081 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1082 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1083 
1084 	/*
1085 	 * Negative values in the base and index offset means an error when
1086 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1087 	 * should not be used in the address computation.
1088 	 */
1089 	if (*base_offset == -EDOM)
1090 		base = 0;
1091 	else if (*base_offset < 0)
1092 		return -EINVAL;
1093 	else
1094 		base = regs_get_register(regs, *base_offset);
1095 
1096 	if (indx_offset == -EDOM)
1097 		indx = 0;
1098 	else if (indx_offset < 0)
1099 		return -EINVAL;
1100 	else
1101 		indx = regs_get_register(regs, indx_offset);
1102 
1103 	if (insn->addr_bytes == 4) {
1104 		int addr32, base32, idx32;
1105 
1106 		base32 = base & 0xffffffff;
1107 		idx32 = indx & 0xffffffff;
1108 
1109 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1110 		addr32 += insn->displacement.value;
1111 
1112 		*eff_addr = addr32 & 0xffffffff;
1113 	} else {
1114 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1115 		*eff_addr += insn->displacement.value;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 /**
1122  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1123  * @insn:	Instruction containing ModRM byte and displacement
1124  * @regs:	Register values as seen when entering kernel mode
1125  *
1126  * This function is to be used with 16-bit address encodings. Obtain the memory
1127  * address referred by the instruction's ModRM and displacement bytes. Also, the
1128  * segment used as base is determined by either any segment override prefixes in
1129  * @insn or the default segment of the registers involved in the address
1130  * computation. In protected mode, segment limits are enforced.
1131  *
1132  * Returns:
1133  *
1134  * Linear address referenced by the instruction operands on success.
1135  *
1136  * -1L on error.
1137  */
1138 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1139 {
1140 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1141 	int ret, regoff;
1142 	short eff_addr;
1143 	long tmp;
1144 
1145 	insn_get_modrm(insn);
1146 	insn_get_displacement(insn);
1147 
1148 	if (insn->addr_bytes != 2)
1149 		goto out;
1150 
1151 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1152 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1153 		if (ret)
1154 			goto out;
1155 
1156 		eff_addr = tmp;
1157 	} else {
1158 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1159 		if (ret)
1160 			goto out;
1161 	}
1162 
1163 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1164 	if (ret)
1165 		goto out;
1166 
1167 	/*
1168 	 * Before computing the linear address, make sure the effective address
1169 	 * is within the limits of the segment. In virtual-8086 mode, segment
1170 	 * limits are not enforced. In such a case, the segment limit is -1L to
1171 	 * reflect this fact.
1172 	 */
1173 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1174 		goto out;
1175 
1176 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1177 
1178 	/* Limit linear address to 20 bits */
1179 	if (v8086_mode(regs))
1180 		linear_addr &= 0xfffff;
1181 
1182 out:
1183 	return (void __user *)linear_addr;
1184 }
1185 
1186 /**
1187  * get_addr_ref_32() - Obtain a 32-bit linear address
1188  * @insn:	Instruction with ModRM, SIB bytes and displacement
1189  * @regs:	Register values as seen when entering kernel mode
1190  *
1191  * This function is to be used with 32-bit address encodings to obtain the
1192  * linear memory address referred by the instruction's ModRM, SIB,
1193  * displacement bytes and segment base address, as applicable. If in protected
1194  * mode, segment limits are enforced.
1195  *
1196  * Returns:
1197  *
1198  * Linear address referenced by instruction and registers on success.
1199  *
1200  * -1L on error.
1201  */
1202 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1203 {
1204 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1205 	int eff_addr, regoff;
1206 	long tmp;
1207 	int ret;
1208 
1209 	if (insn->addr_bytes != 4)
1210 		goto out;
1211 
1212 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1213 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1214 		if (ret)
1215 			goto out;
1216 
1217 		eff_addr = tmp;
1218 
1219 	} else {
1220 		if (insn->sib.nbytes) {
1221 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1222 			if (ret)
1223 				goto out;
1224 
1225 			eff_addr = tmp;
1226 		} else {
1227 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1228 			if (ret)
1229 				goto out;
1230 
1231 			eff_addr = tmp;
1232 		}
1233 	}
1234 
1235 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1236 	if (ret)
1237 		goto out;
1238 
1239 	/*
1240 	 * In protected mode, before computing the linear address, make sure
1241 	 * the effective address is within the limits of the segment.
1242 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1243 	 * address override prefix is used. In such cases, segment limits are
1244 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1245 	 * to reflect this situation.
1246 	 *
1247 	 * After computed, the effective address is treated as an unsigned
1248 	 * quantity.
1249 	 */
1250 	if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1251 		goto out;
1252 
1253 	/*
1254 	 * Even though 32-bit address encodings are allowed in virtual-8086
1255 	 * mode, the address range is still limited to [0x-0xffff].
1256 	 */
1257 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1258 		goto out;
1259 
1260 	/*
1261 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1262 	 * effective address is not sign-extended when computing the linear
1263 	 * address.
1264 	 */
1265 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1266 
1267 	/* Limit linear address to 20 bits */
1268 	if (v8086_mode(regs))
1269 		linear_addr &= 0xfffff;
1270 
1271 out:
1272 	return (void __user *)linear_addr;
1273 }
1274 
1275 /**
1276  * get_addr_ref_64() - Obtain a 64-bit linear address
1277  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1278  * @regs:	Structure with register values as seen when entering kernel mode
1279  *
1280  * This function is to be used with 64-bit address encodings to obtain the
1281  * linear memory address referred by the instruction's ModRM, SIB,
1282  * displacement bytes and segment base address, as applicable.
1283  *
1284  * Returns:
1285  *
1286  * Linear address referenced by instruction and registers on success.
1287  *
1288  * -1L on error.
1289  */
1290 #ifndef CONFIG_X86_64
1291 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1292 {
1293 	return (void __user *)-1L;
1294 }
1295 #else
1296 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1297 {
1298 	unsigned long linear_addr = -1L, seg_base;
1299 	int regoff, ret;
1300 	long eff_addr;
1301 
1302 	if (insn->addr_bytes != 8)
1303 		goto out;
1304 
1305 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1306 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1307 		if (ret)
1308 			goto out;
1309 
1310 	} else {
1311 		if (insn->sib.nbytes) {
1312 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1313 			if (ret)
1314 				goto out;
1315 		} else {
1316 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1317 			if (ret)
1318 				goto out;
1319 		}
1320 
1321 	}
1322 
1323 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1324 	if (ret)
1325 		goto out;
1326 
1327 	linear_addr = (unsigned long)eff_addr + seg_base;
1328 
1329 out:
1330 	return (void __user *)linear_addr;
1331 }
1332 #endif /* CONFIG_X86_64 */
1333 
1334 /**
1335  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1336  * @insn:	Instruction structure containing ModRM byte and displacement
1337  * @regs:	Structure with register values as seen when entering kernel mode
1338  *
1339  * Obtain the linear address referred by the instruction's ModRM, SIB and
1340  * displacement bytes, and segment base, as applicable. In protected mode,
1341  * segment limits are enforced.
1342  *
1343  * Returns:
1344  *
1345  * Linear address referenced by instruction and registers on success.
1346  *
1347  * -1L on error.
1348  */
1349 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1350 {
1351 	if (!insn || !regs)
1352 		return (void __user *)-1L;
1353 
1354 	switch (insn->addr_bytes) {
1355 	case 2:
1356 		return get_addr_ref_16(insn, regs);
1357 	case 4:
1358 		return get_addr_ref_32(insn, regs);
1359 	case 8:
1360 		return get_addr_ref_64(insn, regs);
1361 	default:
1362 		return (void __user *)-1L;
1363 	}
1364 }
1365